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Abstract: The design of large, complex computer based systems, based on their architecture, 
will benefit from a formal system that is intuitive, scalable and accessible to practitioners. The 
work herein is based in graphs which are an efficient and intuitive way of encoding structure, 
the essence of architecture. A model of system architectures and architectural abstraction is 
proposed, using poset labelled graphs and their transformations. The poset labelled graph 
formalism closely models several important aspects of architectures, namely topology, type and 
levels of abstraction. The technical merits of the formalism are discussed in terms of the ability 
to express and use domain knowledge to ensure sensible refinements. An abstraction / 
refinement calculus is introduced and illustrated with a detailed usage scenario. The paper 
concludes with an evaluation of the formalism in terms of its rigour, expressiveness, simplicity 
and practicality. 
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1 Introduction 

1.1 Issues with Computer Based Systems 

Computer Based Systems (CBSs) are typically large, complex, real-time, highly 
functional, resource sharing, distributed systems [Lavi 1991, Lawson, et al. 1999, 
Rowe 1999]. Due to the inherent complexity of CBSs they regularly incur long and 
difficult design and implementation processes, and the resulting systems often fall 
short of the required attributes, especially non-functional attributes (performance, 
reliability, openness, security etc). Frequently, these problems result from poor design 
[Neumann 2004]. 
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Developing representations of the architecture of CBSs promises to alleviate 
some of these problems [Horowitz 1991, Rechtin 1991]. For instance, many non-
functional attributes can be calculated once the architecture of the system is known 
[O'Neill, et al. 2000, Payne 1999, Rowe and Leaney 1997], and with a suitable 
representation this can be done prior to building the system, when errors are 
significantly easier and less costly to fix [Sommerville 2001]. 

Based on consulting work undertaken by some of the authors with large 
Australian organisations [Avolution 2004], a typical architecture would contain 
thousands of components of type Database, Application, Server, and Network and 
tens of thousands of connections of type Information Flow, Database Request, 
Network Connection. 

Case studies do exist to demonstrate the successful application of traditional 
formal software engineering methods to large scale engineering problems [van 
Lamsweerde 2000, Wordsworth 1991]. However, the organisations performing these 
case studies are always highly skilled engineering and computer science 
organisations. The authors’ consulting work has been with organisations such as 
financial services (banks and insurance companies) and fast moving consumer goods 
(FMCG). Their experience suggests that these formal methods [Abrial, et al. 1979, 
Guttag, et al. 1993, Hoare 1985, Jones 1980] are too complex to be applied usefully in 
these organisations. The motivation is thus to develop an appropriate, lightweight, 
formal system that can be used by the typical engineer. 

1.2 Motivations 

The motivations for this work are several. A realistic stance recognises that it is not 
possible to fully automate the role of the designer and eliminate the human element 
during design. There is a great need for a formal, yet practical system that can be used 
by the human designer. One must recognise the difficulties that many practitioners 
face in using traditional formal methods based in predicate logic and other similarly 
complex mathematics [Abrial, et al. 1979, Guttag, et al. 1993, Hoare 1985, Jones 
1980] and this provides part of the motivation for the work presented herein. 

One must also recognise the context in which the designer works. No system is 
ever built from nothing: in practice the designers will have suggestions for the system 
at every level of abstraction [Alexander 1964, McMenamin and Palmer 1984, Ward 
and Mellor 1985]. Consequently, the design of a “new” system will often start with 
some understanding of the design of other systems. As a consequence, this work is 
also motivated by the desire to develop a formalism that allows the designer to begin 
their design activities with an architecture at any level of abstraction. The formalism 
should also be usable in a variety of different design situations. For example, the 
designer may take a concrete architecture and wish to abstract it to an appropriate 
level of abstraction where certain analyses and modifications can be made, and then 
refine again to a new concrete architecture [Denford, et al. 2003]. The formalism 
should support this. 

A designer often has expert knowledge of a certain domain, and the work is 
motivated by the desire to allow the designer to encode this knowledge within the 
constructs of the formalism. 

Finally, while the formalism should be practical in nature, and flexible in its use, 
it should also be rigorous with respect to the correctness of the architectures being 
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refined. From one level of abstraction to another certain properties of the architectures 
should be maintained and the designer should be able to rely on this being the case. 
With a formalism that largely concentrates on the structure of the architecture, the 
properties that are maintained are statements about the connectedness of the abstract 
and refined architectures. 

Therefore, the formalism should be practical, flexible, expressive but still 
rigorous. 

1.3 Informal Notion of Architecture 

The IEEE 1471 standard presents an informal definition of architecture, which states 
that architecture is: “the fundamental organisation of a system embodied in its 
components, their relationships to each other, and to the environment, and the 
principles guiding its design and evolution” [IEEE 2000]. IEEE 1471 also states that 
“components and connectors may be typed” [IEEE 2000]. 

1.4 What is to be Formalised 

This work aims to formalise two related concepts, both exhibited in the informal 
IEEE definition above. The first is to formalise the notion of architecture. The second 
is to formalise one of the primary principles in guiding the design of architectures: 
architectural refinement. Refinement in this context is the act of taking a high-level 
abstract architecture and successively refining it into a concrete and more detailed 
architecture. The concept of designing at different levels of abstraction and refining is 
understood in many areas of computer science and engineering: for instance program 
proving and software development [Abrial, et al. 1979, Ward and Mellor 1985], 
software architecture [Bass, et al. 2003], and systems architecture [Rechtin 1991]. 

It should be noted that architecture is often regarded as more than just structure, 
and can also include behavioural and narrative information [Bass, et al. 2003, Shaw 
and Garlan 1996]. This work deals mainly with the structural aspects of architecture 
and architectural refinement; however, it does model type within the architecture, 
which provides some narrative information. 

1.5 Related Work 

Various models and formalisms for architecture have been presented, though perhaps 
without explicit reference to the informal IEEE definition. We give a brief survey this 
work, grouped according to its principal concern.   

1.5.1 Behaviour 

Modelling the behaviour of a system allows for certain analyses such as the detection 
of deadlock and livelock. Allen presents a formal model for architecture based on the 
WRIGHT architecture description language (ADL) [Allen 1997]. It is a “formal 
description of the abstract behaviour of architectural components and connectors” 
with behavioural information modelled using communicating sequential processes 
(CSP) [Hoare 1985]. Refinement of the architectures is achieved primarily through 
refinement of the CSP specifications using mathematical proof obligations. Allen 
presents a model of a Client in a Client-Server system however the specification is 

1410 Denford M., Solomon A., Leaney J., O’Neill T.: Architectural Abstraction ...



complex and unintuitive. This tends to discourage the use of this sort of specification 
for reasons of practicality. In fact, Allen goes on to highlight that this “simple” 
specification is not actually complete, and the complete specification is more complex 
still. 

1.5.2 Dynamic Structure 

Many architectures change at runtime: components and connections may be 
dynamically created, bound, and destroyed. This is referred to as the dynamic 
structure of the system. Bolusset and Oquendo [Bolusset and Oquendo 2002] model 
architectures using an ADL based on the pi-calculus by Milner [Milner 1993] which 
models the dynamic nature of the architecture under runtime reconfiguration. 

Le Metayer [Le Metayer 1998] uses graph grammars to formalise architectures 
and architectural styles. A grammar defines a language of graphs, and elements of the 
language so defined are architectures in that style. The “coordinator” part of the 
grammar is devoted to reconfiguring the architecture as it evolves over time (for 
instance, as clients join and leave the system). Degano and Montanari [Degano and 
Montanari 1987] also deal with dynamic reconfiguration of architectures represented 
as hypergraphs. 

Baresi et al. [Baresi, et al. 2004] deal with style based refinement of dynamic 
software architectures. The state of a system is represented as a graph while graph 
transformations represent state transitions. Style is formalized through type graphs, 
and style refinement is effected by partial surjective graph homomorphisms between 
the refined and the abstract type graphs, meaning that some architectural elements are 
deleted under the transformation. This notion of refinement differs from the one in 
this paper where every component of the refined architecture lies ‘within’ some 
component of the abstract architecture.  

In many instances a CBS and its architecture can be considered as a complex 
system and analysed with the same, general machinery as biological, physical and 
sociological systems.  A treatment of complex systems which is intuitively close to 
the present perspective is given by Ehresmann and Vanbremeersch [Ehresmann and 
Vanbremeersch 1987] who treat systems as categories, their components as objects 
and their connections as arrows. Evolution of systems is then, roughly, a functorial 
relationship. Abstraction of a subsystem is its limit, but the conditions (clustering) 
under which connections between subsystems are reflected at the level of their limits 
is rather more restrictive than the notion in common usage by system architects. 

1.5.3 Generic Architectural Transformations 

Erdogmus [Erdogmus 1998] formalises box-and-line diagrams using a set-theoretic 
model and presents a comprehensive set of transformations of these diagrams, which 
encompass virtually all the ways an architecture might be transformed. However, the 
set-theoretic definition of the transformations is cumbersome compared to the graph 
based definition presented in this paper. Further, there is no explicit interpretation of 
these transformations as architectural refinement for the purposes of design. 
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1.5.4 Abstraction and Refinement 

Fahmy and Holt [Fahmy and Holt 2000a, Fahmy and Holt 2000b] model architecture 
as a graph. Graph rewriting is used to transform the architectures in a variety of 
situations: architectural understanding, analysis and modification, however 
architectural refinement is not explicitly modelled for the purposes of design. The 
notion of abstraction and refinement is lifting (showing) and hiding various existing 
elements of the architecture, in contrast with the present treatment where abstraction 
is used to encapsulate detail.  

Medvidovic and Taylor [Medvidovic and Taylor 2000] present a survey and 
comparison of ten different ADLs. Each ADL has a different focus, ranging from 
modelling of dynamic behaviour and deadlock detection, to simulation of dynamic 
behaviour, to ADLs for certain types and domains of systems, to refinement. Of these, 
only SADL [Moriconi and Riemenschneider 1997] is strongly concerned with 
refinement. Moriconi [Moriconi, et al. 1995] models the architecture as mathematical 
theories, using predicates. Pre-defined and pre-proven rewriting “patterns” are 
proposed that can be reused at will by the engineer. However, the patterns illustrated 
are very low level (such as turning a pipes and filter pattern into a shared variable in 
code) and the research needs to build on this to make higher-level patterns that can be 
used freely at an architectural level of abstraction. In addition, the use of predicate-
based mathematical theories results in an architectural model and refinement method 
that is not intuitive or practical. 

Bolusset and Oquendo [Bolusset and Oquendo 2002] use rewriting logic to model 
and perform refinement. An example of a simple refinement (replacing a connection 
with a shared resource) using rewriting logic requires 21 rules and 33 equations. It is 
evident that the number of rules involved in a more complex refinement would grow 
quickly, making the method difficult to scale. 

[Section 2] explicitly discusses the architectural concepts to be modelled. The 
mathematics of poset-labelled graphs is presented in [Section 3], and an explanation 
of how it can be used to model architecture and refinement follows in [Section 4]. We 
conclude in [Section 5] with an evaluation of the method and an indication of future 
developments in [Section 6]. 

2 Architectural Concepts to be Modelled 

Several characteristics of the architecture of CBSs need to be modelled in order to 
develop a formalism that can be of use to the practitioner. 

Firstly, any concept of architecture always includes the structure of the system, 
and structure primarily consists of the topology of the system. That is, the ability to 
specify that certain components connect to each other in certain ways. Therefore, the 
formalism must model topology. 

Secondly, typing of components and connections is what distinguishes an 
architectural model from a graph – it defines the correspondence between a 
component or connection and some real world entity. Further, it is clear that topology 
alone is not sufficient to uniquely identify architectures. Two architectures may be 
topologically identical but represent vastly different systems. For example one star 
topology architecture might represent a print server being used by multiple print 
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clients, while another might represent the centralised control of several factory robots 
in a manufacturing plant. Typing of components and connections can distinguish 
these architectures. As such, typing should be modelled by the formalism. 

The successful design of CBSs will be aided by the ability to successively refine a 
high level abstract architecture into a low level concrete architecture. That is, to take 
an architecture at a high level of abstraction (general), and refine it into an 
architecture at a low level of abstraction (detailed). This is an idea well understood in 
computer science and engineering [Abrial, et al. 1979, Bass, et al. 2003, Rechtin 
1991, Ward and Mellor 1985]. This implies that the formalism must model the 
concept of architectures existing at differing levels of abstraction, and given that an 
architecture consists of components and connections, this means the typing on 
components and connections must exist at different levels of abstraction. 

Finally, it has been proposed that refinement is the converse of abstraction 
[Miller, et al. 2001] and therefore by having a formal definition of architectural 
abstraction one can thus refine. Accordingly, if the formalism supports the ability to 
actually abstract an architecture (take a lower level, more concrete architecture, and 
abstract it into a higher level, more abstract architecture) then it will also support the 
ability to refine. 

Therefore, the following concepts related to the architecture of CBSs are to be 
modelled by the formalism presented in the following section: topology, type, levels 
of abstraction for types, and architectural abstraction. 

3 A Formal Definition of Architecture with Types and 
Abstraction in the Category Poset-Labelled Graphs 

Poset labelled graphs were first studied in [Parisi-Presicce, et al. 1986] and they are 
used as the formal basis of the model. 

Fix posets Π  and Λ . A graph G is a tuple ( ), , , , ,G G G G G GV E s t π λ  where GV  and 

GE  are sets of vertices and edges respectively; , :G G G Gs t E V→  define the source and 

target of an edge; and :G GVπ Π→  and :G GEλ Λ→  are labels of the vertices and 

edges. 
A morphism : G Hφ →  of poset labelled graphs is a pair 

( ): , :V G H E G HV V E Eφ φ→ →  such that for all , : ( ( )) ( ( ))G G H E V Gx V e E s e s eφ φ∈ ∈ =  

and ( ( )) ( ( ))H E V Gt e t eφ φ=  meaning φ  preserves the structure of the graphs; and such 

that ( ( )) ( )H V Gx xπ φ π≥  and ( ( )) ( )H E Ge eλ φ λ≥  which is to say that φ  has lax  

preservation of the labelling. 
It is easy to see that the composition of morphisms (as pairs of functions) is 

another morphism. Associativity and identity are inherited from the category of sets 
and functions so that poset labelled graphs and their morphisms form a category, 
which is denoted by ,GraphΠ Λ . 

It is obvious that: 
 

1413Denford M., Solomon A., Leaney J., O’Neill T.: Architectural Abstraction ...



Proposition 1. The epis of ,GraphΠ Λ  are precisely the arrows φ  for which Vφ  and 

Eφ  are both onto, while the monos are the arrows for which they are both injective. 

Define an embedding to be a monomorphism :i G H→  which strictly preserves 
labels ( ( ( )) ( )H V Gi x xπ π=  and ( ( )) ( ))H E Gi e eλ λ= . It is routine to show that 

embeddings are precisely the regular monos of ,GraphΠ Λ . 

3.1 Transforming Poset Labelled Graphs 

Let : L Rα →  be any arrow of ,GraphΠ Λ  and let :i L G→  be an embedding. Then 

it is a consequence of [Parisi-Presicce, et al. 1986] Lemma 3.9  that the pushout 

L R

G Hϕ

i j

α

 

Figure 1: Poset labelled graph pushout 

exists and that H is the graph obtained by deleting L from G and replacing it with R, 
precisely: \ ( )H G L RV V i V V= ∪  and \ ( )H G L RE E i E E= ∪ , while 

1

( )  if 

( ) ( )  if ( ) ( )

( ( )) otherwise ( ( ) ( ))

R R R

H G G G L

G G L

s e V e E

s e s e V s e i V

i s e s e i Vφ −

∈ ∈⎧
⎪= ∈ ∉⎨
⎪ ∈⎩

 

Define Gt  similarly. For vertices Hx V∈  define 

( ) if \ ( )
( )

( ) otherwise
G G L

H
R

x x V i V
x

x

π
π

π
∈⎧= ⎨

⎩
 

and Hλ  similarly. Let j  be the obvious inclusion and define ϕ  on vertices (and on 

edges similarly) by 

1

 if \ ( )
( )

( ( )) otherwise.
G L

V

x x V i V
x

i x
ϕ

φ −

∈⎧= ⎨
⎩

 

We then refer to H as the transformation of G by α  with embedding i  and write 
,i

G H
α
⇒ . This is a special case of double-pushout graph rewriting [Parisi-Presicce, et 

al. 1986] which also permits for parts of G to be deleted and not replaced by any part 
of R. Therefore graph rewriting has the potential to model more general 
transformations of architectures than just abstraction, but this is beyond the scope of 
the present work. 
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3.2 Architectures and Abstraction 

For the purposes of our formal model, we define an architecture to be an object of 

,GraphΠ Λ . The poset Π  is the set of component types and the poset Λ  contains the 

connection types. If '  (or )t t Π Λ≤ ∈  we say that the type 't  is an abstraction of the 

type t . 
Let C  be a distinguished set of epimorphisms of ,GraphΠ Λ  and refer to its 

elements as abstraction rules. Given an abstraction rule : L Rα →  and an embedding 

:i L G→  as in [Fig. 1], then the transformation 
,i

G H
α
⇒  is an architectural 

abstraction, and we say that H is an abstraction of G and that G is a refinement of H. 
Since pushouts preserve epimorphisms, we can see that any : G Hϕ →  arising in this 

way is again an epimorphism. Therefore we can regard abstraction transformations as 
special epimorphisms respecting structure as defined by the abstraction rules. We will 

also refer to a sequence 
1 1 2 2 ,, ,

1 ...
k kii i

G G H
φφ φ

⇒ ⇒ ⇒  of abstractions as an architectural 

abstraction. 

3.3 How the Formalism is Coupled to the Real-World 

In [Section 2] it was stated that the following architectural concepts should be 
modelled: topology, type, levels of abstraction for types, and architectural 
abstraction.  

As previously stated, the underlying principle is that the entire formalism should 
be tightly coupled with “real world” aspects of the architectural design process such 
that it is immediately obvious what any of the mathematical constructs are intended to 
model. 

Topology is modelled by the graphs themselves. A graph consists of vertices, 
which model the components, and edges, which model the connections. Type is 
modelled by the labels on the graphs. Levels of abstraction for types are modelled by 
the fact that the labels (types) are elements of a poset, which is ordered according to 
levels of abstraction, and architectural abstraction is modelled explicitly by the 
abstraction rules. It is hoped that this correspondence between the formalism and the 
architectural constructs is clear, unambiguous and easy to use. 

3.4 Technical Features of the Model 

Once appropriate component types, connection types and abstraction rules are 
selected for a particular domain, the definitions above constrain the notions of 
architectural abstraction and refinement in useful ways. Consider the following simple 
example from the domain of ‘office automation’ with component and connection type 
hierarchies (posets) as depicted below: 
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Client/Server 
System

Client Server

Print 
Server

Print 
Client

File 
Client

File 
Server

Π
Connection

Request Response

Λ

 

Figure 2:Client / Server system posets 

together with the following (infinite) abstraction rule sets: 

Client

Server

Client

Client / 
Server 
System

1…*

1 2

3

1,2,3
x:

Responsea:
Request

b:
Request

y:
Response

a,b,x,y:
Connection

File Client

File Server

ClientFile Client

Server

1…*

1 2

3

1,2

3

x:
Responsea:

Request
b:

Request

y:
Response

a,b:
Request

x,y:
Response

Print Client

Print Server

ClientPrint Client

Server

1…*

1 2

3

1,2

3

x:
Responsea:

Request
b:

Request

y:
Response

a,b:
Request

x,y:
Response

 

Figure 3: Abstraction rules for Client/Server System 

Now we are able to illustrate the following features of our formal system. 

3.4.1 Architectural Abstraction is Stronger than Type Abstraction 

Abstracting only types, one could start with the architecture:  

Print Client Print Server

Request

Response

 

Figure 4: A valid Print-Client / Print-Server Architecture 

and abstracting only the type of the 'Print Client' component, arrive at 
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Client/
Server 
System

Print Server

Request

Response

 

Figure 5: Invalid abstraction of Print-Client / Print-Server 

which is clearly an inaccurate model of  the application originally described. This 
model cannot arise as an abstraction of the original architecture through application of 
the abstraction rules above. 

3.4.2 Architectural Abstraction is Stronger than Epimorphism 

 
If we were to admit any epimorphism between poset labelled graphs as an 
architectural abstraction, then  

Print Client File Server

Request

Response

 

Figure 6: Invalid refinement of Client / Server System 

would be a refinement of   

Client / 
Server 
System

Connection  

Figure 7: Client / Server System 

However using the abstraction rules selected for this domain, no such absurd 
architecture may arise as a refinement of client-server system. 

3.4.3 Architectural Refinement as a Faithful Interpretation of Architectural 
Theories 

In [Moriconi, et al. 1995] architectures are considered as logical theories, and a 
refinement is a faithful interpretation from the abstract theory into the concrete. This 
encodes two conditions that one would wish to impose on any reasonable notion of 
refinement, namely: 
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• The fact that refinement is an interpretation means that if a sentence is true 
of the abstract architecture, then its interpretation is true of the refined 
architecture.  

• The faithfulness condition means that if a sentence is not true of the abstract 
architecture, then its interpretation is not true of the concrete architecture.  

Since the sentences in [Moriconi, et al. 1995] refer to connectedness of components, 
these conditions translate to the present graph-theoretic setting as: 

• Homomorphism: If two components are connected in the refined 
architecture, then their abstractions are connected in the abstract architecture. 
This is the contrapositive of the faithfulness condition. 

• Epimorphism: If two components are connected in the abstract architecture, 
then there is some direct connection between components of the subsystems 
they represent. This corresponds to refinement being an interpretation of 
theories. 

4 Usage of the Model 

This section illustrates the usage of the formalism presented in [Section 3]. The usage 
scenario shows the tasks involved for a team entrusted with the task of designing a 
customer relationship management (CRM) system for use within a customer facing 
organisation. As the section proceeds, the story will be further narrated. 

There are two distinct tasks that must be performed in order to use the poset 
labelled graph formalism. The first is the task of developing: the posets of types for 
components and connections ( Π  and Λ  respectively, from [Section 3]); the set of 
abstraction rules ( C  from [Section 3.2]); and, an initial abstract architecture of the 
system. Once this is done, the second task is to propose refined architectures and 
check whether they are valid refinements of the abstract architecture. 

4.1 Task 1 – Prepare Posets, Rules and Initial Abstract Architecture 

Task 1 would normally be performed by one or more people with knowledge of the 
domain (domain experts) as it requires them to analyse and determine: the types of 
components and connections that will exist in the system at varying levels of 
abstraction; the valid abstraction rules; and a sensible initial abstract architecture. 

4.1.1 Developing the Posets 

Firstly, one needs to determine the types of components and connections within the 
domain (CRM system) and place them into posets. For the purposes of this 
illustration, only the component type poset ( Π ) will be developed. The connection 
type poset is assumed to exist but with only one element, ‘Uses’. Accordingly, all 
connections in the architectures are assumed to be of type ‘Uses’, as in “component x 
uses component y”. 

As previously stated, the main objective of the design activity is to design a CRM 
system for use within an organisation with customers. The domain experts begin their 
analysis of the domain and realise that the overall ‘System’ would consist of 
‘Customers’, ‘Internal Reports Departments’ (i.e. people within the organisation who 
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wish to use and gather information from the CRM system) and the ‘CRM System’ 
itself. Already four component types have been identified. 

Further, the domain experts realise that, given the size of the organisation, there 
may be more than one ‘Internal Reports Department’ that would wish to use the 
CRM System. Therefore they create another type, ‘Internal Reports Department’ and 
designate it as a refinement of ‘Internal Reports Departments’ (note the singular and 
the plural, representing different component types). 

Understanding the likely component types that would be used to construct a CRM 
System, the domain experts decide that the CRM system could be modelled as some 
kind of component that would store and routinely manage the CRM data, and they 
designate this component type ‘Data Storage and Processing’. To facilitate the use of 
the system (by customers and internal reports departments) the experts decide that 
some kind of component is needed that allows the users to interact with the system. 
They designate these components to be of type ‘Online Application’. 

Finally, the domain experts decide that a ‘Data Storage and Processing 
component’ would in reality consist of ‘Database’ components (to store the data) and 
‘Batch Application’ components (to manipulate and manage the data). 

The result of this analysis is that a Hasse diagram for the poset can be drawn: 

System

CRM System Internal Reports 
Departments

Internal Reports 
Department

Data Storage 
and Processing

Online 
Application

Batch 
Application Database

Customers

Π

 

Figure 8: Hasse diagram of componenet types 

It is important to note that this structure does not represent an architecture. It is a 
diagrammatic representation of the poset of component types ( Π ). 

4.1.2 Developing the Abstraction Rules 

Now that the posets are established, the domain experts can begin to formulate the set 
of abstraction rules ( C ). These rules are shown in the following figure. 
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Type:y

Type:x

4

a;
Type:z

b;
Type:z

Type:y

Type:x

a,b;
Type:z

2

1

2

1

Batch 
Application

Database

a

Batch 
Application

b

Data 
Storage and 
Processing

3

1…*

1 2

3

1,2,3

a,b

Online 
Application

Data 
Storage and 
Processing

a

Online 
Application

b
CRM 

System

2

1…*

a,b

1 2

3

1,2,3

Internal 
Reports 

Department

CRM 
System

a

Internal 
Reports 

Departments

Internal 
Reports 

Department

b

CRM 
System

a,b

1

1…*

1 2

3

1,2

3

 

Figure 9: Abstraction rules 

In the above figure, the “1…*” notation indicates an infinite set of rules. Using 
Rule 1 as an example, this translates to having a separate rule for 1, 2, 3 (and so on) 
‘Internal Reports Department’ components being connected to a ‘CRM System’ 
component. This is more an issue if the formalism is automated, for example with a 
program like AGG [AGG 2002] where each rule would have to be entered. In practice 
one would simply enter enough rules with a reasonable upper bound and use a “pre-
processor” to do this. 

Rule 4 represents a meta-rule, where x, y and a are variables. The rule can be 
instantiated with any component types for x and y, and any connection type for a. The 
rule essentially states that any two components connected by two connections of the 
same type, in the same direction, may be abstracted to those two components 
connected by only one connection. The use of Rule 4 is illustrated in [Section 4.2.2]. 

The rationale for developing Rule 1 is that ‘Internal Reports Department’ is a 
refinement of ‘Internal Reports Departments’ and that both would connect to (i.e. use) 
the ‘CRM System’. 

The rationale for developing Rule 2 was hinted at in [Section 4.1.1] when the 
types were created, when the domain experts realised that a ‘CRM System’ could be 
modelled as an ‘Online Application’ connected to a ‘Data Storage and Processing’ 
component. Further, multiple ‘Online Application’ components may be connected to 
a ‘Data Storage and Processing’ component to facilitate different types of interactions 
with the ‘Data Storage and Processing’ component, for example: updating customer 
details versus reporting on customer demographics. 

The rationale for developing Rule 3 is similar to that of Rule 2, except this time 
realising that a ‘Data Storage and Processing’ component could be modelled as a 
‘Database’ connected to multiple ‘Batch Application’ components, to facilitate 
different types of data manipulation and processing, for example a month end 
processing of customer loyalty points versus processing to calculate demographic 
data. 
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4.1.3 Developing the Initial Abstract Architecture 

Finally, before the designer may begin to propose architectures, an initial abstract 
architecture must be developed such that the designer knows the starting point. The 
initial abstract architecture is hinted at during the domain analysis of [Section 4.1.1], 
and is as follows: 

Internal 
Reports 

Departments

CRM 
SystemCustomers

 

Figure 10: Initial abstract architecture 

Note that each component in our architectures may be taken to have a self-
connection (loop) of type ‘Uses’ which will be omitted from the diagrams. This 
connection will be the image of any connections within a subsystem which is 
abstracted to the component.  

4.2 Task 2 – Propose Refined Architectures and Check 

Task 2 would normally be performed by a person (the designer) with knowledge of 
the types available in the domain. This person may or may not be one of the domain 
experts, and if they are not, then the types can be communicated by the posets 
developed in Task 1. 

4.2.1 Proposing Refined Architectures 

This activity must assume some basic requirements or expectations of the system (full 
requirements analysis and specification is outside the scope of this work and this 
illustration), as well as the initial abstract architecture (see [Fig. 10]). For this usage 
scenario, the following basic requirements are given to the designer: 

• There are two internal reports departments who wish to use the system. The 
first must be able to view reports on customer demographics, and the second 
must also view these reports but also be able to generate quarterly letters to 
be sent to customers regarding their “customer loyalty scheme” points; 

• Customers must be able to update their own details; 
• Customers must be able to view their “customer loyalty scheme” points; 
• The system must be able to calculate demographic trends based on the stored 

CRM data. 
Based on these, the designer may propose the following architecture as a valid 

refinement, or design, of the system to fulfil all requirements. 
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Figure 11: Proposed refined architecture 

The notation used in the architectures is “<component type> <number>”. This 
notation is used firstly to identify the type of each component, and secondly to 
differentiate different instances of components of a particular type. Note that the 
meaning of the rounded box around the ‘Batch Application’ and ‘Database’ 
components is explained in the following section. 

The designer provides the following rationale behind this design: 
• Database 1 stores all the CRM data; 
• Online Application 1 generates the customer loyalty letters; 
• Online Application 2 reports on customer demographics; 
• Online Application 3 allows customers to view their loyalty scheme points; 
• Online Application 4 allows customers to update their details; 
• Batch Application 1 receives the customer updates and accordingly updates 

the database. It is also used by Batch Application 2, which receives the 
customer updates, calculates related demographic data, and updates the 
database. 

• Batch Application 3 performs other trending and analysis on the customer 
demographic data in the database. 

4.2.2 Checking if the Refined Architectures are Valid 

The final step is to apply the abstraction rules to the refined architecture to determine 
whether or not it can be transformed back into the abstract architecture, i.e. whether or 
not it is a valid refinement. 
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Figure 12: Architecture after applying Rule 3 

In the Figure above, Rule 3 has been applied to the refined architecture in [Fig. 
11]. The circled components in [Fig. 11] are the components that are matched by the 
left-hand side of Rule 3 such that the ‘Batch Application’ components connected to 
the ‘Database’ are replaced by ‘Data Storage and Processing 1’, producing [Fig. 12].  
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Figure 13: Architecture after applying Rule 2 

In the Figure above, Rule 2 has been applied to the architecture shown in [Fig. 
12]. The circled components in [Fig. 12] are the components that are matched by the 
left-hand side of Rule 2 such that the ‘Online Application’ components connected to 
the ‘Data Storage and Processing’ component are replaced by ‘CRM System 1’, 
producing [Fig. 13]. It should be noted at this point that when Rule 2 is applied to the 
architecture in [Fig. 12] two connections exist between ‘Internal Reports Department 
1’ and ‘CRM System 1’ and there are also two connections between ‘Customers 1’ 
and ‘CRM System 1’. 

This sort of situation is likely to arise often, and is handled by Rule 4. The rule 
would be instantiated twice. Once with x replaced by ‘Internal Reports Department’ 
and y replaced by ‘CRM System’, and once with x replaced by ‘Customers’ and y 
replaced by ‘CRM System’. In both cases a is replaced by ‘Uses’ as this is the only 
connection type in this example. These two instances of Rule 4 are assumed to have 
been applied to the architecture in [Fig. 12] in order to eliminate the multiple 
connections and produce the architecture in [Fig. 13]. 
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Figure 14: Architecture after applying Rule 1 

Finally, in the above figure, Rule 1 has been applied to the architecture shown in 
[Fig. 13]. The circled components in [Fig. 13] are the components that are matched by 
the left-hand side of Rule 1 such that the two ‘Internal Reports Department’ 
components connected to the ‘CRM System’ are replaced by one ‘Internal Reports 
Departments 1’ component connected to ‘CRM System 1’, producing [Fig. 14]. 

By comparing the architecture in [Fig. 14] to the initial proposed abstract 
architecture in [Fig. 10], and bearing in mind the “<component type> <number>” 
notation, it is evident that the two architectures are the same and therefore it can be 
concluded that the proposed refined architecture of [Fig. 11] is indeed a valid 
refinement. 

This concludes the illustration of how the formalism can be set up and used in a 
real-world situation. 

5 Evaluation  

The formal framework presented is an architectural modelling language and a 
calculus for transforming between models of the same system at different levels of 
abstraction. This framework is intended to have the following properties: 

• rigorous: using the calculus ensures models at different levels of abstraction 
are coherent as descriptions of a system (see [Section 3.4.3]) 

• expressive: knowledge of the application domain can be encoded in the 
calculus to constrain transformations. 

• simple:  the formal concepts required to use the framework are within the 
reach of most practitioners 

• practical: lightweight enough to be applied without any special tools and 
without being disproportionately time consuming. 

We now evaluate the present work in terms of these criteria. 

5.1 Simplicity 

Architecture for our purposes is taken to mean type (of components and connections) 
and topology (which components are directly connected, and in what way). Types of 
components and connections are arranged in hierarchies, and are used to establish a 
semantic mapping into the “real-world’. It models refinement as decomposition of 
components into subsystems, and abstraction as encapsulating subsystems into 
components. This is in contrast with the Fahmy and Holt notion of abstraction as 
information hiding [Fahmy and Holt 2000a, Fahmy and Holt 2000b], which is simple, 
but less useful for dealing with large systems.  The mathematical definitions 
associated with the category of poset labelled graphs are compact, and intuitive with a 
certain amount of practice – most of the authors are non-mathematicians.  
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5.2 Practicality 

Like [Erdogmus 1998] and [Fahmy and Holt 2000a, Fahmy and Holt 2000b] our 
formalism is graphical, making it quick and intuitive to read and write as the reader 
will readily see from [Section 4], and as some of the authors can attest, from use 
within their consulting work. This is in marked contrast with much of the work in this 
area, for instance Moriconi [Moriconi, et al. 1995], where ADLs are first order 
predicate languages, which impose an unreasonable burden of time and concentration 
on the reader to understand.  

Unlike Erdogmus [Erdogmus 1998] and Le Metayer [Le Metayer 1998], the 
transformations used are based on the simple concept of a graph pushout which can 
easily be applied by hand (although these computations can certainly be performed 
using a graph calculator such as AGG [AGG 2002]). 

It is important to note that the transformations used in this paper all act on the 
architecture locally, unlike when type-graphs are involved [Baresi, et al. 2004] where 
everything of a given type will be transformed simultaneously. This means that large 
architectures may be manipulated by focussing only on the subsystems of interest. 

5.3 Rigor and Expressiveness 

[Section 3.4] illustrates how rules can be used to express domain knowledge as 
constraints on transformations, and also shows that defining abstraction as graph 
epimorphism ensures coherence of the models at different levels of abstraction.  This 
is in contrast with previous graph transformation based approaches of Fahmy and 
Holt [Fahmy and Holt 2000a, Fahmy and Holt 2000b] and Erdogmus [Erdogmus 
1998] which do not seek to ensure that any particular properties are maintained by the 
transformations. 

6 Future work 

Several desirable features of a formal framework have not been incorporated into the 
present work. Specifically: 

• There is no way of expressing rules which constrain the form of an 
architectural model. Within the present framework it is quite possible to 
write down an architecture in which a print-client makes requests to a file-
server instead of a print server (see [Section 3.4]), although the present 
formalism will determine that such an architecture is not a valid refinement 
of client/server system. 

• There is no way of ensuring coherence of the level of abstraction across an 
architecture – if you abstract one (print-client →  print-server) pair into a 
client-server system, you should abstract all the print-clients connected to 
that print server.  

Future work addressing these issues will necessarily be directed toward an 
automated system so that these added constraints are maintained by a program, and a 
designer may: 

• request the application of an abstraction rule to an architecture, and allow the 
program to compute the abstracted architecture; 
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• propose an abstraction relationship between two architectures and allow the 
computer to determine whether (possibly multiple) applications of 
abstraction rules suffice to derive one architecture from the other. 

As this work goes forward, the major challenge will be to formalize and automate 
architectural transformation in a way which will guide and reinforce the engineer’s 
intuition. 
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