Journal of Universal Computer Science, vol. 10, no. 11 (2004), 1498-1518
submitted: 10/5/04, accepted: 20/8/04, appeared: 28/11/04 © J.UCS

FBT: A Tool for Applying Interval Logic Specifications
to On-the-fly Model Checking

Miguel J. Hornos
(Dpto. de Lenguajesy Sistemas Informéticos, University of Granada, Spain
mhornos@ugr.es)

Abstract: This paper presents the FBT (FIL to Bichi automaton Trandator) tool which
automatically trandates any formula from FIL (Future Interval Logic) into its semantically
equivalent Biichi automaton. There are two advantages of using this logic for specifying and
verifying system properties instead of other more traditional and extended temporal logics, such
asLTL (Linear Tempora Logic): firstly, it allows a succinct construction of specific temporal
contexts, where certain properties must be evaluated, thanks to its key element, the interval; and
secondly, it also permits a natural, intuitive, graphical representation. The underlying algorithm
of the tool is based on the tableau method and is specially intended for application in on-the-fly
model checking. In addition to a description of the design and implementation structure of
FBT, we also present some experimental results obtained by our tool, and compare these results
with the ones produced by another tool of similar characteristics (i.e. based on an on-the-fly
tableau agorithm), but for LTL.

Key Words: Specification, Temporal Logic, Interval Logic, FIL (Future Interval Logic), GIL
(Graphical Interval Logic), Automatic Verification, On-the-fly Model Checking, Tableau
Method, Biichi Automata.

Categories: F.3.1,D.24,D.2.1

1 Introduction

The FBT (FIL to Bichi automaton Trandator) tool presented in this paper
automatically trandates a formula from FIL (Future Interval Logic) [Ramakrishna et
al. 1992] into its semantically equivalent Bichi automaton [Bichi 1962]. The
underlying algorithm [Hornos, Capel 2002] is based on the tableau method [Wol per
1985], and is specially intended to be applied to on-the-fly model checking [Gerth et
al. 1995], in such away that the property automaton can be generated simultaneously
with, and guided by, the construction of the system model. It is therefore possible to
detect that a property has been violated by constructing only a part of both state
spaces. Until very recently, the integration of both approaches (tableau and on-the-fly)
for an interval logic was considered unfeasible for this type of logic. For this reason,
we consider FBT to be not only an innovation but also an important achievement.
Traditional temporal logics, such as LTL (Linear Tempora Logic) [Manna, Pnueli
1992] and CTL (Computation Tree Logic) [Ben-Ari et al. 1983], alow reasoning
about the relative ordering of events in a system. However, we must formulate quite
intricate expressions with them in order to describe a temporal context in which

Hornos M.J.: FBT: A Tool for Applying Interval Logic Specifications ... 1499

certain requirements or properties must only be satisfied within it. This, together with
the fact that these logics do not have an intuitive representation, such as a semantically
equivalent graphical notation, has lead many system designers to believe that they are
difficult to use as formal description languages for the requirement specification of
systems, and that many of the specifications created with them are formulas which are
too complicated to understand. All of this has hindered a more extended use of the
mentioned logics as specification languages during the analysis phase of the
development cycle of industrial applications.

Unlike these logics, the formal specification language FIL, which our tool uses,
alows the succinct construction of bounded temporal contexts, thanks to its key
element, the interval, which defines such contexts clearly and concisely. In addition to
the textual representation of its formulas, this logic aso has a natural, intuitive,
graphical representation called GIL (Graphical Interval Logic) [Dillon et al. 1994],
and both the textual and graphical representation are semantically equivalent.

This paper is organized as follows. [Section 2] introduces the specification
formalism used, i.e. the graphical syntax of GIL and the textual syntax of FIL, and
also the semantics associated with their constructions. Moreover, it shows some
examples of how certain temporal properties of a rea-world system are specified in
both representations. [Section 3] describes the main characteristics of the design and
implementation structure of our tool (FBT) in addition to its input and output
interfaces, while [Section 4] presents some of the experimental results obtained with
it, and compares these with the results obtained with another similar tool (i.e. based on
an on-the-fly tableau algorithm), but with LTL as the specification formalism. Finaly,
we present the conclusions and related future lines of research to be followed.

2 Specification Formalism

The specification formalism used in this paper is a propositional, linear and discrete
time temporal logic with two different representations: one graphical and the other
textual. Its key construct is the interval, which allows us to carry out logical reasoning
at the level of time intervals, instead of instants. However, its primitive elements are
not intervals but instants. An interval is therefore formed by identifying its end-points,
which are instants satisfying certain properties. These points are searched for in the
global context, which represents an infinite sequence of states corresponding to a
system execution. Once the end-points of an interval have been located, the semantics
of the nested formula (to the interval) is restricted to the subtrace delimited by these
points. Each interval therefore represents a specific temporal context.

There are two main reasons for using this logic: firstly, the visualy intuitive and
natural representation of its graphical specifications makes them easier to develop and
understand (even for experts involved in the system development process who are not
familiar with this notation) than the textual representation of more traditional temporal
logics, such as LTL (Linear Tempora Logic) [Manna, Pnueli 1992]; and secondly, in
spite of having a graphical representation, it has a formally defined semantics on the
basis of its textual representation.

1500 Hornos M.J.: FBT: A Tool for Applying Interval Logic Specifications ...

2.1 Graphical Specifications of Temporal Properties

In order to specify the temporal properties of a system in aformalism that is very close
to the way in which a human being reasons, we use the pictorial version of the logic,
called GIL (Graphical Interval Logic) [Dillon et a. 1994].

The three graphical formulas in [Figure 1] show the basic types of properties that
can be expressed over aninterval. Thus, (a) isan initial property, which states that the
formula f expressing such a property holds at the first state of the interval, where f is
drawn left-justified below its left end-point; (b) represents an invariant property over
the interval, where f is placed below it and indented to the right of its left end-point to
express that f holds at every state of the interval; and (c) give us an eventuality
property stating that f eventually holds at some state within the interval, where a
diamond is placed on it with the target formula | eft-justified below the diamond.

(a) Initia property F)
f
(b) Invariant property F)
f
(c) Eventuality property F)
f

Figure 1: GIL formulas expressing the basic types of properties over an interval

In the formulas explained, f can be any GIL formula, even another interval formula,
and the intervals in them can represent the global context or a subinterval extracted
from a larger interval. Each end-point of a subinterval is defined by a search pattern
represented by a horizontal concatenation of dashed search arrows, where search
targets are left-justified below the arrowheads. Thus, the formula in [Figure 2] states
that i isan initial property in the subinterval extracted from the global context by using
a first search that locates the earliest state at which f holds (its left end-point), and
from this, the right end-point is located by searching for the formula h from the state
where g isfound.

T
~L

Figure 2: Initial property within a subcontext

Hornos M.J.: FBT: A Tool for Applying Interval Logic Specifications ... 1501

GIL formulas can be joined using the usual infix Boolean operators laid out
horizontally or vertically. In addition, a specification can be refined by replacing the
names of the formulas appearing in it with any GIL formula. Following these rules,
therefore, the (more abstract) specification of [Figure 2] is converted into the (more
concrete and complex) formula of [Figure 3]. It should be noted that the conjunction
symbol can be omitted in the vertical layout, as occurs between the two lower
formulas (—i4 and i5) in [Figure 3].

T
L

fiAf2
------------ L |
glvg2 hl
=
h2
r \
n]
------ >
il
»
i2
—
i3 >
P »
i3
——
ﬁi4}
is J J

Figure 3: Specification obtained by replacing the formulasf, g, handi in [Figure 2]

Every GIL formulais read from top to bottom and from left to right. The topmost
interval represents the global context (i.e. the entire computation of the system).
Braces can be used in order to disambiguate formulas. Consequently, it is clear in
[Figure 3] that the equivalence of the two bottom intervals is nested to the previous
one, which in turn is nested to the topmost interval. Further details about the visual
syntax of GIL can be found in [Dillon et al. 1994].

2.2 FIL asthe Textual Representation of GIL

We could say that FIL (Future Interval Logic) [Ramakrishna et al. 1992] is the formal
basis for GIL and its textual representation since it serves as the basis for defining the
semantics of al the constructions of the logic and there is an equivalence (established
in [Dillon et a. 1994]) between the textual formulas of FIL and the corresponding
graphical formulasin GIL.
The syntax of FIL for a finite set » of primitive propositions, where pe p, is

defined as follows:

foo= p | —f | fyvf | If [* FIL formulas*/

I o= [6l&) | [-1&) | [6]-) I* Intervals*/

g = of | >f@ [* Search patterns */

1502 Hornos M.J.: FBT: A Tool for Applying Interval Logic Specifications ...

A FIL formula is purely propositional when it does not contain any interval.
Otherwise, it is an interval formula, with its structure given by | f, where | represents
an interval and f represents any other FIL formula nested to it. All the intervals are
half-open, including their left but not their right end-point. Each interval end-point is
defined by a search pattern, which is either a sequence of one or more searches or a
trivial pattern (represented by — or —). Each search, e.g. —f, locates the first point in
the reflexive future (which includes the current state) where the target formulaf holds.
When several searches are sequentially composed, such as in —g,—h, each
subsequent search begins in the state located by the previous search; the last of these
therefore locates the end-point of the interval that such a pattern defines. The trivial
search pattern — leaves us at the point where we are, while — takes us to the end of
the current context. Thus, the interval modality [—|&) tries to construct a prefix of the
current context, which goes from the current state to the state prior to the one located
by the search pattern 6; whereas the expression [8;|—) tries to construct a suffix of
the current context, beginning in the state located by 6; and extending it until the last
state of the current context.

Every interval modality [616,) defines a context, which is either the null context or
the subsequence that begins in the state located by the search pattern 6;, and finishes
in the state prior to the one located by the search pattern 6. A null context occurs
when a search fails (i.e. its target formula cannot be located in the current context) or,
since the searches of both end-points start at the same state, when the state located by
6, does not precede the state located by &; the interval cannot therefore be
constructed, which is why the formula [6,|&)f is assumed to be vacuously satisfied.
The semantic interpretation of [6,|6,)f would therefore be: “If the interval [6,]6) can
be identified within the current context, then f must be satisfied within the subcontext
that it represents’. This default-to-true semantics yields the following meaning for
—[6,|&)f: “An interval of the form [6,|6,) compulsorily exists in the reflexive future
and f does not hold at its first state”. The complete FIL formal semantics can be found
in [Ramakrishna et al. 1996].

The other standard constructs of Propositional Logic are defined as abbreviations
of certain expressions, i.e. T=pv—p, F=—T, ——f =1, fiA f; = (—fyv—f,) and f;=f, =
—fyvf,. The restricted syntax presented above for FIL can be extended with several
LTL temporal operators, defined as abbreviations for the following interval formulas.
Since the logical constant F can only hold in the null context (which is given by an
interval that cannot be constructed), the formula [->—f |-)F can never therefore be
satisfied in a trace in which —f holds at some state of the reflexive future, with this
formula being equivalent to [If. Its dual, —[—>f |>)F, states that there is some instant
in the future where f holds, which is why it is equivalent to 0f. The operator strong
until is defined anlU f2=—|[—)(—|f1V fz) |%)—|f2

Consequently, using the extended syntax of FIL, the formulas corresponding to the
GIL onesin [Figure 1] are: (a) f, (b) Of, and (c) ¢f, while [—f |>f,—g,—h)i isthe
equivalent FIL formula to the GIL one represented in [Figure 2] and this other
[=fLAf2|5fIAf2,—>glvg2,—hl1=h2)([—il]—il,—i2)0i3=[-|—i3)J(—i4Ai5)) is the
anal ogous one to the formula shown in [Figure 3].

Hornos M.J.: FBT: A Tool for Applying Interval Logic Specifications ... 1503

2.3 Examplesof Specifications: Propertiesof a Traffic Light

In this subsection, we present some examples of how certain temporal properties
(security, recurrence, precedence and response) are specified in both representations
(GIL and FIL) by applying them to the specification of a real-world system,
specifically atraffic light.

The meaning of the security property represented in [Figure 4] is that whenever the
traffic light is red (i.e. in dl the intervals from when the traffic light changes to red
until it changes to green again), the cars must stop.

p >3

T

------- »
red
(a) b e »
. green
C 1
stop-cars
(b) O[—>red | >red,—»green)Ostop-cars

Figure 4: Security property expressed in: (a) GIL, and (b) FIL

The formula of [Figure 5], which can be read as “infinitely often the green lights”,
asserts that for each instant of the execution, there will always be a state in the future
at which the traffic light is green, which explains why it is a recurrent property. It
should be noted that the right end-points of both intervals must match, since every
time the green must come on between the corresponding current state and the end of
the current context, which is given by the upper interval.

T
T
[N 2 3

@

green

(b) O0green
Figure 5: Recurrent property expressed in: (a) GIL, and (b) FIL

The specification of [Figure 6] is a property of precedence, since it expresses the
condition that before the red lights, the amber must light at some previous instant.

~L

(b) [-|—>red)amber

Figure 6: Property of precedence expressed in: (a) GIL, and (b) FIL

1504 Hornos M.J.: FBT: A Tool for Applying Interval Logic Specifications ...

Finally, the formula of [Figure 7] states that in response to the request made by a
pedestrian pressing the button, the traffic light will eventually respond by lighting the
green for the pedestrians. It is therefore a property of response.

T
>

[mml

green-pedestrians
(b) [-opress-button|—)0green-pedestrians

Figure 7: Property of response expressed in: (a) GIL, and (b) FIL

3 Design and Implementation of FBT

3.1 General Structure of the Tool

The structure of the different classes of FIL formulas considered in the design and
implementation of FBT is described in [Figure 8], using a class diagram in UML
(Unified Modelling Language) [Rumbaugh et al. 1999]. Fil is an abstract class that
defines the elements which are common to the different types of formulas, defined in
its subclasses: FilAtom, the class that represents the literals (atomic propositions,
negated or not); FilConstant stands for the logical constants (T or F); FilJunct
implements the conjunctions and disjunctions of (two) FIL formulas, while Fillff does
something similar, but with equivalences and exclusive digunctions; and Fillnterval,
the class that builds interval formulas, comprising two search patterns which attempt
to locate each end-point of the interval, and a FIL formula nested to this. An instance
of the class SearchPattern is a sequence of zero (if it isatrivia pattern) or more FIL
formulas, as many searches as comprise that pattern.

2 0..N searches
Fil
2 1 nested_formula
FilAtom FilConstant FilJunct Fillff Filinterval
<f 2
SearchPattern

Figure 8: UML class diagram representing the different types of FIL formulas

Hornos M.J.: FBT: A Tool for Applying Interval Logic Specifications ... 1505

The UML class diagram shown in [Figure 9] describes the structure of the graph
that FBT generates from a FIL formula. FilGraph is therefore the class representing
the graph, which is formed by the aggregation of nodes (i.e. objects of class
FilGraphNode). Two nodes of the graph are related if a transition exists between
them. This has been represented by means of an association with two role names:
predecessor and successor. The structure of each node is constituted for the
aggregation of the following sets of (zero or more) FIL formulas:

o New: Tempora properties that must hold in the node and have not yet been
processed. When a node has been processed completely, this set is empty,
which iswhy all the resulting nodes do not contain any formulain it.

e Old: Formulas that must hold in the node and have already been analysed. It
should be noted that all the formulas that finally constitute this set in a node
have previously been part of the set New of the same node.

o Next: Temporal properties that must be satisfied in all the next nodes (i.e. states
which are the immediate successors of the node). This set can only contain
interval formulas, since these are the only FIL formulas that can postpone their
fulfilment.

o Literals: Literals stored in Old. Although this is a redundant set, it is used to
obtain greater efficiency, since certain searches and verifications can be carried
out more quickly on this set than on the set Old.

FilGraph

0.. N? nodes
successor

1 n| FilGraphNode

1.N
predecessor

New | 0..N 0..N | Old 0..N | Next 0..N | Literals

Fil Fillnterval FilAtom

Figure 9: Sructurein UML of the graph generated froma FIL formula

3.2 About the Implementation

The implementation of FBT is based on the C++ [Stroustrup 1986] code of LBT (LTL
to Bichi automaton Tranglator)?, a tool of similar characteristics, since it is based on
an on-the-fly tableau algorithm [Gerth et a. 1995], but with LTL as the specification
formalism. Consequently, both tools share the same input and output interface, and the
syntax and notation for all the formula components that are commonly accepted by
both, i.e. the logical constants, literals, propositional operators and temporal operators

W hitp://www.tcs.hut.fi/Software/maria/tool s/l bt/

1506 Hornos M.J.: FBT: A Tool for Applying Interval Logic Specifications ...

of LTL. Our initia intention was to integrate FBT into MARIA [M&kel&d 2002], a tool
that performs on-the-fly model checking. This was the main reason for reusing part of
the LBT code in order to make integration easier, since LBT is the trandator used in
MARIA. Obvioudly, we have had to incorporate a series of specific classes and
functions for the analysis of interval formulas, which are not present in LTL. We have
also implemented a series of heuristics in order to improve and optimise the code; we
have therefore managed to generate automata with fewer nodes and edges and in less
time, and to determine the accepting states more quickly than if these heuristics had
not been used. Among these heuristics, the following should be highlighted:

1. During the expansion process of the graph nodes, FBT considers two nodes to
match (i.e. they represent the same state) if their fields Literals and Next store the
same respective set of formulas, and this is why the two nodes are merged into one.
LBT, however, only fuses two nodes when the fields Old and Next of one node
contain the same respective sets of formulas as their homologous ones in the other
node. The advantage of applying our approach is that in many casesit is possible to
reduce the number of nodes generated with regard to those that would be produced
if the condition considered in LBT had been implemented.

2. Thefirst thing that FBT does with the chosen formula (77) from the field New isto
check whether its negation (—7) is included in the field Old and if so, this node
should be discarded. In this way, the contradictions in a node are rapidly detected,
thus avoiding the processing of many formulas of a node (which will eventually be
discarded) until we reach the level of literals, which is where the contradictions are
detected in LBT. With this heuristics, we are able to carry out the expansion
process of interval formulas more quickly and efficiently.

3. In order to establish the acceptance sets (i.e. the acceptance conditions), our
tranglator uses an improved heuristics with respect to LBT, where the search for the
formulas expressing eventuality (i.e. those having either the operator U (strong
until) or the operator ¢ (finally, eventually) as the main operator), is carried out in
the field Old of the nodes stored in the set of the graph nodes, instead of in the field
Next, as FBT does. This last field obvioudy contains fewer formulas than the
previous field as it only stores the temporal formulas (interval formulas, in the case
of FBT) that must be satisfied (although not immediately) in the state which that
node represents. The field Old, meanwhile, holds not only these formulas, but also
all the propositional and temporal formulas that have been processed in such a
state. Some of these formulas are either totally or partially satisfied in that state and
they are not therefore present in the field Next. Consequently, this heuristics
enables FBT to cal culate the acceptance conditions more quickly.

4. In order to determine the accepting states, i.e. the states that belong to each
acceptance set, FBT need only check that none of the eventuality formulas
associated to the corresponding acceptance condition is stored in the field Next of a
node. By checking in the field Next rather than in the field Old (as LBT does) our
procedure is able to gain the advantages of speed and simplicity. Moreover, in
order to determine whether a state belongs to an acceptance set or not, LBT must
check not only for the presence or absence of the corresponding eventuality
formula (which is either of the type 0f or gUf, where f and g represent any formula
accepted by LBT), but also for the formula that satisfies that eventuality (f).

Hornos M.J.: FBT: A Tool for Applying Interval Logic Specifications ... 1507

Consequently, the procedure for calculating the accepting states is more complex in
LBT thanin FBT.

3.3 Input and Output Interface

Designed to be invoked as a subprocess for an on-the-fly model checker, FBT
analyses a FIL formula supplied in textual format using the standard input. Once it has
been processed, FBT writes (also in textual format) the generalized Biichi automaton
which is semantically equivalent to this formula in the standard output. Both in the
input and output, the formulas are written in prefix notation, since this facilitates the
recursive-descent parsing that our translator must carry out. The fina part of this
section explains how a graphical representation may be obtained from the textua
output generated by FBT.

Types of formulas

<fs = <rconstarts |
<proposition:- |
<negated formualas |
<propositional formualas |

<itterval formolas |
<LTL temporal formulas | £* although they are nof achully part of FiL, they can
be used as abbreviafions for iferval formulas
[swehvmy ey £] <f| S wlite goace is Ignored %
<fx [Wwehm e £] S white goace is ignored %
Basic formulas
<oonstants = e S e
'£ £ false
<propositions = ‘p'[0-3]+ £ afomic proposifion
<negated formualas = P ofs
Propositional formulas
<propositional formulas = <hinary operators <fl> <>
<hinary operator> o= tet ¥ compunction ¥
R SF disheaction Y
tit Simplicafion: "1 <fl= <fz=" 15 shorfhad
Jor vl o1 <fle iz W
el S* equuivalence Y

[|

S exclusve disfunction (xor) %

Figure 10: Syntax of the formulas accepted by FBT (1): the simplest formulas

3.3.1 Syntax of the Input Formulas

This subsection presents the grammar that defines the syntax of all the types of
formulas accepted by FBT as input. The grammar, which is shown using the BNF

1508 Hornos M.J.: FBT: A Tool for Applying Interval Logic Specifications ...

(Backus-Naur Form) [Naur 1960], has been divided into two figures in order to obtain
a more elegant presentation, since not all its production rules fit into the available
space of a page. [Figure 10] shows the rules which build the simplest types of FIL
formulas, while [Figure 11] describes how the formulas containing some temporal
operators are formed. Comments delimited by the symbols /* and */ have been added
to the right of certain production rules in both figures. These comments and the
expressions in bold that separate the grammar rules into different groups or sections
(so as to make them easier to read) are not part of the formal grammar. Terminal
symbols are enclosed within single quotes or presented as regular expressions in the
style used by the lexical analyser generator FLEx2. Non-terminal symbols are enclosed
within angles, and these are also represented in the usual link-style (i.e. underlined)
when they appear in the righthand part of a production rule.

Interval formulas
<interval formalas = <iftervals <f ¥ formula nested fo aninferva. < £> must hold
wittun the covfext provided by the inferval
<interval> = ' <non-trivial patterns #* e “stendard” interval, 1.e. vone of
<non-trivial patterns | its search pafferns 1s frvial %
V[- cnonctrivial patterns | S feiviadl left search patfern: itleaves us
af the poivt where we are %
' <non-teivial patterns VxS feivial vight search patfer: 1 fales us
fo the end of the currert confext
<not-trivial pattems o= <f| #* g nom-frivial search pafter is made

up of one or more searches,

Vet <fs <non-trivial pattems cachlocates ifs fargef formula m the
reflexive fldfure %

LTL temporal formulas {used as abbreviations for interval forrmlas)
<LTL temporal formalas = <LTL unary operators <f- |

<LTL binary operators <fls> <f2>

<LTL unaty operators = 'F' £ finally, evanfudly: "F <= {5 shorihumd for
"1 o=fE e £
'G #* globally, haweforfi. "6 <> {5 shorthand for
LIS S L
<LTL hitvaty operator:- = SRR A (sfrong) wnfil; "U < £1x <£2= 15 shorfhavd for

ML sfle wE7e x| afEet K

AN Fpelease: "W «fls <£2" i shorfhad for
ML =fEe g <fle <f2F = | g <fle <fE=t K

Figure 11: Syntax of the formulas accepted by FBT (11): temporal formulas

12 hitp://www.gnu.org/software/flex/flex.html

Hornos M.J.: FBT: A Tool for Applying Interval Logic Specifications ... 1509

It should be noted that FBT also accepts LTL temporal operators, but only as
abbreviations of the corresponding FIL interval formulas (as indicated in the first
comment of [Figure 10] and also in [Figure 11]). This means that once FBT has
parsed one of these formulas, it immediately transforms it into its equivalent interval
formula, which is the one that it actually stores and processes. Consequently, all the
temporal formulas that our algorithm must decompose (i.e. expand) are interval
formulas, and therefore it has no expansion rule for decomposing formulas with LTL
temporal operators, since these operators are not present in the internal formulas that
must be processed. In other words, the interval is the only temporal operator that the
agorithm must consider internally.

It can be seen in the last two lines of the first production rule in [Figure 10] that
FBT ignores white spaces, horizontal and vertical tabulators (\t and \v), carriage
returns (\r), and line and form feeds (\n and \f). We can therefore introduce any
number of these separators between two terms of the formula that we want to supply
asinput to FBT.

3.3.2 Syntax of the Generated Output

[Figure 12] shows the syntax used by FBT for returning the generalized Biichi
automaton (gba, as it is referred to in the lefthand part of its first production rule),
which is equivalent to the FIL formulathat was introduced as input. It should be noted
that the same notation explained in the previous subsection has been used in this
figure, and that the non-terminal symbol <proposition> used in it is defined in [Figure
10].

The following example attempts to clarify the grammar presented in [Figure 12],
and also to explain how the tool may be operated and some of its main characteristics.

Example 1: Let us suppose that the formula —p0 (i.e. !Gpo, in the FBT syntax) is
supplied to the tool and that we want to obtain the corresponding output in a file
named automaton. txt. In this case, the command that we would have to type would
be: echo '!Gp0' | fbt sautomaton.txt. If thisformulais the content of afile
(for example: formula.txt), then we should type: fbt <formula.txt
>automaton. txt. Obvioudly, if we want the output to appear on the screen, we only
need to omit the last part of the command (from the redirection symbol >) in both
cases. [Figure 13] shows what FBT returns after executing one of the previous
commands (i.e. the contents of the file automaton.txt) and explains its meaning.
FBT converts the formula given into its equivaent interval formula: 1 [1po > £ (i.e.
—[——p0 |[-)F, in the standard FIL syntax presented in section 2.2), which is the one
that it actually stores and processes. FBT would obviously performin exactly the same
way and would generate the same output if the formula inputted had been, for
example, any of the following: F!po (0—p0), | Fipo !Gpo (0—p0 v =Op0) or &
F!p0 !Gp0 (0—p0 A —=p0), since al of these are equivalent.

1510 Hornos M.J.: FBT: A Tool for Applying Interval Logic Specifications ...
<ghar 1= <tuo. states> <wss <o, accepd. setss <statess
<no. statess o= [(0-51+ S ruember offofal stafes, including the inifial one (if () fhe
provided formula 15 nof safisiable) *
sy = [vnl+ S¥wlite mace
<no. accept. setex o= [0-31+ S rmamber of accepfavce sefs (10 all sfakes are accepfing) %

<states> =

<gtates 1=
<state1d> o=

<initial?s =

<accept. id> 1=
<ends =
<travsitionss =

<transitions =

<gater 1=

<literal> 1=

<acceptance setsr o=

<states> <ws> <state> |
A empty
<gtate id.> <ws> <initial?> <wss <acceptance sete> <ends <transitions: <ends-

[(0-3]+ ¥ stete iderdifiers can be arlufrary uns gned infegers (the
inificd state 15 alweays rumbered) %

ar| SEIF s ot an il al sfafe %

t1! S ivifial stafe fexactly one sfafe must be pufial) *

<acceptance sets> <accept. id> <ws> |

A empfy Mt

[0-9]+ #* acceptance set identifiers can be arbi-

fravy wisighed irfegers %
-1 S*if marks the end of either the stafe [abel
oF the sef of stafe frapsifions
<trarsitions <wer <transition> |
A empty
<state id. > <ws> 't | #* comstartly enabled fransifion fo fhe
node whose reamber 15 <state id.> %

£ pomdifionally enabled fransition fo the
node whose reamber 15 <state id.> %

<gtate id.> <ws> <gate>

<literal>|

' &' wws> < gater <wsr <gater
<prrofposition- |

U s progosit o

S comjunction of liferals
£ gfomic proposifion %
S negated atongc proposifion

Figure 12: Syntax of the output generated by FBT

3.3.3 Graphical Visualization of the Generated Automata

In order to graphically visualize the textual output generated by FBT, we should
execute a filter, which we have named GBA2DOT since it converts the generalized
Bichi automaton that FBT produces into the language dot, which is directly accepted

by the directed graph visualization tool GRAPHV1Z3 [Gansner, North 2000].

The following example shows how a graphical representation may be obtained
from the textual output produced by our trandlator. It uses the result obtained in
[Example 1] (i.e. the contents of the file automaton. txt), which is shown in [Figure

13).

13 hitp://www.graphviz.org/

Hornos M.J.: FBT: A Tool for Applying Interval Logic Specifications ... 1511

Tota number of states, Total number of acceptance sets
including the initial one

Node identifier

’@ o This is the initial state
| @& End of the label of node 0

@ 1 pO® Transition to node 2 lebelled with 190

G po Transition to node 4 lebelled with po

Node 0 <

End of the transitions for node 0

These nodes setisfy the conditions of
the acceptance set 0

Node2 < | 3

These nodes are not the initial state

Node 3 + 3

Node 4

Figure 13: Textual output generated by FBT from the formula —Jp0

Example 2: The execution of the command gba2dot <automaton.txt
sgraph.txt trandates the generalized Blchi automaton stored in the file
automaton.txt (presented in [Figure 13]) into the language dot. The execution
result of the previous command is shown in [Figure 14] and stored in the file
graph.txt. From this file, with its easier to understand contents, the visualization
tool GRAPHVIzZ automatically generates the corresponding graphical representation.
We therefore only need to type the following command: dotty - <graph.txt, and
the window presented in [Figure 15] will appear on the screen. This contains the
graphical representation of the generalized Bichi automaton that FBT produces for
the input formula!cpo (i.e. —Op0).

1512 Hornos M.J.: FBT: A Tool for Applying Interval Logic Specifications ...

digraph o {
O[style=filled, label="0"];
O0->Z2 [label="!p0"];
O0->4[label="p0"];
Z[lakel="2 \n0"];
i->3[1label="t"];
3I[1label="3%n0"];
3I-x3[1label="t"];

4[lahel="4"];
4-22 [Llabel="1p0"];
434 label="p0"];
}

Figure 14: Filter execution result for the output generated by FBT from the formula
—[p0

Figure 15: Graphical representation of the Blichi automaton generated by FBT from
—[p0

Additional details about the tool design and implementation can be found in
[Hornos 2002] and at http://www-Isi.ugr.es'~mhornos/fbt, where the tool code can be
downloaded.

Hornos M.J.: FBT: A Tool for Applying Interval Logic Specifications ... 1513

4 Experimental Results

As FBT has been implemented from the LBT code, this section not only presents
some experimental results obtained with our tool, but also those generated by LBT for
the same or equivalent specifications so that both tools may be compared.

As [Figure 11] shows, not only does FBT recognize the only temporal operator of
FIL, i.e. the interval, but also the following temporal operators of LTL: [(always or
henceforth) and its dual ¢ (eventually), and U (until strong) and its dual V (release),
but only as abbreviations of the corresponding FIL interval formulas. FBT therefore
accepts LTL formulas, such as the one shown in [Example 3], but automatically
transforms them into their FIL equivalents, these being the ones that it actually stores
and processes, as mentioned previoudly.

Figure 16: Biichi automaton generated by FBT from the formula 0p0 A Op1

Example 3: For the input specification 0p0 A Opl, FBT processes the FIL formula
—[—p0]—=)F A =[—pl}>)F in order to build its semantically equivalent automaton,
which is graphicaly represented in [Figure 16]. It should be noted that each edge is
labelled with the conjunction of literals (in prefix notation) that enables that transition.
The upper number labelling each node is its state identifier, while the lower numbers
identify the acceptance conditions that it satisfies. The initial state is always shaded
and numbered 0. In order to compare the automata generated by FBT and LBT, we
count the number of nodes, edges and acceptance conditions, as well as the number of
states that satisfy each condition. Since both tools produce generalized Bichi

1514 Hornos M.J.: FBT: A Tool for Applying Interval Logic Specifications ...

automata, the resulting automaton generally have k acceptance conditions; each one
defines a set of accepting states, F; (with i=1..K), which contains those states that
satisfy it. The automaton in [Figure 16] has 9 nodes (the initiadl node is not
considered), 20 edges (the ones leaving the initial node are counted), and two
acceptance conditions (k=2), the first (identified by the number 0) is satisfied by six
states (nodes 3, 4, 5, 7, 8 and 13), while the second one (identified by the number 1) is
satisfied by another six (nodes 3, 4, 7, 11, 13 and 14). When k>1, if we want to obtain
a classic Buchi automaton, i.e. one with only one set of accepting states, F, we only
need to obtain the states that are in the intersection of the sets F; (i.e. F=nF;). There
are therefore four accepting states in our example (nodes 3, 4, 7 and 13).

[Table 1] gathers the values counted in the automata generated by FBT and LBT
for various input specifications which only have LTL temporal operators. The one
explained in [Example 3] is shown in Case 5. Each case occupies two rows: the first
corresponds to the results obtained with LBT, and the second is for those produced by
FBT. It should be noted that in the second row of each case, the input specification is
represented in the extended syntax of FIL, while the processed formulais expressed in
its restricted syntax. We can observe that for the simplest specifications (Cases 1 and
2), the same values are obtained in the automata generated by both tools (except in the
column Time, a variable which will be discussed at a later stage). However, for
dightly more complex specifications (Cases 4, 5 and 6), FBT generally produces
smaller automata than those obtained with LBT. The formulas containing either the
operator U or its dual v are usually the exception to this rule, since for these, LBT
usually produces automata which are dlightly simpler than those generated by FBT
(Case 3). This is due to the fact that the corresponding interval formula which is
analysed by FBT attempts to “simulate” the property that these operators represent
more naturally. Something similar happens in the opposite way with interval formulas:
since LBT does not admit interval formulas, it is necessary to resort to appreciably
more complicated expressions (see [Table 2]) in order to provide it with an equivalent
LTL formula, as[Example 4] explainsin detail for Case 1 of [Table 2].

Example 4: Since LBT does not recognize the formula [—pO}—pl)O—p2, we must
input an equivalent LTL formula. The semantics associated with this interval formula
indicates that it holds whenever one of the following four conditionsis fulfilled:

1. p0 does not hold in the reflexive future, i.e. the LTL formula CO0—p0 holds.

2. pl never holdsin the reflexive future, i.e. O—plistrue.

3. pl precedes pO, which is expressed as p1V—pO0 in LTL. Thisformula asserts that in
the first state where p1 holds as well asin all the previous onesto it —p0 holds.

4. Either p0O and p1 hold in the same state or p0 holds strictly before p1 and (in this
latter case) —p2 isinvariantly satisfied from the instant in which p0O holds until plis
fulfilled. Both conditions are formulated in LTL as —p1 U (pOA —p2U pl).

Consequently, the equivalent formula to [—>p0l—pl)d—-p2 that must be inputted
into LBT is the disjunction of the previous four LTL formulas, i.e. [1—p0 v Tl—pl v
plV—p0 v —pl U (pO A —p2 U pl). The interval formula clearly expresses the
explained property more concisely and elegantly. Moreover, the analysis carried out
by FBT produces a simpler automaton (see Case 1 in [Table 2]).

Hornos M.J.: FBT: A Tool for Applying Interval Logic Specifications ... 1515

Specification Size Accepting states | Time

Input ‘ Processed Nodes | Edges| k |Fil INFi|] ps
O—p0 1 2 o] — [=120

1 O—p0 | [—pO|=)F 1 2 | o — | =120
0p0 3 6 | 1 2 — [s0

2 0po \ —[—pOj=)F 3 6 | 1 2 — | 238
plUp2 3 6 | 1 2 — | e0

3 pLUp2 | —[>(plv p2)[—=)—p2 4 9 [1 3 — | 624
00pL 6 B3| 2] a5 | 3| o8

4 00pL \ [pL)F)F 4 g8 | 2] 33 | 2 |43
0p0 A Opl 13] 20 [2] 88 | a4 [a232

S 0pOAOpL | —[—pOj—)F A[—pL—)F 9 | 20 | 2| 66 | 4 | o0
O0pl = O0p2 9 19 2 7,7 5 172

6 O0pl = O0p2 ‘ —[=[=pl=)FIS)F Vv [S[—p2l-)Fl-)F 5 15 8 4,34 2 900

Table 1: Comparison of results obtained with LBT (] and FBT [fromLTL
formulas

The contents of [Table 2] are similar to those of [Table 1] but for more complex
properties which are inputted as interval formulasto FBT and as their equivalent LTL
formulas to LBT. Except for the formulas of Case 1 (explained in [Example 4]), the
remaining formulas of [Table 2] have been taken from an online repository of property
specification patterns* that are commonly used in the specification and (finite-state)
verification of concurrent and reactive systems. These patterns, which are available in
various formalisms (including LTL and GIL), are classified in terms of the kinds of
properties they describe and are defined using specific scopes (i.e. the extent of the
execution over which the property must hold). Case 2 specifies that p0 is always false
before pl; it is therefore an absence property defined over the scope before. Case 3
states that pO becomes true after pl; it is therefore an existence property defined over
the scope after. Case 4 represents a universality property over the scope between,
since it specifies that p0 is aways true between pl and p2. Finaly, the two last cases
are bounded existence properties, meaning that transitions to pO-states occur at most 2
times globally (i.e. its scope is the entire execution) in Case 5 and before p1 in Case 6.

In both tables, the last column indicates the average execution time taken by each
tool to trandate the corresponding formula. These times have been calculated on
average by running the same formula 30 times under the SUSE Linux 7.2 operating
system on a PC with an AMD Athlon 1 GHz processor and 256 MB of RAM. It
should be noted that these times are expressed in terms of microseconds (us) in [Table
1], while milliseconds (ms) are used in [Table 2]. It can be appreciated that LBT is
faster than FBT for all the formulas analysed. This is due to the fact that processing
interval formulas is more complex than processing LTL formulas since every
expansion (or tableau) rule of the LBT agorithm [Gerth et al. 1995] generates two
new formulas at most, whereas the expansion rules of the FBT algorithm [Hornos,
Capel 2002] can generate more than two new formulas for each analysed formula

(4 hitp://patterns.projects.cis.ksu.edu/documentati on/patterns.shtm

1516 Hornos M.J.: FBT: A Tool for Applying Interval Logic Specifications ...

when it is decomposed (i.e. expanded). Nevertheless, the running time of FBT can be
perfectly assumed since it is sufficiently small, and in most of the analysed formulas,
the resulting automata are smpler than those produced by LBT, as both tables show.
Particularly significant is the difference in size between the automata generated by
LBT and FBT in bounded existence properties (Cases 5 and 6 of [Table 2]).

Specification Size Accepting states | Time
Input ‘ Processed Nodes | Edges| k |Fil INFill ns
O—p0 v O—pl v pLV—p0 v —p1 U (pO A —p2 U p1) 17 33 |2 1514 | 12 | 03
1 [—pO}->p1)C—p2 ‘ [—p0|>p1)[—p2l->)F 12 25 |2 9,9 7 34
0pl = (—p0 U pl) 7 12 |1 5 — | o1
2 [~l->p1)T—p0 \ [~l—>pL)[—pOj—)F 4 s |1 3 — | os
O—plv O(pla 0p0) 11 2 |2 8,9 6 0.2
3 [—p1]—)0p0 ‘ [—pl|—>)—[—pO|-)F 7 15 2 5,6 4 0.9
O((pL A —p2 A Op2) = (PO U p2)) 13 6 |1 8 — | o7
4 O[—p1|—-p2)Cp0 ‘ [==[—pl|=p2)[—>—p0|->)F | —=)F 13 58 2) 7 16.8
G| O-r0v (-POU R0V (OU C-p0 v (-pOU CpOV (U C-pO) | 31 | 88 | 4 2o | 1| 09
[—p0,——p0,—p0,——p0}—)1-p0 ‘ [—p0,——p0,—p0,——p0}—)[—p0|—>)F 9 20 1 5 — 7.6
0pl = ((—p0 A —p1] 1v ((pO A —pL, 1 v ((=pO A —pl)
Bl T lorv (n oo D CooTmmm el B E el IS
[==pD[—=p0,—=p0,—p0,>=p0}=) | [-=pL[—=p0——p0,—p0,——p0=) | 4, 0 |1 3 _ | 501

[J—-p0 [—p0|>)F

Table 2: Comparison of results obtained with LBT] and FBTL frominterval
formulas

5 Conclusions and Future Work

In this paper, we have presented the FBT tool, which is specialy intended to be
applied to the automatic verification of systems, using the on-the-fly model checking
method and FIL formulas. We have adopted this logic as the specification formalism
of our tool for two reasons: firstly, its ability to succinctly express limited temporal
contexts in which certain properties must be satisfied; and secondly, its natural,
intuitive, graphical representation, which makes the specifications easier to develop
and understand.

We have shown class diagrams illustrating the design structure of FBT, and
discussed the main characteristics of its implementation. We have also included some
experimental results which have been compared with the results obtained with LBT
for the same or equivalent formulas. The automata generated by both trandators are of
a similar complexity, but those produced by FBT are dlightly simpler in most of the
analyzed cases. As a good specification formalism is the one that describes the most
frequently used properties in verification with specifications that are relatively short
and not difficult to check in practice, we can conclude that FIL is agood specification
formalism and that FBT is a good tool for the efficient trandation of its formulas into
Biichi automata.

Hornos M.J.: FBT: A Tool for Applying Interval Logic Specifications ... 1517

In our most immediate future work, we intend to supply FBT with a graphical
editor for GIL formulas so that the specifications can be pictorially inputted rather
than in the FIL textual syntax. One editor of this type is GILED [Kutty et al. 1993],
which automatically translates the editor-created graphical specifications into the
corresponding FIL formulas. The ideais to adapt this editor or to build one of similar
characteristics for FBT. We also intend to integrate our translator into an on-the-fly
model checking tool. For this purpose, FBT has been designed so that it may be easily
incorporated into the model checker of MARIA [Makela 2002], and as we outline in
[Gallardo et a. 2004] we are working on the integration of FBT into SPIN [Holzmann
2003], which is one of the most popular finite-state verification tools. Our final aimis
to apply our tool to the specification and automatic verification of real-world systems,
using interval logic formulas for describing the properties to be checked.

References

[Ben-Ari et al. 1983] Ben-Ari, M., Pnudli, A., Manna, Z.: “The temporal logic of branching
time”; ActaInformatica, 20 (1983), 207-226

[Buchi 1962] Bichi, JR.: “On a Decision Method in Restricted Second-Order Arithmetic”;
Proceedings of the 1960 International Congress on Logic, Methodology and
Philosophy of Science; Stanford University Press, Stanford (1962), 1-11

[Dillon et al. 1994] Dillon, L.K., Kutty, G., Mélliar-Smith, P.M., Moser, L.E. Ramakrishna,
Y.S.: “A Graphica Interva Logic for Specifying Concurrent Systems’; ACM
Transactions on Software Engineering and Methodology, 3, 2 (1994), 131-165

[Gallardo et a. 2004] Gallardo, M.M., Hornos, M.J., Martinez, J., Merino, P.: “Integration of
Interval Logic Specifications into the Model Checker SPIN”; XIl Jornadas de
Concurrencia y Sistemas Distribuidos, Las Navas del Marqués, Avila, Spain (2004),
317-322

[Gansner, North 2000] Gansner, E.R., North, S.C.: “An open graph visualization system and its
applications to software engineering”; Software: Practice and Experience, 30, 11
(2000), 1203-1233

[Gerth et al. 1995] Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: “Simple On-the-fly
Automatic Verification of Linear Temporal Logic’; Proceedings of the 15th
International Symposium on Protocol Specification, Testing and Verification, Warsaw,
Poland; Chapman & Hall (1995), 3-18

[Holzmann 2003] Holzmann, G.J.: “The SPIN Model Checker: Primer and Reference Manua”;
Addison-Wesley, Boston (2003)

[Hornos 2002] Hornos, M.J.: “Tool Design and Implementation”; In: From Interval Logic
Soecifications to Property Automata: A Tableau Construction for Application to On-
the-fly Model Checking, Chapter 6, PhD. Thesis, University of Granada (2002), 153—
182 (in Spanish)

[Hornos, Capel 2002] Hornos, M.J., Capel, M.I.: “On-the-fly Model Checking from Interval
Logic Specifications’; ACM SIGPLAN Notices, 37, 12 (2002), 108-119

[Kutty et al. 1993] Kutty, G., Dillon, L.K., Moser, L.E., Médlliar-Smith, P.M., Ramakrishna,
Y.S.: “Visua Tools for Temporal Reasoning”; Proceedings of the |[EEE Symposium on
Visua Languages, Bergen, Norway (1993), 152-159

[M&keld 2002] Mékelg, M.: “Mariaz Modular Reachability Analyser for Algebraic System
Nets’; Proceedings of the 23rd International Conference on Application and Theory of
Petri Nets, Adelaide, Australia; Lecture Notes in Computer Science, 2360, Springer-
Verlag (2002), 434444

1518 Hornos M.J.: FBT: A Tool for Applying Interval Logic Specifications ...

[Manna, Pnueli 1992] Manna, Z., Pnueli, A.: “The Temporal Logic of Reactive and Concurrent
Systems: Specification”; Springer-Verlag, New Y ork (1992)

[Naur 1960] P. Naur (ed.): “Revised Report on the Algorithmic Language ALGOL 60";
Communications of the ACM, 3, 5, (1960), 299-314

[Ramakrishna et al. 1992] Ramakrishna, Y.S., Dillon, L.K., Moser, L.E., Mélliar-Smith, P.M.,
Kutty, G.: “An Automata-Theoretic Decision Procedure for Future Interva Logic”;
Proceedings of the 12th Conference on Foundations of Software Technology and
Theoretical Computer Science, New Delhi, India; Lecture Notes in Computer Science,
652, Springer-Verlag (1992), 51-67

[Ramakrishna et al. 1996] Ramakrishna, Y.S., Dillon, L.K., Moser, L.E., Mélliar-Smith, P.M.,
Kutty, G.: “Interval Logics and Their Decision Procedures. Part |: An Interval Logic”;
Theoretical Computer Science, 166, 1-2 (1996), 1-47

[Rumbaugh et al. 1999] Rumbaugh, J., Jacobson, |., Booch, G.: “The Unified Modeling
Language Reference Manua”; Addison-Wesley, Reading (1999)

[Stroustrup 1986] Stroustrup, B.: “The C++ Programming Language’; Addison-Wesley,
Reading (1986)

[Wolper 1985] Wolper, P.: “The Tableau Method for Temporal Logic: An Overview”; Logique
et Analyse, 110-111 (1985), 119-136

