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Abstract: A condensed specification of a multi-level marketing (MLM) enterprise
which can be modelled by mathematical forests and trees is presented in Z. We there-
after identify a number of proof obligations that result from operations on the state
space. Z is based on first-order logic and a strongly-typed fragment of Zermelo-Fraenkel
set theory, hence the feasibility of using certain reasoning heuristics developed for prov-
ing theorems in set theory is investigated for discharging the identified proof obliga-
tions. Using the automated reasoner OTTER, we illustrate how these proof obligations
from a real-life enterprise may successfully be discharged using a suite of well-chosen
heuristics.
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1 Introduction

Among the benefits to be gained by using a formal specification language like
Z [Spivey 1992, Bowen 2001] is that the specifier can prove things about the
specification. The process of constructing proofs can aid in the understanding
of the system, may reveal hidden assumptions and increase user confidence in
the final product. A specification without proofs is untested since it may be
inconsistent and describe properties that were not intended, or omit those that
were [Woodcock and Davies 1996].

The huge cost and inconvenience of detecting and correcting errors only af-
ter the system has been released [Fagan 1976], justifies the effort to identify and
correct errors at an early stage (e.g. specification phase). However, the readiness
with which the information technology industry would accept such a methodol-
ogy is likely to depend on the availability of environments that ease the burden on
the specifier by automating many of the specifier’s tasks. The more sophisticated
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the environment (and thus the greater its contribution to the partnership), the
more natural becomes the inclusion of a reasoning algorithm as one component.

Reasoning about the properties of an enterprise information system at the
specification level may, however, be a non-trivial task owing to the size of the
system or the complexity of the structures that make up such a system. Accounts
of costly, yet failed proof attempts exist, and one such prohibitively difficult
attempt to generate a proof monolithically in one step from a stated property to a
protocol is reported on in [Mokkedem et al. 2000]. Eventually the one step proof
was abandoned, unfinished, after 18 months of effort which led to the specifiers
adopting an incremental proof strategy in the end. Hence there appears to be a
need for ways to increase the feasibility of the automation offered by a reasoning
program and for cutting down on the average time it takes the reasoner to find
a proof. Resolution is one of the automated reasoning mechanisms available to
a specifier and in this paper we adopt the resolution-based theorem-proving
program, OTTER for reasoning about our specification.

The aim of this paper is to describe a case study illustrating an empirical
approach to improving the usefulness of OTTER, for discharging the proof obli-
gations incurred by specifying a system in Z. Heuristics to enhance the reasoning
process are described, in the hope that readers may be moved to conduct their
own experiments along these lines. It seems fair to anticipate that as heuristics
of tried and tested utility accumulate, specifiers will become more favourably
disposed to applying reasoners like OTTER.

1.1 Why Reasoning Heuristics?

Traditionally set-theoretic proofs pose demanding challenges to automated rea-
soning programs [Boyer et al. 1986, Quaife 1992], since unlike number theory or
group theory or applications to real systems such as power stations, the denota-
tions of terms in the context of set theory are strongly hierarchical: one object
(perhaps at a very fine level of granularity) is a member of another (coarser)
object, which in turn may be a member of a higher-level (even coarser) object,
and so on. The possibility of moving between levels is a provocation to much
irrelevant activity; intelligence would be realised by heuristics that limit the
movement up or down to productive changes of granularity [Bundy 1999]. For
example, in proving that

P(A) N P(B) = P(AN B)

the movement from the level of elements of A up to the level of elements of
P(A) should not be iterated to the level of elements of P(IP(A)). Humans under-
stand this intuitively and semantically — the challenge is to enunciate syntactic
constraining principles.
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It is furthermore an open problem as to which inference rule would accommo-
date the treatment of equality in set theory in as successful a way as paramodula-
tion accommodates equality-oriented reasoning in algebra [Wos and Pieper 1999].
Paramodulation is a rule applied to a pair of clauses and requiring that at least
one of the two contains a positive equality literal, and yielding a clause in which
an equality substitution corresponding to the equality literal has occurred. The
aim of an application of paramodulation is, therefore, to cause an equality sub-
stitution to take place from one clause into another. An example is given in
[Section 2.2.4]. [Bailin and Barker-Plummer 1993] claimed to have found such
a ‘paramodulation rule’ for set theory but were unable to solve the challenge
problem which accompanies research problem #8 in [Wos 1988]. Their approach
is furthermore not resolution-based.

Devising a set of heuristics appears to a suitable strategy for reasoning about
set-theoretic constructs [Bundy 1999]. A promising preliminary set of heuristics
was developed in [van der Poll and Labuschagne 1999] and since Z [Spivey 1992]
is in part based on Zermelo-Fraenkel (ZF) set theory, it makes sense to investigate
to what extent these heuristics may be used to successfully reason about the
properties of a complex system specified in Z. As a challenging and relevant
example of such a system we have selected an extension of the franchise concept,
namely, a real-life multi-level marketing enterprise [GNLD 1997].

1.2 Structure of this Paper

An overview of some resolution principles used in this paper is presented in [Sec-
tion 2], followed in [Section 3] by a brief introduction to OTTER [McCune 2003],
the automated reasoner used in this work. The intention with this recapitula-
tion is to enable the broadest possible range of readers to repeat, should they
wish to, case studies similar to that reported in the remainder of this paper. A
selection of heuristics for reasoning about set-theoretic structures is presented in
[Section 4]. A brief Z specification of a generic multi-level marketing enterprise
[GNLD 1997] is given in [Section 5]. The selected heuristics are applied in [Sec-
tion 6] where two proof obligations (POs) are stated and discharged using an
automated reasoner. A summary and some ideas for future work conclude this

paper.

2 Resolution Inferences and Strategies

The resolution principle [Robinson 1965a, Robinson 1965b] operates on sets of
clauses and is closely related to the proof technique of reductio ad absurdum (i.e.
proof by contradiction). Essentially the idea is to determine whether a given set
of clauses (say S) contains the empty clause, O. If S contains O then S is un-
satisfiable. If S does not yet explicitly contain O, then the resolution mechanism
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attempts to derive (I using the clauses of S. The resolution principle is sound and
refutation complete in the sense that it can always generate the empty clause
from an unsatisfiable set of clauses (provided appropriate housekeeping, called
factoring, is done to eliminate duplicate clauses) [Leitsch 1997].

In practice, if a goal G is believed to be provable from a set F' of clauses, then
we add the denial of the goal, i.e. the negation =G of the potential theorem, to
F and attempt to derive 0. We illustrate this process below.

2.1 Binary Resolution

Consider the deductive database of axioms and rules in [Fig. 1] (adapted from
[Date 1995]).

Parent(Dennis, John)

Parent(John, Peter)

(Vz)(Yy)(Parent(x,y) — Ancestor(z,y))

(Vz)(YVy)(VY 2)((Parent(z,y) A Ancestor(y, z)) — Ancestor(z, z))

~ o~ o~
[\
T T ~—

Figure 1: Initial database of rules

Suppose we want to prove that Dennis is an ancestor of Peter, i.e.
Ancestor(Dennis, Peter) (5)

The first step is to rewrite the content of [Fig. 1] in clausal form. This produces
the clause set in [Fig. 2]. Next we negate (5), the theorem we wish to prove, add
such negated form to the clause set (6) to (9) and attempt to derive the empty
clause. The negated form of (5) is simply:

= Ancestor(Dennis, Peter) (10)

The final step is to search for a refutation and this is illustrated in [Fig. 3].
Complementary literals in the given clauses are resolved and an integral part of
this process is to unify the variables and constants appearing as arguments of
terms. For example: in generating clause [B1] in [Fig. 3] we resolve clause (10)
with clause (9), replacing = with Dennis and z with Peter respectively in (9).
The variable y in (9) is then renamed to z and this produces clause [B1] as the
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Parent(Dennis, John)

Parent(John, Peter)

—Parent(z,y) V Ancestor(z,y)

= Parent(z,y) V ~Ancestor(y, z) V Ancestor(z, z)

Figure 2: Clausal form of [Fig. 1]

[B1] —Parent(Dennis,z) V - Ancestor(x, Peter) [Resolvent of (10) and (9)]
[B2] —Ancestor(John, Peter) [Resolvent of [B1] and (6)]
[B3] —Parent(John, Peter) [Resolvent of [B2] and (8)]
[ [Resolvent of [B3] and (7)]

Figure 3: A binary resolution proof

answer. The reader is referred to [Wos et al. 1992] for a thorough treatment of
unification.

The binary resolution rule illustrated in [Fig. 3], and with which logic pro-
grammers are familiar tends toward inefficiency, and so the emphasis in resolution-
based automated reasoning is on rules that permit several clauses to participate
simultaneously (e.g. unit resulting resolution and hyperresolution discussed be-
low). In the light of this we present below further rules of inference using the
sample clause set in [Fig. 2].

2.2 Further Inference Rules
2.2.1 TUR-resolution

Unit Resulting (UR) resolution is the process whereby 7 unit clauses are simul-
taneously resolved with a clause consisting of (n + 1) literals, called the nucleus.
The resolvent is a unit clause, i.e. a clause consisting of one literal only. The def-
inition of UR-resolution allows for the resolvent to be either positive or negative.
A UR-resolution proof of (5) using the clause set in [Fig. 2] is given in [Fig. 4].
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[UR1] —Ancestor(John, Peter) [Resolvent of (6), (9) and (10)]
[UR2] —Parent(John, Peter) [Resolvent of [UR1] and (8)]
[UR3] O [Resolvent of [UR2] and (7)]

Figure 4: A UR-resolution proof

In the next two sections we discuss hyperresolution, a generalization of UR-
resolution.

2.2.2 Positive Hyperresolution

The object of an application of a positive hyperresolution step is to produce a
positive clause from a set of clauses, one of which contains at least one negative
literal, while the remaining are positive clauses.

Formally, positive hyperresolution is that inference rule that applies to a set
of clauses, one of which must be negative or mixed (called the nucleus), the
remaining (called satellites) must be positive clauses and their number must be
equal to the number of negative literals in the nucleus. Every negative literal
in the nucleus is resolved with exactly one satellite. These restrictions ensure
that any such resolvent will be a positive clause. Positive hyperresolution is
furthermore refutation complete for arbitrary unsatisfiable clause sets.

A positive hyperresolution proof of (5) using the clause set in [Fig. 2] is given
in [Fig. 5].

[PH1] Ancestor(John, Peter) [Resolvent of (7) and (8)]
[PH2] Ancestor(Dennis, Peter) [Resolvent of [PH1], (6) and (9)]
[PH3] O [Resolvent of [PH2] and (10)]

Figure 5: A positive hyperresolution proof
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2.2.3 Negative Hyperresolution

Negative hyperresolution is like positive hyperresolution, but the signs of the nu-
cleus and satellites are reversed, ensuring that all resolvents are negative clauses.
Like its positive counterpart, negative hyperresolution is refutation complete for
any given unsatisfiable set of clauses.

A negative hyperresolution proof of (5) using the clause set in [Fig. 2] pro-
duces the same refutation as for binary resolution in [Fig. 3].

2.2.4 Binary Paramodulation

Paramodulation is an extension of unification that allows one to make equality
substitutions directly at the level of terms in a clause. Paramodulation is ap-
plied to two clauses and one of the clauses, called the from clause, is required
to contain a positive equality literal. The other clause, called the into clause,
is the one into which the equality substitution is made. The resultant clause is
called a paramodulant. Paramodulation can yield clauses that might not other-
wise be obtained by ordinary equality substitution. For example, from the two
clauses EQUAL(sum(0,%),z) and EQUAL(sum(y, minus(y)),0) paramodulat-
ing from the first clause into the second yields EQUAL(minus(0),0) as a valid
paramodulant [Wos et al. 1992].

2.2.5 Factoring

Factoring is the process of reducing repetition in a clause by unifying two or more
literals in the same clause. For example, P(a) is a factor (i.e. a simplification)
of the needlessly repetitive clause P(z) V P(a).

2.3 Strategies
2.3.1 Weighting

By assigning different weights to different symbols, the reasoning algorithm may
be guided towards resolving lighter clauses before heavier, in an attempt to
generate lighter resolvents that are closer to the empty clause. The default weight
of a clause is the sum of the number of individual constants, variables, function
symbols and predicate symbols. Connectives like =, A, V, etc. are not counted.
Since it is possible to stipulate a maximum weight for clauses, the complexity of
the clauses generated by the inference process can be controlled. Thus choosing
a sufficiently high weight for variables or certain terms effectively combats the
combinatorial explosion brought about by the generation of too many irrelevant
paramodulants (i.e. by the uncontrolled substitution of equals for equals) but
may in turn lead to an incomplete search for a proof.
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2.3.2 Set-of-support

The set-of-support (sos) strategy involves partitioning the set S of clauses. Into
one subset, the sos T, we place clauses regarded as being of particular impor-
tance, such as the denial of the goal G and any special hypotheses that charac-
terise the specific instance of the problem at hand rather than expressing generic
features of the type of problem. The sos then guides the reasoning process, since
the reasoner is required not to apply a resolution step unless one of the clauses
involved has support. A clause has support if either it is one of the original
clauses that was placed in T or else it was obtained by applying resolution to
clauses at least one of which had support.

When S is divided into the sos T and the usable list S — T, this should be
done in such a way that we are confident the usable list S — T is satisfiable. The
set-of-support strategy then makes sense, as it prevents the reasoner from simply
expanding a satisfiable set of clauses without hope of termination by discovery
of a contradiction [. Since the sos is involved at every step, and the denial of
the goal is placed in the sos, the strategy ensures that the reasoner’s attack on
the problem is goal-directed.

The set-of-support strategy is refutation complete relative to binary resolu-
tion with factoring, but is not refutation complete relative to hyperresolution.
We observe this in [Fig. 3] and [Fig. 5] respectively. For example, in [Fig. 3] it
was possible to derive O starting with the negation of the theorem (i.e. clause
(10)), but in [Fig. 5] we had to start with two other clauses. Nevertheless, the
use of a sos very often leads to a quick proof, as opposed to no real time proof
at all.

3 The OTTER Theorem Prover

OTTER (Organized Techniques for Theorem Proving and Effective Research)
is a resolution-based theorem-proving program for first-order logic with equality
and includes the inference rules binary resolution, hyperresolution (both positive
and negative versions), UR-resolution and binary paramodulation. OTTER was
written and is distributed by William McCune at the Argonne National Lab-
oratory in Illinois [McCune 2003]. At the time of writing the latest version of
OTTER is available at: http://www-unix.mcs.anl.gov/AR/otter.

OTTER can convert first-order formulae into sets of clauses, which consti-
tute the input to the resolution algorithm. Naturally, OTTER does not accept
formulae in the highly evolved notation of set theory so the user has to rewrite
set-theoretic formulae in terms of a weaker first-order language having the rel-
evant relations and functions as predicate symbols and function symbols in its
alphabet. Some other capabilities of OTTER are factoring and weighting. An
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OTTER program is divided into several sections, of which the most important
are the usable list and the set-of-support (sos) list.

Next we introduce a number of heuristics for reasoning about set theory.
These heuristics were developed to address the problems discussed in [Section
1.1].

4 Set-Theoretic Reasoning Heuristics

In analyzing the efficiency of an algorithm, a theoretical approach involving the
calculation of time and space complexities [Baase and Van Gelder 2000] could be
followed, or one can follow an empirical approach. The theoretical approach is
well suited to algorithms in which, say, it is possible to predict roughly how often
an assignment statement inside a loop will be executed. However, in the case of
automated reasoning algorithms, inefficiency is primarily caused by thrashing,
in other words by the exploration of the consequences of irrelevant informa-
tion. The extent of such thrashing is difficult to predict theoretically. Therefore,
resolution-based theorem provers are currently evaluated on empirical grounds
[Bundy 1999]. The success of the reasoner is measured in terms of how many
different benchmark problems it can solve as well as how quickly a proof (if any)
is found [Pelletier 1986].

The heuristics detailed in this section were developed empirically through ob-
serving the behaviour of, as well as studying the format of, the clauses generated
by the reasoner during a proof attempt, and preliminary reports presenting sug-
gestive evidence of their potential usefulness may be found in [van der Poll 2000]
as well as [van der Poll and Labuschagne 1999].

Heuristic #1 — Use weights: If the sos consists of the negation of an equality
literal then assign a weight of n, for n € {3,4,5} to the variables in the input
to the reasoner. Note that the default weight of a variable is 1.

Heuristic #2 — Apply extensionality: Apply the ZF axiom of extensionality
[Enderton 1977]

(VA (YB)(Y2)(z € A ¢ & € B) — (A= B)]

to replace an equality in the sos by the biconditional criterion under which
two sets are equal, i.e. that their elements are the same.

Heuristic #3 — FEschew nested functors: Avoid, if possible, the use of nested
functors in definitions. Terms built up with the aid of function symbols
(called functors) are more complex, potentially leading to difficulties with
unification of terms, especially when these functors are nested inside other
structures.
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Heuristic #4 — Divide and Conquer: Perform two separate subset proofs
whenever the problem at hand requires proving the equality of two sets. An
equality in the sos implies (via Extensionality) an ‘if and only if’. Hence a
specifier may opt for two proofs, one for the only-if part and another for the
if part. Note that this heuristic may serve as an alternative to heuristic #2
above.

Heuristic #5 — Eschew multivariate functors: Make terms in sets as simple
as possible — either not involving functors at all, or else involving functors
with the minimum number of argument positions taken up by variables. (The
more variables occur as arguments to a functor, the greater the likelihood of
thrashing caused by the unification of these variables with other terms.)

Heuristic #6 — Separate out intermediate structures: Avoid complex functor
expressions by using an indirect definition for an internal structure whenever
this appears less likely to produce complex functor expressions than the
direct definition. In practice we simply give a name to a complex structure
that is nested inside another structure and then define the inner structure
externally on its own, instead of unfolding its definition directly inside the
enclosing structure.

Heuristic #7 - Make element structure explicit: Define the elements of re-
lations and functions directly in terms of ordered pairs or ordered n-tuples
whenever the tuples need to be opened to find a proof. An ordered n-tuple
is an example of a functor and projecting out the coordinates of the tuple
often avoids the various functor problems listed above.

Heuristic #8 — Search-guiding: Generate and use half definitions, via the
technique of resolution by inspection, for biconditional formulae in the usable
list whenever the sos consists of a conditional formula or a single literal. A
half definition is an implication (e.g. only-if) as opposed to an if and only if
definition. Through inspection it is often possible to trace the initial steps
a reasoner would perform starting with the conditional formula in the sos.
Hence it is possible to predict which half of some definitions in the usable
list would probably be needed and which ‘other halves’ are redundant.

Heuristic #9 - Inference rule selection: Use negative hyperresolution instead
of positive hyperresolution if the sos consists of a single negative literal or
whenever the combined use of positive hyperresolution and unit-resulting
resolution rapidly makes the sos empty and thereby resulting in no proof.
If no rapid proof results, try binary resolution. Recall that both forms of
hyperresolution are capable of generating homogeneous clauses only (i.e.
just positive or just negative but not mixed). Although many researches
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warn against the use of binary resolution [Quaife 1992] we found such rule
to be occasionally useful (see [Section 6.1] below).

Heuristic #10 — Resonance: Attempt to give corresponding terms in formulae
a syntactically similar structure to aid the resolution process [Wos 1995]. Not
only does this apply to terms just in the usable list, but also to a term in
the sos and a corresponding term in the usable list.

In the next section we introduce the enterprise information system that is used
in this paper to illustrate the utility of the above heuristics.

5 A Multi-level Marketing Enterprise

A multi-level marketing (MLM) enterprise [GNLD 1997] markets consumable
products through people as follows: A new distributor registers with the enter-
prise either as a direct associate of the company, or under an existing distributor
called an upline. Both the upline (also called the sponsor) and the new distrib-
utor (now called a downline) then go on to each sponsor more new distributors,
and so on. In this way a network of distributors is built. Hence, a MLM structure
may be modelled by forests and trees [Scheurer 1994].

Distributors buy products from the company and every product carries a
point value (pv) as well as a business value (bv). The business value matches
the price of a product. Both the points and the business values are accumulated
per distributor throughout a month. At the end of the month the total business
value in the network for each distributor is calculated, and the distributor is
paid (in the appropriate currency) a certain percentage (determined by the pv)
of the total business value for his or her group. This is called a bonus.

A small MLM network is shown in [Fig. 6]. Distributors A1, A2 and A3
associated with the company directly are called the roots of the forest (or network
in MLM terms).

Our MLM enterprise is specified in Z and the abstract state is (where the op-
eration \ represents set-theoretic difference and dom and ran denote the domain
and range of a relation respectively):

_ MLM
known : PID
NRoots : P ID

NUplines : ID <> ID
NDist : ID - Name x Address x PV x BV x Bonus

known = dom NDist

dom NUplines U ran NUplines C known
NRoots = known \ ran NUplines
Inj(NUplines)
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Figure 6: An example network

The set known contains the identity codes of all distributors in the system.
NRoots represents all root distributors. The relation NUplines represents the
network of distributors while the function NDist represents a mapping from a
unique identity code to the particulars for that distributor. NDist is not neces-
sarily injective since two (or more) distributors may have the same particulars
(i.e. name, address, etc.). Every distributor has at most one upline, captured by
the following general definition of injectivity:

(VR)(Inj(R) < (Vi)(Vi)(VE)(((i,k) € RA(j, k) € R) — (i =7))) (11)
The following operation registers a new distributor p! below an existing one, ¢7:

— Register _with_upline
AMLM

pl,q? : ID

name? : Name; addr? : Address

pl & known A q? € known
known' = known U {p!}
NUplines' = NUplines U {q? — p!}
NDist' = NDist U {p! — (name?, addr?,0,0.0,0.0)}

A new identity code p! is generated by the system and the new distributor is
linked to ¢7 in NUplines'. Initial product information pertaining to p! is reflected
in the personal pv being 0 and both the business value and potential bonus equal
to the real value 0.0.

An order placed by a distributor is given by:
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— Order
AMLM
id? : ID; pv? : PV; bv? : BV

id? € known
(3pv:PV; bv:BV e
pv = third(NDist(id?)) + pv? A
bv = fourth(NDist(id?)) + bv? A
NDist' = NDist & {id? —
(first(NDist(id?)), second (NDist(id?)),
pv, b, fifth(NDist(id?)))})

The functions first, second, etc. project out an element at the appropriate posi-
tion in the tuple. NDist' is obtained from NDist by replacing the tuple with first
coordinate id? as specified above. Many additional operations may be defined
on the state but are beyond the scope of this paper. The interested reader is
referred to [van der Poll and Kotzé 2003].

Next we show how some of the heuristics introduced in [Section 4] may be
used to successfully discharge two proof obligations that arise from the MLM
specification where otherwise proofs are not easily arrived at. All the proofs
were done on a Pentium IIT with a clock speed of 600MHz and 32MB RAM. The
operating system was Red Hat Linux Release 9.

6 Reasoning about the Specification

6.1 Showing NRoots = known’ \ ran NUplines’

In 7 system operations are implicitly assumed to preserve the state invariant
[Diller and Docherty 1994], hence proving that an operation preserves an invari-
ant is not deemed necessary in Z. Nevertheless, it is a good idea to check that
an operation does not incur unpredictable results as far as the invariant is con-
cerned. In fact, in systems like the B method [Abrial 1996] ensuring that an
operation preserves the invariant is considered a critical proof obligation.

A specifier may, therefore, decide to verify the following as a postcondition
of schema Register_with_upline (Note that NRoots' = NRoots):

NRoots = known' \ ran NUplines' (12)

In effect the above predicate claims that the set of root elements is still equal
to the new set of all distributors (known') minus the new set of all downline
distributors (ran NUplines"). If we define NewRoots = known' \ ran NUplines'
and pose the negation of the following equality in the sos

NRoots = NewRoots (13)
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then OTTER finds no proof in 20 minutes using a weight of 3, 4 or 5 and either
positive or negative hyperresolution. Since neither form of hyperresolution is
able to find a proof, we apply our inference rule selection heuristic and resort to
binary resolution but still using our weight template. Now the reasoner finds a
proof after just 0.66 seconds.

Why does the reasoner fail to find a proof for (13) using hyperresolution?
The sos format (13) requires the axiom of Extensionality [Enderton 1977]

(VA)(YB)[(Vz)(z € A+ 5 € B) - (A= B)] (14)

to ‘open’ the equality in terms of elementhood to (loosely speaking) arrive at
the following form of (13):

(Vz)(x € NRoots +» © € NewRoots) (15)
The negation of (15) clausifies into:

$c1 € NRoots V $cl1 € NewRoots (16)
$cl ¢ NRoots V $cl ¢ NewRoots (17)

The invariant NRoots = known \ ran NUplines in the MLM state is unfolded in
first-order notation as

(Vz)(z € NRoots +> = € known A x ¢ ran(NUplines))

and it clausifies into

z ¢ NRoots V x € known (18)
z ¢ NRoots V x ¢ ran(NUplines) (19)
z € NRoots V x ¢ known V z € ran(NUplines) (20)

Note that positive hyperresolvents can be generated by resolving the sos clause
(16) with (18), but the sos clause (17) is not capable of generating a positive hy-
perresolvent with any of the clauses (18) - (20). The result is that a proof attempt
using positive hyperresolution cannot start off correctly. A similar problem oc-
curs with negative hyperresolution. Binary resolution creates no such problem,
since binary resolvents may be mixed.

Still with this proof attempt, suppose a specifier is initially, due to the weight
clause, concerned about an incomplete search for a proof. If we omit the weight
template in the above binary resolution proof then the reasoner again finds no
proof in 20 minutes (as opposed to a proof in 0.66 seconds). This forms the basis
for a further heuristic that may be applied to our last failed proof attempt.

In the proof of (13) we unfolded the predicate NUplines' = NUplinesU{q? —
p!} in schema Register_with_upline as

(Vz)(x € NUplines' <» x € NUplines V x € {(q?,p!)}) (21)
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using the following first-order definition for a singleton:

Va)(Vy)(z € {y} &z =y) (22)

Together with definition (21), we also needed the following fact about ordered
pairs from [Enderton 1977]:

Vu)(Vo)(Vw)(V)((u, v) = (w,2) & ((u = w) A (v =1))) (23)

Upon studying the clauses generated by the search for a proof, we note that (22)
and (23) interact to generate literals of the form EI(ORD(z,y), Sin(ORD(u,v)))
where z, y, u and v are variables and ORD, Sin and El are the ASCII equivalents
for an ordered pair, a singleton and elementhood respectively. Clearly this literal
contains nested functors, a practice discouraged by our heuristic #3, since it,
in the absence of a weight template, leads to a large number of unnecessary
unifications.
If we, therefore, rewrite (21) as

(Vz)(xz € NUplines' <» x € NUplines V x = (q?,p!)) (24)

and still omit the weight template, then the reasoner again finds a proof for
(13), but in 3.70 seconds. According to our element structure heuristic #7 we
can further rewrite (24) as

(Vy)(Vz)
((y, 2z) € NUplines' <+ (y,z) € NUplines V (y = q? A z = p!)) (25)

which cuts the execution time of 3.70 seconds down to just 0.06 seconds.

6.2 A Proof of Cardinality

After the execution of operation Register_with_upline we expect the following
to hold regarding the cardinality of the set known' = known U {p'}:

#known' = #known + 1 (26)
We use the following two definitions of cardinality (Card(A, n) denotes #A = n):

(VA)(Card(A,0) & A =2) (27)
(VA)(VYn)(Card(A,n+1) & (Fz)(x € AN Card(A — {z},n))) (28)

Suppose we start with the precondition Card(known, n) and pose the following
question in the sos:

—Card(known',n + 1) (29)
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The reasoner finds no proof for (29) in 30 minutes and closer investigation reveals
that the term Card(A — {z}, n) above contains nested functors (i.e. a singleton
definition inside a set difference inside the functor Card), a practice discouraged
by our nested functor heuristic. As a first step we unfold definition (28) as:

(VA)(Vn)(Card(A,n+ 1) &
(3FB)3z)(z € AN Card(B,n) A(Vy)lye By ANy ¢ {z}))) (30)

With this unfolding a proof still eludes us, but since such unfolding is in turn
against the recommendation put forward by the intermediate structure heuristic
we replace the definition of set B in (30) with

(Vy)(y € B > y € DIFF(A,{z})) (31)
where z is still existentially quantified as in (30) and DIFF is defined by:
(Vz)(z € DIFF (known',{p}) <> z € known' A z ¢ {p}) (32)

With these definitions OTTER finds a short proof for (29) in just 0.21 seconds.
The input to the theorem prover for this proof attempt appears in Appendix A.
Note the use of negative hyperresolution (i.e. set (neg_hyper_res)) as a result
of the sos being a single negative literal (see Heuristic #9). Definition (32) is
in line with our multivariate functor heuristic which advocates cutting down on
the number of variables as arguments of functors. This is mainly the reason why
the nested functor in this definition turns out to be harmless. For example, if we
rewrite (32) above as

(VA)(Vp)(Ya)(z € DIFF(A,{p}) & z € ANz ¢ {p}) (33)

then the reasoner again finds no proof in 20 minutes. Replacing one of the
variables (say p) in (33) above with a constant again helps OTTER to find
a proof in 8.59 seconds.

We may also fit our search-guiding heuristic onto the last definition of Card
above. The technique of resolution by inspection reveals that the sos question
(29) needs just the ‘if-direction’ of (30). If we make such adjustments we can
even find a proof using (33), but in I minute 27 seconds.

7 Summary and Future Work

This paper illustrated how set-theoretic reasoning heuristics may be used to
discharge two proof obligations that arise from the formal specification in Z of
a multi-level marketing enterprise. It is evident that the same proof obligation
may be discharged in more than one way. This is significant, since if a particular
heuristic fails to deliver then another one may be applied instead.



van der Pall J.A., Kotze P., Labuschagne W.A.: Automated Support ... 1535

A number of challenges remain: The gross bonus earned by a distributor is
normally calculated as a percentage of the total business value generated by the
distributor and all downlines in the tree for that distributor. However, the net
bonus for a distributor is calculated by subtracting the gross bonus for each first-
level downline of the distributor from the gross bonus of the upline distributor.
This generates a very important proof obligation in a MLM enterprise, namely,
to show that the sum of the gross bonuses allocated to first-level downline dis-
tributors is less than or equal to the gross bonus allocated to their immediate
upline.

Formally, consider a distributor, say ¢, with a number of first-level downlines,
represented by a set, say D, such that:

(Vd)(d € D + (q,d) € NUplines)

Suppose Bonus; represents the gross bonus allocated to distributor i. The proof
obligation is to show that

Bonus, — Bonusg > 0
q Z
(g,d)€NUplines

The reasoner fails to find a proof of the above property using any of our
heuristics, hence more work is needed in the area of arithmetic. Of course, one
way to solve this problem in one fell swoop in Z is to extend the state invariant
in schema MLM, requiring that the value of every distributor’s gross bonus be
non-negative and greater than or equal to the sum of the gross bonuses of that
distributor’s immediate downlines. Nevertheless, any sensible specifier will check
(using some proof mechanism) that all relevant operations preserve this property.

Further empirical work could proceed along a number of avenues: One can in-
vestigate to what extent the heuristics presented in [Section 4] are useful when us-
ing another automated resolution-based reasoner, e.g. Vampire [Voronkov 1995]
to reason about the properties of a real-life enterprise such as the one presented in
this paper. Alternatively, the feasibility of set-based model-checking techniques
[Bérard et al. 2001], using for example ProB [Leuschel and Butler 2003] could
be investigated. We also need to scale up the proofs reported on in this paper
to industrial sized proof attempts and we anticipate that additional heuristics
would have to be developed to address the challenges that may unfold from such
experiments.
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Appendix A

I ———m
%% IF -El(p,known) & (known’ = known u {p})
%% THEN #known’ = #known + 1

P A
set (neg_hyper_res). %% Inferences

set (ur_res).

set(factor). %/ Factoring

set(para_from). %% Paramodulation settings
set (para_into).

set(order_eq) . %/ Ordering of equalities

%% Additional settings.
hh —===mmmmm e m e
set (process_input) .
clear (para_from_right).
clear(para_into_right).
set (dynamic_demod_all).
set (back_demod) .

assign(max_seconds,1200) . %% Allow reasoner 20 minutes.
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%% Enable conciseness.
hh ===
clear(print_given) .
clear(print_kept).
clear(print_back_sub).

weight_list(pick_and_purge) .
weight(x,3). %% Weight of variables = 3.
end_of_list.

formula_list(usable).

%% Reflexivity.
hth ———————mm———
(all x (x = x)).

%% Definition of Empty set.
I ——=mmmmmmm e
-(exists x E1(x,Empty)).

%% Definition of a Singleton.
Wh ————————
(all x y ( E1(x,Sin(y)) <> (x =y) )).

%% Resonance Definition of DIFFerence.
Do ———m
(all x

(E1(x,DIFF (knownl,Sin(p))) <-> (El(x,knownl) & -E1(x,Sin(p))))).

%% Base traditional definition:
ity ————mmmmmmm
(all A ( Card(A,0) <-> (A = Empty) )).

%% Card after the application of 2 heuristics.
e
(all A n
( Card(A,$SUM(n,1)) <—>
(exists B x
( E1(x,A) & Card(B,n) &
(all y (E1(y,B) <-> E1(y,DIFF(A,Sin(x))))) )) )).
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%% Pre- and Postconditions.

hh ===
(-El(p,known) & E1l(p,knownl)).
Card(known,k) .

%% known’ = known u p.

hth ——————mmm -

(all x ( El(x,knownl) <-> (El(x,known) | E1(x,Sin(p))) )).
end_of_list.

formula_list(sos).

%% #known’ = k + 1.

W =mmmmmmmmmmmmmm

-Card (known1,$SUM(k,1)).

end_of_list.



