
Controlled Experiments Comparing Black-box Testing

Strategies for Software Product Lines

Paola Accioly

(Federal University of Pernambuco, Recife, Brazil

prga@cin.ufpe.br)

Paulo Borba

(Federal University of Pernambuco, Recife, Brazil

phmb@cin.ufpe.br)

Rodrigo Bonifácio

(University of Braśılia, Braśılia, Brazil

rbonifacio@cic.unb.br)

Abstract: SPL testing has been considered a challenging task, mainly due to the
diversity of products that might be generated from an SPL. To deal with this problem,
techniques for specifying and deriving product specific functional test cases have been
proposed. However, there is little empirical evidence of the benefits and drawbacks of
these techniques. To provide this kind of evidence, in a previous work we conducted an
empirical study that compared two design techniques for black-box manual testing, a
generic technique that we have observed in an industrial test execution environment,
and a product specific technique whose functional test cases could be derived using
any SPL approach that considers variations in functional tests. Besides revisiting the
first study, here we present a second study that reinforce our findings and brings new
insights to our investigation. Both studies indicate that specific test cases improve test
execution productivity and quality.

Key Words: Black-box Testing, Software Product Lines, Empirical Software Engi-
neering

Category: D.2.7, D.2.5, G.3

1 Introduction

Efficient testing techniques are important for achieving software quality and reli-

ability. Since an SPL can generate a range of different products, it is challenging

to write black-box test cases based on product specifications. The main difficul-

ties are the large number of products that can be instantiated from an SPL and

the variation points scattered through different scenarios.

To address those challenges, SPL tests specification techniques like Pluto

[Bertolino and Gnesi, 2003] and ScenTED [Pohl and Metzger, 2006] have been

proposed. They introduce constructs that represent product variability and pro-

vide means to derive product specific test cases. Nevertheless, the research com-

munity still lacks empirical studies that evaluate these proposals in order to give

Journal of Universal Computer Science, vol. 20, no. 5 (2014), 615-639
submitted: 28/7/13, accepted: 15/2/14, appeared: 1/5/14 © J.UCS

a solid foundation for SPL testing in industry [Tevanlinna et al., 2004,Engström

and Runeson, 2011].

Perhaps the absence of evidence about the benefits of such techniques dis-

courages their industrial adoption. As a result, from what we have observed in an

industrial test execution environment, companies use test documents with use

case scenarios that usually describe family behaviour as a whole, describing most

commonalities, and abstracting the fact that some steps are optional or alterna-

tive —in some cases, non mandatory steps are even omitted. For example, a test

case that specifies the scenario of a report generator feature would contain all

possible variants for report formats such as PDF, HTML and XLS, and testers

would use this generic test case to test all SPL products, even those that are not

configured with all these options. Such test suites may hamper manual execution

because the lack of details can mislead testers that have to strictly follow the

test steps. This is particularly true when different teams are responsible for the

construction and testing activities. This leads to unwanted consequences, such

as escaped defects –when testers do not find an error prior to product release. In

addition, testers may take longer to execute test cases and report defects that

do not exist, decreasing test execution productivity.

Alternatively, with the adoption of an SPL technique, it would be possible to

derive different versions of the same test suite customised for the different prod-

uct configurations in the SPL. This way, testers would not get confused during

test execution and the problems mentioned above could be avoided. However,

organisations cannot decide to introduce new techniques or change their usual

methods based only in assumptions, they need evidence.

In a previous work [Accioly et al., 2012] we presented an empirical study that

brought evidence to help decision making in such contexts. Here we describe such

a study and extend it by presenting a second experiment, adding new results and

insights. The motivation to extend this work is twofold. Replicate the experiment

with different subjects, in order to gather more evidence to the previous results;

and investigate the impact on productivity of the different activities done during

test execution. Both experiments’ results support the hypothesis that an SPL

approach for software testing brings benefits to both productivity and quality. In

the next section we present the differences between the Generic Technique (GT)

which specifies most variants specifications together without variability repre-

sentation, and the Specific Technique (ST) which specifies product customised

test suites (Section 2). After that, we present our empirical studies (Section 3)

comparing both experiments and their results. Finally, we present related work

in Section 4 and our final considerations in Section 5.

616 Accioly P., Borba P., Bonifacio R.: Controlled Experiments ...

2 Generic and Specific Test Cases

To better understand the two techniques, we describe examples of how test cases

may turn up to be generic (describing inaccurate family overall behaviour) or

product specific (showing the specific steps and data values suitable to each

product). Besides presenting this difference, we also explain the consequences of

using the GT. We have observed the use of the GT in test teams that focus only

on the test execution process of a company that outsources test execution activ-

ities to test centers located in different countries. To illustrate the techniques,

we use an example of a mobile SPL that manages the interaction of mobile

multimedia content (pictures, videos and music), Multimedia Messaging Service

(MMS) and some requirements made by a specific mobile carrier called here as

Blue Carrier (BC) feature. These examples represent some of our observations

in the mentioned industrial context.

2.1 Test Case: User Sends MMS with Attached Picture

Our first example considers the scenario of a user sending an MMS with an

attached picture, as detailed in Table 1. This scenario applies for most products

of the SPL in discussion. However, it does not apply for products containing

the BC feature, which corresponds to a group of requirements associated to this

carrier that requires that, before sending an MMS, a message pops up asking if

the user really wants to send that message —since data transfer will be further

charged. Table 2 specifies the test case for the products that follow the BC

feature requirements. On steps 7 and 8 we can see the differences from Table 1.

Table 1: Generic test case: user sends MMS with picture attached.

Step ID User Action System Response

1 Go to Main Menu Main Menu appears

2 Go to Messages Menu Message Menu appears

3 Select “Create new Message” Message Editor screen opens

4 Add Recipient Recipient is added

5 Select “Insert Picture” Insert Picture Menu opens

6 Select Picture Picture is Selected

7 Select “Send Message” Message is correctly sent

In the GT, the test case detailed in Table 1 would serve to test all SPL

products and the tester would be confronted with an unexpected output while

testing products configured with the BC feature. On the other hand, when using

617Accioly P., Borba P., Bonifacio R.: Controlled Experiments ...

Table 2: Specific test case for products configured with the BC feature.

Step ID User Action System Response

1 Go to Main Menu Main Menu appears

2 Go to Messages Menu Message Menu appears

3 Select “Create new Message” Message Editor screen opens

4 Add Recipient Recipient is added

5 Select “Insert Picture” Insert Picture Menu opens

6 Select Picture Picture is Selected

7 Select “Send Message” Dialog appears: “Are you sure

you want to send this message?

Data transfer shall be charged”

8 Hit “Yes” Message is correctly sent.

the ST, there would be two different test cases. The first, detailed in Table 1,

would serve to test the products not configured with the BC feature, whereas

the second, detailed in Table 2, would serve to test products configured with the

BC feature.

In manual black-box testing, when the test specification fails to agree with

the product behaviour, it often means that the test case has revealed a defect.

However, when testing a product with the BC feature, that is not what happens

with the generic test case just described. Here, the product works fine according

to its configuration. The problem is that the generic test case does not consider

all steps required to perform the task correctly. The implementation is correct,

but the specification is vague, so that it roughly fits different SPL members.

In this context, when the tester is not familiar with the products specificities

prior to test execution, he/she might interpret the test inaccuracy as a prod-

uct defect. This misunderstanding can be solved if the tester investigates and

finds evidence that the test specification does not apply for that product. The

tester can do that by contacting a requirements analyst or reading the products

specification. However, if he/she cannot find this evidence, he/she will report

an invalid product defect, wasting her and other people’s time to analyse the

inaccuracy.

Besides reporting false defects, a different type of issue might happen, when

a product is configured with the BC feature and does not present the alert

message before sending the MMS. In this case, the product was not correctly

implemented, and the generic specification is vague. There is a product defect

that should be reported so that the development team could fix it. However,

the tester will not be able to notice this defect because the generic test case

does not consider the step that shows the alert message. If the defect is not

618 Accioly P., Borba P., Bonifacio R.: Controlled Experiments ...

reported, the product might be released to the market without considering the

BC requirements. This will likely lead to an escaped defect, that is, defects that

are found after the product release. This scenario is worse than reporting invalid

defects because it directly affects products quality, whereas reporting invalid

defects only affects testing productivity.

In this example, the generic test case presents fewer steps than necessary to

specify the behaviour for products configured with the BC feature. However, this

situation can be inverted if the test analyst evolves the generic test suite with the

expected behaviour for the BC feature. In this context, the test case described

in Table 2 would serve to test all SPL products including those that were not

configured with the BC feature. While testing such products, testers would be

confronted with an unexpected behaviour when pressing the “Send Message”

button. Instead of showing the warning message, the product would send the

MMS right away. In this case, the generic test case presents more steps than the

specific product requires, bringing the same problems already discussed.

The last two examples discussed generic tests as presenting fewer or more

steps than necessary. Nevertheless, a third situation may happen since test cases

sometimes specify icons and labels that the tester should check during the tests.

So if, for example, the BC feature requires that some icons need to be changed

so that they display their brand logo, the GT may fail to specify what icons

and labels the device should display. Again, testers confronted with this kind of

inaccuracy might waste time, report invalid defects or even let a defect escape.

In summary, generic test cases may differ from specific test cases in three

different ways. They might present less or more steps than an specific product

requires or they might present different data values such as icons and labels.

Note that the generic test suites described here have no means of representing

variability to inform which steps apply or not to each product. They simply

describe most commonalities, abstracting possible variations, and are partly not

correct depending on the product configuration.

2.2 Problems With Generic Test Suites

In a black-box manual test execution environment, testers are not required to

have specific knowledge of the application code structure. Only by reading the

test steps, they are aware of what the system under test is supposed to do.

They follow the user action steps checking if the product behaves according to

the described system responses. Whenever there is an inconsistency between

the test case and the product behaviour, testers must investigate whether this

inconsistency is a defect. However, the use of generic test cases for SPL products

may hamper test execution because when they fail to specify a certain product

behaviour, testers are not able to identify if there is an issue in the test case.

Instead, they might interpret it as a product defect.

619Accioly P., Borba P., Bonifacio R.: Controlled Experiments ...

The activity diagram described in Figure 1 considers the scenarios that typ-

ically happen when a test case is not accurate. The activity flow starts when

the test case does not correctly specify the behaviour of the system under test,

presenting an issue similar to those described before. Then the fork on the di-

agram indicates two possible scenarios. In the left branch the product matches

the test case description, in other words, there is a defect but the tester will not

be able to notice because the test case is also wrong. So the tester passes the

test and the consequence is an escaped defect. For instance, in the first example

described in Section 2.1, Table 1, step 7, the mobile company would release the

product with the BC feature without the message prior to the MMS dispatch.

Figure 1: Possible consequences of generic test cases.

In the right branch, the product works fine according to its configuration, so

the tester will find an unexpected output, pausing the test case execution to start

investigating whether there is an issue in the test case or in the product. The

tester might search throughout requirement documents or eventually speak to a

requirements analyst, to the development team or to other testers who already

executed that test case. Then, if the tester finds evidence that the product works

as expected by costumers, he/she passes the test, writing an observation about

the test inaccuracy, and the consequence is time lost with the investigation.

Based on our observations in a medium size test organisation, this kind of

investigation can take a small amount of time if the tester talks to a technical

leader or a requirement specialist available personally or via instant messaging.

On the other hand, it can take a lot of time if, for instance, the tester needs to

look throughout requirement documents to find out about the expected system

620 Accioly P., Borba P., Bonifacio R.: Controlled Experiments ...

behaviour. Finally, the tester might also contact the development team, having to

wait for an answer. For instance, in the organisation that we mentioned before,

the development team worked in a different time zone, so the questions took

longer than one day to be analysed. Meanwhile the test case remained on hold

and the tester moved on with the test suite.

Either way, if the tester cannot find evidence about the expected product be-

haviour, he/she will assume that there is a product defect. The tester will create

a Change Request (CR)1 and, when the development team gets to analyse the

CR, they will get to the conclusion that the product works fine, then terminating

the CR. In this case the consequences are time lost and an invalid CR which is

a negative metric indicating that the tester reported a product failure that did

not exist.

In summary, the GT might impact SPL development with respect to two

aspects: quality and productivity. Quality because some defects might escape,

and productivity because of the time lost during investigations and possible

invalid CRs. The more often these inaccuracies appear on the test cases, the

more significant is the impact on the test execution process. Particularly, SPLs

that contain more variation points are more likely to present such problems.

As a final remark, we remember that poorly specified test cases may present

issues like the ones described in this section despite of which technique the

company uses for SPL products or even for single products specification. So,

using the ST may improve the test cases quality but it is not a guarantee that

they will not present any kind of issue.

2.3 Product Specific Test Cases for SPL

A number of techniques can be used to derive product specific test cases for

a given SPL. A naive alternative is to copy the same test document for each

product line configuration to be tested and manually adjust the differences be-

tween them. However, this solution is not quite appropriate because the more

complex the SPL is, the harder it is to maintain each product’s test documents.

The alternative to obtain product specific tests is to reuse test cases for the dif-

ferent products in a given SPL. This reuse can be done in, at least, two different

ways. First, we can use an SPL technique that manages test cases variabil-

ity and derive product specific test cases. Some of the existent approaches are

PLUTO [Bertolino and Gnesi, 2003] and ScenTED [Reuys et al., 2005]. The

second alternative is to structure requirements specifications using modularisa-

tion mechanisms so that it is possible to generate requirements specifications

for SPL products. An existing technique for this matter is MSVCM [Bonifácio

and Borba, 2009]. After deriving the expected behavioural descriptions (using

1 In this work we use the CR definition only in the context of products defect report.

621Accioly P., Borba P., Bonifacio R.: Controlled Experiments ...

scenario specifications, for instance), these specifications can be used as input to

an automatic model-based test suites generation tool such as TaRGeT [Neves

et al., 2011].

Either way, we believe that having product specific test cases might help to

solve SPL test execution problems. Nevertheless, the benefits regarding the test

execution productivity are not so obvious since specific test suites, in some cases,

present more steps than the generic version, requiring more time for executing the

specific test cases. To evaluate these statements, we compare the GT and the ST

using the point of view of the test execution process. Likewise, it is important to

compare these techniques using the point of view of the test design process since

the gain on test execution might not compensate the effort to design product

specific test suites. Initially, if we use an SPL test derivation technique, there

would be an increase of effort to design test suites with variability representation

compared to the generic ones. However, once this initial step is done, not only

the test execution could benefit from it but also the maintenance of test suites

would be easier.

However, we cannot evaluate these two processes (design and execution) in a

single study for a number of reasons. First, the team that designs the test suites

is usually different from the team that executes them. This would essentially

separate this study into two. Second, while the test design is done once and

then maintained, the test execution is done several times so that it would be

difficult to interpret the results in a realistic way. Finally, different companies

focus differently on these two processes. Some focus more on execution than on

design, whereas others do the contrary or even focus equally on both. This leads

to problems on the generalisation of the results.

Because we cannot evaluate the process of designing and executing SPL test

cases in a single experiment, and also because we have experienced the problems

from the test execution point of view, making it our area of expertise, we first

focus on the test execution process, considering that the test cases are already

specified as generic or specific. We consider this work as the first step towards

a deeper understanding on the benefits and disadvantages of adopting product

specific test suites. Our results here can be particularly interesting for companies

that focus more on test execution.

3 Evaluation Studies

In this paper we empirically evaluate both the GT and the ST techniques from

the point of view of the SPL test execution process. Figure 2 illustrates this

comparison. On the left side, the GT provides a single generic suite that testers

will use to test two different products, P1 and P2. Differently, on the right side,

the ST provides two different suites: P1 Suite and P2 Suite, each one specifying

its respective product.

622 Accioly P., Borba P., Bonifacio R.: Controlled Experiments ...

Figure 2: The GT uses one test suite for all the products an the ST uses one

suite per product.

In order to compare these two techniques in terms of test execution, we con-

ducted two controlled experiments where subjects had to test different products

from the same SPL using either the GT or ST techniques and collecting the time

taken to execute the test suites. During this activity, students also reported CRs

whenever they identified defects.

In the previous paper [Accioly et al., 2012] we presented the first experiment

and now we add a second study that brings the following two main contributions:

first it consists of a replication of the first experiment with new subjects, which

adds evidence to the results; second, it yields new insights about the impact

of the different activities done during the test execution process. This time we

present a deeper analysis of the impact of reporting CRs during the experiment

execution. To get this new insights we changed our time metric collection pro-

cedure as discussed in Section 3.2.3. This adjustment was useful because we had

no evidence about how much time the subjects took to report CRs, and how

this task would increase the total time of the tests execution. In the following

subsections we describe both experiments, explain their differences and their re-

sults. Also, all the material used in the experiments is available online [Accioly,

2013].

3.1 Experiments Definition

We have structured the experiments definition using the goal, question, metric

(GQM) approach in order to collect and analyze meaningful metrics to measure

the proposed process. Our Goal was to analyse the test execution process, for

the purpose of evaluating two different SPL test case design techniques (GT vs.

ST), with respect to the mean time to execute the test suites as well as the

number of invalid CRs reported during the test execution process. We have used

the point of view of test engineers and researchers in the context of controlled

experiments done with graduate and undergraduate students.

To achieve our goal, we elaborated two research questions. Research Ques-

tion 1 (RQ1), which investigates whether the ST reduces the test execution

623Accioly P., Borba P., Bonifacio R.: Controlled Experiments ...

effort compared with the GT and Research Question 2 (RQ2) which inves-

tigates whether the ST reduces the number of invalid CRs compared with the

GT. These questions should be answered with the test execution time and

the number of invalid CRs metrics because, from what we have observed, the

GT may decrease test execution productivity since testers might take longer to

execute test cases besides report defects that do not exist. We also collect other

metrics such as valid CRs —CRs that report real product defects– because we

need to analyse all reported CRs in order to identify the invalid ones.

3.2 Experiments Planning

To evaluate the elements involved in our experiments planning, first we describe

our statistical hypotheses that is later confronted with the collected data.

3.2.1 Hypothesis

To answerRQ1 concerning the average time to execute the test suites, we present

our null hypothesis as H0 (µTimeST = µTimeGT) and our alternative hypothe-

ses as H1 (µTimeST < µTimeGT) and H2 (µTimeST > µTimeGT). Likewise, in

order to answer RQ2, we present the null hypothesis as H0 (µInvalidCRsST =

µInvalidCRsGT) and the alternative hypotheses as H1 (µInvalidCRsST <

µInvalidCRsGT) and H2 (µInvalidCRsST > µInvalidCRsGT).

3.2.2 Design, Instrumentation and Subjects

Bringing the elements evaluated in our context into empirical terms, the metrics

evaluated were the execution time (in the second experiment we collected the

execution time plus the CR report time as discussed in Section 3.2.3) and the

number of invalid CRs. In addition, the treatments (the independent variables)

that we compare are the GT and the ST. Furthermore, in order to avoid bias,

there are some factors that we need to control during the experiment execution

as discussed next.

The first factor under control is the subjects selected to execute the ex-

periment, since different background knowledge and testing skills can influence

directly on our metrics. The second factor under control is the number of varia-

tion points existent in the test cases, since test suites with more variation points

might benefit more from the ST than test suites with fewer variation points. In

a test execution environment, like the one that we have observed, test suites are

usually related to SPL features. They explore flows related to the main function-

ality of a feature and its interaction with other features. Thus, we control the

variation points factor by choosing test suites related to two different features

from the same SPL.

624 Accioly P., Borba P., Bonifacio R.: Controlled Experiments ...

Since we have two treatments, two test suites and many subjects, we opted

to use a Latin Square Design [Wohlin et al., 2000] to control both the subjects

and the number of variation points (related to features). To apply this design,

we randomly dispose the subjects in the rows and the features in the columns

of the Latin square (see Table 3). Each pair of subjects sets one instance of a

Latin square, and each instance is called a replica. Each replica contains two

rows and two columns. In each given row and column, the treatment, the GT

or the ST, appears only once, meaning that, in each activity, subjects used one

technique and one feature. In each activity using one of the techniques, the

subjects executed two test suites in two products. With the ST, they execute

specific suites for each product. With the GT, they execute the same test suite in

the two products as illustrated in Figure 2. We randomly selected the execution

order of each product.

Table 3: Layout of experiment design.

Feature 1 Feature 2

Subject 1 GT ST

Subject 2 ST GT

To evaluate the treatments, we considered products and test suites from the

Research Group Management System (RGMS) SPL,2 a Java desktop product

line with the purpose of managing members, publications and research lines from

a research group. The products and the test cases are written in Portuguese since

the differences among subjects English skills could affect the execution time.

RGMS most important features are Members, Publications and Research

Lines. These features are responsible for the query operations with these en-

tities (inserts, search, updates and deletes). The Reports feature is responsible

for reports generation in two different formats: PDF or Bibtex. Also the Re-

search Line Search by Member feature makes it possible to know which research

lines associates with each member registered on the system. Similarly, Publica-

tion Search by Member retrieves the publications associated with the members

of the research group. Lastly, Global Search retrieves members, publications and

research lines. This feature model is available on the online appendix [Accioly,

2013]. To execute the experiment we chose the two following product configura-

tions:

P1: RGMS, Members, Publications, Research Lines, Reports (PDF, Bibtex),

Research Line Search by Member

2 http://rgms.rcaa.cloudbees.net/

625Accioly P., Borba P., Bonifacio R.: Controlled Experiments ...

P2: RGMS, Members, Publications, Research Lines, Reports (PDF), Pub-

lication Search by Member, Global Search

The features chosen to design the test suites were Publications and Research

Lines because they were rich and contained different flows to explore. They

are also sufficiently independent from each other, generating test suites with

separate flows. We did not choose the Members feature because it is tangled in

both products and each feature should present different flows of execution, in

order to avoid participants from learning the tool from one feature execution to

the other. In other words, if we choose features with similar flows, participants

might learn how to use the product when executing the first feature suites and

then execute the second feature suites faster.

We manually wrote the test suites instead of using an SPL test derivation

technique because we do not focus on studying the benefits of one test derivation

technique in special, but on the test design techniques in general. In total, there

were 6 test suites. This number was a consequence of our experiment design.

First, we produced the generic test suites for F1 and F2 (GS-F1 and GS-F2)

trying to simulate the issues discussed in Section 2. To simulate the scenario

where the test case has more steps than necessary, some test cases presented

steps that did not apply for both products under test. Likewise, to simulate the

scenario where the test case has less steps than necessary, other test cases had

some missing steps depending on the product configuration. And finally some

test cases presented wrong/missing data values trying to simulate the scenario

where the test case fails to specify some data value.

Next, GS-F1 and GS-F2 were manually adjusted to attend P1 and P2 speci-

ficities, generating the suites SP1-F1, SP2-F1, SP1-F2 and SP2-F2. Each test

suite comprises 6 test cases. We chose this scope because the subjects would

have two hours to execute two test suites, one for each product, giving a total of

12 test cases in two hours. We learned from earlier experiment executions that

this was a reasonable amount of tests to execute in this interval of time.

To illustrate the test suites differences, Table 4 describes a step of the generic

scenario that asks the tester to check whether the options for generating reports

appear correctly. However, not all products contain these two formats (PDF and

Bibtex) so these values are wrong for a set of products with this configuration.

We adjusted this step to specify the behaviour of a product configured to support

only PDF reports as described in Table 5.

Table 4: Generic test case.

User Action System Response

Verify the options for report gen-

eration format

The options (PDF, Bibtex) are

available.

626 Accioly P., Borba P., Bonifacio R.: Controlled Experiments ...

Table 5: Specific test case.

User Action System Response

Verify the options for report gen-

eration format

The option (PDF) is available.

In order to measure the effort to execute the different test suites, we devel-

oped an application called TestWatcher, which collects test time execution (in

seconds), reported CRs ids, some possible observation about the execution and

the test case result (passed or failed). TestWatcher recorded all this information

in a spreadsheet.

A total of 20 subjects engaged in the first experiment. They were all Com-

puter Science graduate (PhD or MSc) students from the Federal University of

Pernambuco, Brazil. They had different levels of knowledge in software test-

ing. The participants were randomly assigned in pairs to form 10 replicas of

the Latin square. To form the first Latin square replica, the features (Publica-

tions and Research Lines) were randomly assigned to Feature 1 and Feature 2

and then, finally, the treatments were randomly assigned within the first square

replica. Then we replicated the first square configuration to the 9 other replicas.

Likewise, in the second experiment we had the participation of 22 under-

graduate Computer Science students from the University of Braśılia. This time,

to form the replicas, we randomly paired the subjects, the features and the

treatments to for each one of the 11 replicas.

3.2.3 Metrics Collection

Using the TestWatcher, we simulate a test environment with some simplifica-

tions. Remembering Section 2, when the tester puts the test case on hold to

investigate whether there is a defect on the product or just a test issue, he/she

carries out different tasks depending on the environment structure. To consider

and simulate all those situations we worked on the following approach in both

experiments: while executing tests, whenever the tester had to investigate if

there was a defect on the product, he/she paused test execution, using the Test-

Watcher, and asked the experiment conductor, who knew previously the issues

present on the test suites. If there was a test inaccuracy, the conductor instructed

the tester to ignore the issue resuming test execution and writing an observation

on the TestWatcher, explaining what was wrong with the test, for example, if a

step did not apply for the product under test. Otherwise, if there was a product

defect, he would tell the tester to create a CR. After that, the conductor would

take note of the investigation interruption. By the end of the experiment, the

627Accioly P., Borba P., Bonifacio R.: Controlled Experiments ...

conductor would have a report on how many times testers interrupted execution

because of test inaccuracies.

The purpose of having the number of interruptions is that we could run

a first analysis considering just the execution time, without the investigation

time. If our analysis indicated that there was a significant difference on the test

execution effort just by measuring the execution time, this means that, in a

industrial scenario, considering all the interruptions for investigation, the effort

to execute generic test cases would be even greater. On the other hand, if the

average execution time for both techniques did not differ significantly for both

techniques we could then analyse different scenarios by adding time intervals for

each noted interruption; as explained before, the interruption time can widely

vary depending on how the tester will act to investigate the problem.

As for the reported CRs, every tester received a text document with a tem-

plate to report defects. In the first experiment we asked the subjects to pause

the time while reporting CRs and resume it to return to the test cases execution.

As a result, we had the time for executing test cases and the number of reported

CRs, but we did not have any evidence about the impact that reporting invalid

CRs had on the time metric. Nevertheless, in a industrial test execution envi-

ronment, when the tester reports an invalid CR due to test inaccuracies there is

an associated waste of time, but we did not have evidence to analyse that. This

motivated us to improve our time metric collection procedure to include time

for reporting CRs and check what would happen in practice. This time, when

the subject had to report a CR he/she did not need to pause time.

3.3 Experiments Operation

Each experiment lasted three days, each day with a two hours session. We divided

day 1 session in two phases. The first phase had the purpose of giving some

training about black-box testing, giving a demonstration of how subjects should

proceed while executing the test cases using the TestWatcher and filling out the

CR template. Since exploratory testing is not the focus of this paper, the main

concern was to instruct the students to follow the test script correctly, otherwise

they might be tempted to explore the tool trying different flows from the ones

described in the script.

The second phase of day 1 was a dry run using the RGMS. We asked the

subjects to download and install the test environment on their computers and

execute a test suite with three test cases, collecting metrics and asking questions.

The conductors monitored the whole process. After finishing these activities,

participants sent their results (the spreadsheet generated by the TestWatcher

and the CRs reported) to the conductors email. We did not use this data to run

any analysis because there would be a lot of interruptions caused by participants

doubts on how to proceed with the tasks.

628 Accioly P., Borba P., Bonifacio R.: Controlled Experiments ...

On day 2 and day 3 we ran the Latin square first and second columns respec-

tively, following the layout of Table 3. During this process, the subjects were not

aware of the differences between the techniques neither which technique they

were working with. We made this decision because instructing subjects about

the two techniques could cause bias since they could infer that one technique

was better than the other. Like on the dry run activity, the participants sent

by email the results achieved. In the first experiment one subject missed day 1

activity, so we decided to exclude this results since this subject did not attend

the training. Because of that, we analysed in the first experiment the results of

18 subjects, completing 9 Latin square replicas.

In the second experiment, from the 22 subjects who initiated the activities, 2

missed some of the activities and 7 had some problems to complete the activities.

Some of them executed exploratory tests, spending time exploring the tool with

steps and input values that were not specified in the tests or had trouble to report

time. For instance, one subject managed to complete one test case in 1 second

which is highly unlikely. For this reason, we decided to exclude these results and

ran our analysis using the result of 10 remaining students, completing 5 Latin

square replicas. Next we present our results.

3.4 Experiments Results

This section describes the results achieved by our data analysis. First we present

the time execution results and then the number of reported invalid CRs.

3.4.1 Time Analysis

In order to interpret data, we first carried out a descriptive analysis to observe

data tendency based on some characteristics such as dispersion and median.

The box-plots [Jedlitschka and Pfahl, 2005] in Figure 3 compares execution

time in both techniques for the two experiments. The first box-plot shows that

the execution time tends to smaller values on the ST compared to the GT. The

average to fulfil the activities using the GT was 975s while the average for the

ST was 824s. The ST had an average decrease of 15.5% in time execution. Also

we could not detect any outliers in our data.

In the second box-blot we have similar results. We observe that the ST tends

to present smaller values than the GT. Also we can see that the GT observations

seem to be more dispersed than the ST values. The mean time for completing

the activities using the GT was 1251s while the mean time for the ST was 1061s,

providing a decrease in average time of 15.2%. We believe that this increase in

the execution mean time compared with the execution mean time in the first

experiment was due to the fact that in the second experiment we count the time

to report CRs as well.

629Accioly P., Borba P., Bonifacio R.: Controlled Experiments ...

Figure 3: Box-Plot graphics comparing techniques

In addition to the median values, we compared the observations according

to each subject results. Looking at the subjects individual responses in both

techniques we realized that, in spite of the feature used to execute the test cases,

almost the totality (94% in the first experiment and 80% in the second one) of

the subjects finished the activities using ST in less time than using GT. From

the 28 subjects analysed in both studies, only 3 took more time to execute the

ST than the GT.

Moving on with the statistical analysis, we investigated whether the tendency

observed in our samples was indeed significant by running a hypothesis test. To

do that, we chose the ANOVA test [Wohlin et al., 2000] to compare the effect

of both treatments on the response variable (mean time). But before running

the ANOVA, we ran some tests to check whether the effect model satisfies the

assumptions to run the ANOVA test. First we ran the Box Cox test to verify the

constance of residuals variance, then we used the Tukey Test of Additivity to

check whether our model was indeed additive and, finally, we ran the Shapiro-

Wilk tests to check for residuals normality, all the results of theses tests are

available on the online appendix [Accioly, 2013].

After testing the necessary assumptions, we ran the ANOVA test reaching a

p-value for the technique factor of approximately 0.0001 in the first experiment

and 0.01 in the second one, which gives us significant evidence that the ST reduce

the time necessary to execute the experiment activities. We will discuss more

general conclusions on Section 3.6.

Since we were able to gather evidence showing that the technique has influ-

630 Accioly P., Borba P., Bonifacio R.: Controlled Experiments ...

ence on execution time without considering the investigation time, we did not

run the second analysis adding extra time for pauses in test execution since dif-

ferences would only increase but the scenario would not change. For instance,

there were 19 interruptions in the first experiment caused by generic test suites

inaccuracies during the experiment execution. Considering 60s as the shortest

amount of time for investigation, we would have an average on approximately

1038s for the GT execution which gives a gain of 21% compared to the ST ex-

ecution. Considering that, in a test execution company, these intervals can take

much more than 1 minute and usually more than 2 products from an SPL are

tested, this time increase would have a bigger impact on test execution. We had

similar results on the second experiment.

3.4.2 Change Request Analysis

Remembering our second research question (RQ2), we investigate if the GT

would increase the number of invalid CRs. This might happen because the tester

would get confused interpreting a test inaccuracy as a defect and reporting a

CR that, in an industrial test environment, would be invalidated. To evaluate

the status of the CRs that the subjects reported, we first read all reported

CR descriptions and classified them into the following categories: valid, invalid,

duplicated and irreproducible.

A valid CR describes a defect on a product. Whenever the subject described

the same issue with more than one CR, the second one was considered duplicated.

An invalid CR represents the scenario that we investigate —the subject reported

a CR that did not exist because of test case inaccuracy. Lastly, we considered

three reported CRs on the first experiment to be irreproducible because the two

students who reported them used their personal MacBooks during the activity

and the RGMS product line did not have yet a version with full support to

the OS X operational system. Consequently, for them, the GUI presented some

problems such as labels that were too short for its text or fields that were too

bright for reading. We did not have this problem on the second experiment.

Because we had a data set with many observations whose value was equal

to zero, that is, during the test suite execution, the participant did not report

any CR, we didn’t run a hypothesis test. It is difficult to analyze patterns in a

set of observations containing this considerable amount of zeros, so, we simply

compared the total number of CRs reported in both techniques.

Table 6 presents the results of the CR analysis. As we can see, there is not a

significant difference concerning valid CRs. Almost every CR that participants

reported on the ST were also reported on the GT. The ST detected more valid

defects in the first experiment than in the second one. We believe that one

possible explanation for this is that we observed in the second experiment that

some subjects were more judicious than others. For example, one of them tried

631Accioly P., Borba P., Bonifacio R.: Controlled Experiments ...

to insert a research line with a very long name and then the system did not

register the entity correctly. To mitigate this risk we could fix the inputs on the

test cases. Another subject reported a CR because the string described in the

test case did not contain capital letters and the ones presented by the product

did. So the test suites should probably be revised more carefully. On the other

hand, there was a significant difference in the number of invalid CRs reported

on the GT compared to the ST for both experiments. We present the individual

numbers on our online appendix [Accioly, 2013].

GT ST

Valid 15 18

Invalid 20 1

GT ST

Valid 13 9

Invalid 20 1

Table 6: CRs reported on the first experiment (left side table) and on the second

experiment (right side table).

3.5 Interpretation of Results

Before the first experiment execution, we did not expect that, on the first analy-

sis, without considering pauses for investigation, the technique would have such

a significant influence on time. Perhaps, one of the causes is that, when sub-

jects executing the GT met a difference between the test case and the system

behaviour, they tried a workaround, looking for missing steps and pressing the

return button in order to repeat some steps.

We believe that in an industrial test execution environment, this would hap-

pen too. When we observed subjects acting like that, we thought that this might

cause an increase on the number of valid CRs found using the GT because the

subjects who did that would go beyond the test case scenario in comparison with

the ones executing the specific version of the same test case. Indeed in the second

experiment there were more valid CRs reported from subjects using the GT, on

the other hand, on the first experiment there were more valid CRs reported in

the ST. Because of that we cannot be sure if this is a significant effect or it

happened because some subjects were more judicious than other.

In general, we suspect that generic test suites may trigger a more exploratory

behaviour on the subjects. There is a testing approach called exploratory, where

testers have the freedom to explore different flows at the same time testing

more than one feature and performing the steps back and forth. However, when

executing scenario based test cases, the focus should be on the steps described.

With the second experiment execution, we now have evidence of the impact

that the CRs report activity has on the time metric. The second experiment data

632 Accioly P., Borba P., Bonifacio R.: Controlled Experiments ...

presents an increase of the mean execution time for both techniques (around 250s

for each techniques) but the average decrease from the ST to the GT remained

almost the same of the first experiment —around 15% in both experiments. This

was an interesting result because we expected that the ST gain would be bigger

in the second experiment since the subjects had to report much more CRs in the

GT. However the total number of executed tests (240) is much bigger than the

number of reported CRs (43). Also, from what we have observed, the time taken

to report a CR is short, perhaps half the time than the time taken to execute a

test case. Because of that we believe that the CR reporting activity did not have

a significant impact on our data. This means that the test execution and the in-

terruptions for investigation are more significant to the observed improvements.

Nevertheless, it is important to notice that, even if reporting invalid CRs do not

impact significantly the time, it causes a negative impact on the development

team productivity that needs to analyse every reported CR before concluding

which ones are invalid. That is why invalid CRs are a negative metric in the test

execution industry.

In addition, the second experiment helped us to add more evidence to our

problem since we used subjects with less testing experience and achieved results

that are consistent with the previous experiment. The ability to replicate and

confirm the results of a controlled experiment is important because it reduces

the chance that the results previously achieved did not represent a real trend,

but instead resulted from different sources of biases such the subjects sample

choice.

As we can see, based on our studies, SPL test execution can benefit from

product specific test cases. These benefits are reduction on test execution time

and on invalid CR rates. However, we must make some considerations on the

validity of this experiment, as discussed next.

3.6 Threats to Validity

This section describes concerns of these studies and other aspects that one must

take into account in order to generalize our results. To organize this section we

classified our threats using the Internal, External, Construct and Conclusion

categories.

In the Internal threats category, during both experiments execution, some

students performed the activity using their personal laptops. This resulted in

a heterogeneous environment during the experiment operation and the RGMS

did not have versions that support different operational systems. So, when two

subjects used MacBooks to execute the activity on the first experiment, they

reported 3 defects, related to the RGMS interface that had labels that were too

short for the text in it, that subjects who worked with Windows could not find.

Because we could not reproduce those defects using Windows, we considered

633Accioly P., Borba P., Bonifacio R.: Controlled Experiments ...

these 3 defects as irreproducible and did not consider them in the CR analysis.

Nevertheless, we ran a second time analysis removing these two subjects results

and the analysis remained practically the same. Thus, we believe that this situ-

ation did not affect significantly the time metric collection. We did not have this

problem on the second experiment execution.

In the External threats category, some conditions limit the generalisation

of our results. First, the subjects involved in these experiments were not all

testers. They were Computer Science graduate and undergraduate students with

different skills on software testing. Some of them worked as testers in different

companies but others did not have the same experience, particularly, the un-

dergraduate students had little or no experience in software testing. We believe

that, with the execution of the second experiment, we diminished the impact of

the subjects threat since we could reproduce similar results using a new group

of students with different profiles.

Some studies have already addressed the question of the feasibility of con-

clusions drawn from results of experiments performed with students and some

suggest that, for some software engineering areas, using students as subjects in

experiments is often perceived as a good surrogate for using industry profes-

sionals [Buse et al., 2011, Staron, 2007]. Furthermore, Runeson compared the

results achieved in an experiment using three different groups, undergraduate

and graduate students and industry people. His results indicated that there was

no significant difference between the three groups results [Runeson, 2003].

Besides that, from what we have observed in the executed experiments, we

believe that if we had used testers to replicate these studies we would perhaps

notice a decrease on the number of invalid CRs for the GT. This happens because

some subjects with less experience in software testing tended to report more

invalid CRs than the more experienced ones, even if they were all encouraged

to investigate the defects with the conductor. However, it is noteworthy that, in

the industrial contexts we had access to, manual black-box test suites are often

executed by testers with less experience.

Another issue about the experiments subjects is that testers with more ex-

perience testing the same SPL will tend to have fewer problems while executing

generic test suites since they are already familiar with each product specifici-

ties. However, when the SPL incorporates new features, new configurations are

possible and the tester again has to take some time to get used to the new

features.

The results achieved by these experiments also depend on the selected SPL.

Perhaps SPLs with more variation points might benefit more in adopting the ST

than SPLs with fewer variation points. The more inaccuracies, the more time

is spent to investigate and execute test cases. In our studies, we injected 2 or 3

inaccuracies in each generic test suite.

634 Accioly P., Borba P., Bonifacio R.: Controlled Experiments ...

Considering the Construct threats category, an interesting consideration to

be made is that since we are collecting the time taken to report the CRs, we

need to be careful to control the size and complexity of the CRs reports because

more judicious subjects may take more time to report a CR with more details

while others would describe the defect using only one line or two. To report CRs

we provided the same template for both experiments which had 4 information

fields to complete as follows: CR ID, test case ID, number of the step where

the defect was found and a brief issue description. After assessing the CRs we

observed that they had in average the same size, the students didn’t use more

than one paragraph to report CRs.

Finally, in the Conclusion threats, during our studies we chose to work with

an academic SPL, the RGMS. Some might see this as a potential threat to our

results. However, this system has been evolved for some years in the discipline of

Software Reuse in the Informatics Center of the Federal University of Pernam-

buco, and it represents situations that are commonly seen in industrial SPLs.

Besides that, some researchers believe that empiric evaluations are not lim-

ited to industrial systems. Buse, for example, claimed in his paper about benefits

and barriers in user evaluations in software engineering [Buse et al., 2011] that

these artefacts can often allow researchers to easily translate research questions

into successful experiments. It may reduce training time, simplify recruiting,

and allows greater control over confounding factors. We believe that, by choos-

ing RGMS, we gained all these benefits.

In the second experiment we decided to maintain the same experiment ma-

terial (SPLs, features, test suites) because of our motivation to achieve repro-

ducibility with different subjects. In the first experiment we had few subjects

(18) and we wanted to add evidence to these results. We also analyse the impact

of the CRs report activity and compare the numbers of reported CRs in both

experiments. If we changed the subjects, the metric collection procedure and the

material used it would be difficult to compare the results from both experiments.

Nevertheless, in a future replication of this study we can change the material.

Another consideration to be made is, because we had a limited amount of

time to apply our experiment, from the 32 possible configurations of the RGMS

product line, we chose the 2 instances containing more features and that were

the most different from each other considering alternative features so that we

could represent all RGMS features and its different variation points. This reduced

set of products cannot be considered unrealistic using the point of view of test

companies. Ideally, testers would validate all possible combinations in a product

line instance. Unfortunately, the space of possible combinations in a realistic

product line might be enormous and exhaustive. What happens in practice is

that companies follow some criteria to focus the test execution on a small subset

of the products.

635Accioly P., Borba P., Bonifacio R.: Controlled Experiments ...

Lastly, as discussed in Section 3.2.2, in the first experiment, to form the

Latin square replicas, we randomly assigned the subjects in pairs to form the

rows of each square, then we randomly assigned Publications to Feature 1 and

ResearchLines to Feature 2 to form the columns of the squares. Then, we raffled

the techniques arranging them to form the first replica the same way that Table 3

describes. Lastly, we replicated this arrangement to form the other replicas. A

different approach, randomly assigning the treatments for each replica, could

give more solid results because it would be a full randomised configuration.

Nevertheless, we believe that this consideration did not compromise our results

because we had significant differences in individual results and also because

we ran tests that excluded non-additivity and non-normality anomalies. In the

second experiment we fixed this issue and obtained similar results.

4 Related Work

SPL Testing has been considered a challenging task [Pohl and Metzger, 2006,

Tevanlinna et al., 2004,Käkölä and Dueñas, 2006,Engström and Runeson, 2011],

not only due to the huge number of products that might be generated from

reusable assets [Pohl and Metzger, 2006, Jaring et al., 2008], but also moti-

vated by the lack of recommendations and best practices for testing product

lines –actually, most of the research on SPL testing focuses on proposing new

approaches and techniques [Engström and Runeson, 2011, Neto et al., 2011],

instead of empirically assessing their benefits.

For instance, Bertolino proposed a text based use case extension tailored

for product line functional testing [Bertolino and Gnesi, 2003], whereas other

works detail how to derive product specific test cases from activity and sequence

diagrams [Nebut et al., 2003,Kamsties et al., 2003,Olimpiew and Gomaa, 2005,

Reuys et al., 2005]. Our work complements these works, since it shows evidences

about the benefits of product specific test cases, which might be generated from

any derivation approach.

Regarding empirical studies on SPL testing, in 2010 Neto [Neto et al., 2011]

conducted a systematic mapping study with the purpose of investigating the

state-of-the-art of SPL testing practices and identifying possible gaps in existing

techniques. This study illustrated a number of areas in which additional inves-

tigation would be useful, specially regarding evaluation and validation research.

This work also served as a basis to propose a novel process for supporting testing

activities in SPL projects, the RiPLE-TE [Machado et al., 2010]. In addition,

they conducted two experimental studies to evaluate the proposed process.

Ganesan compared the costs and benefits of two approaches for SPL qual-

ity assurance: one that does not consider reusable assets (and test each SPL

member as an independent product), and another that considers reusable assets

636 Accioly P., Borba P., Bonifacio R.: Controlled Experiments ...

among different components [Ganesan et al., 2007]. Their conclusions, based on

Monte-Carlo simulations, points that it is worth to test the reusable assets of

an SPL during domain engineering (using code inspection and static analysis),

and test just product specific parts during product engineering (using not only

code inspection and static analysis, but also functional tests). Our study has

only focused on functional testing during the application engineering level.

Denger compared the effectiveness of code inspection and functional testing

to find SPL defects [Denger and Kolb, 2006]. Their findings suggest that the two

techniques complement each other, finding different types of defects. Differently,

our assessment concerns about the level of details in which test designers specify

SPL test cases, and its consequences on both productivity and quality of defect

reports.

Empirical studies on software testing are not so common as well, as discussed

by Juristo, “over half of the existing knowledge is based on impressions and per-

ceptions and, therefore, devoid of any formal foundation” [Juristo et al., 2004],

and the lack of such an empirical body of evidence is a considerable challenge of

the software testing research [Bertolino, 2007,Engström et al., 2008].

Nevertheless, empirical comparisons between testing methodologies have been

recently reported. For instance, Itkonen compare the effectiveness to find defects

with tests based on exploratory tests [Itkonen et al., 2007]; while Lima compares

two test prioritisation techniques (Manual×Automatic) also using a latin square

design [Lima et al., 2009].

Finally, in our previous work [Accioly et al., 2012] we presented an empirical

study that aimed to bring evidence to help decision making in such contexts. We

replicated this study with different subjects and with a novel metric collection

procedure to have a better notion of what happens during the task of executing

tests and reporting CRs. The new results confirm the results achieved in the first

experiment.

5 Conclusions

In this paper we described our first study that compared two techniques used

to test SPL products (GT and ST) and extended it by presenting a second

experiment done with new subjects and that also brought new insights about

the impact that the different activities done during the process of testing can

have on productivity. Both experiments yielded similar results. Our conclusions

are that the ST can indeed improve the test execution process productivity by

reducing test execution time and invalid CR rates. Also, the higher number of

invalid CRs reported in the GT had no significant impact on time during the

test execution phase, but it can still have a negative impact to the development

team productivity.

637Accioly P., Borba P., Bonifacio R.: Controlled Experiments ...

We consider these studies as a first step towards understanding the impact

of adopting product specific test suites. For future works we intend to conduct

studies that evaluate these techniques using the point of view of the test design

process so that we can measure the effort of designing and maintaining generic

and product specific test suites.

Acknowledgments

We would like to thank our reviewers, the SPG members,3 Cristiano Ferraz,

CNPq and CAPES PROCAD Brazilian research funding agencies and INES,

grants 573964/2008-4 and APQ-1037-1.03/08, for partially supporting this work.

References

[Accioly, 2013] Accioly, P. (2013). Online appendix available at http://goo.gl/Brx3r.
[Accioly et al., 2012] Accioly, P., Borba, P., and Bonifacio, R. (2012). Comparing two
black-box testing strategies for software product lines. In Software Components Ar-
chitectures and Reuse (SBCARS), 2012 Sixth Brazilian Symposium on, pages 1–10.

[Bertolino, 2007] Bertolino, A. (2007). Software testing research: Achievements, chal-
lenges, dreams. In Future of Software Engineering. IEEE.

[Bertolino and Gnesi, 2003] Bertolino, A. and Gnesi, S. (2003). Use case-based testing
of product lines. In Proceedings of the 9th European software engineering conference
, Finland. ACM.

[Bonifácio and Borba, 2009] Bonifácio, R. and Borba, P. (2009). Modeling scenario
variability as crosscutting mechanisms. In Proceedings of the 8th International Con-
ference on Aspect-Oriented Software Development, USA. ACM.

[Buse et al., 2011] Buse, R. P. L., Sadowski, C., and Weimer, W. (2011). Benefits and
barriers of user evaluation in software engineering research. ACM SIGPLAN Notices.

[Denger and Kolb, 2006] Denger, C. and Kolb, R. (2006). Testing and inspecting
reusable product line components: first empirical results. In Proceedings of the
2006 ACM/IEEE international symposium on Empirical software engineering, Brazil.
ACM.

[Engström and Runeson, 2011] Engström, E. and Runeson, P. (2011). Software prod-
uct line testing - a systematic mapping study. Information and Software Technology,
53.

[Engström et al., 2008] Engström, E., Skoglund, M., and Runeson, P. (2008). Empir-
ical evaluations of regression test selection techniques: a systematic review. In Pro-
ceedings of the Second ACM-IEEE international symposium on Empirical software
engineering and measurement, Germany. ACM.

[Ganesan et al., 2007] Ganesan, D., Knodel, J., Kolb, R., Haury, U., and Meier, G.
(2007). Comparing costs and benefits of different test strategies for a software product
line: A study from testo ag. International Software Product Line Conference.

[Itkonen et al., 2007] Itkonen, J., Mantyla, M. V., and Lassenius, C. (2007). Defect de-
tection efficiency: Test case based vs. exploratory testing. In Proceedings of First In-
ternational Symposium on Empirical Software Engineering and Measurement, Spain.

[Jaring et al., 2008] Jaring, M., Krikhaar, R. L., and Bosch, J. (2008). Modeling vari-
ability and testability interaction in software product line engineering. In Proceedings
of the Seventh International Conference on Composition-Based Software Systems,
Spain. IEEE.

3 www.cin.ufpe.br/spg

638 Accioly P., Borba P., Bonifacio R.: Controlled Experiments ...

[Jedlitschka and Pfahl, 2005] Jedlitschka, A. and Pfahl, D. (2005). Reporting guide-
lines for controlled experiments in software engineering. In International Symposium
on Empirical Software Engineering, Australia.

[Juristo et al., 2004] Juristo, N., Moreno, A. M., and Vegas, S. (2004). Reviewing 25
years of testing technique experiments. Empirical Softw. Engg., 9.

[Käkölä and Dueñas, 2006] Käkölä, T. and Dueñas, J. C., editors (2006). Software
Product Lines - Research Issues in Engineering and Management. Springer.

[Kamsties et al., 2003] Kamsties, E., Pohl, K., Reis, S., and Reuys, A. (2003). Testing
variabilities in use case models. In 5th International Workshop on Product Family
Engineering, Italy.

[Lima et al., 2009] Lima, L., Iyoda, J., Sampaio, A., and Aranha, E. (2009). Test
case prioritization based on data reuse an experimental study. In Proceedings of the
3rd International Symposium on Empirical Software Engineering and Measurement,
USA.

[Machado et al., 2010] Machado, I. C., Neto, P. A. M. S., Santana, E., and Meira, S.
R. L. (2010). RiPLE-TE: A process for testing software product lines. In Proceedings
of the 23rd International Conference on Software Engineering Knowledge Engineer-
ing, USA.

[Nebut et al., 2003] Nebut, C., Pickin, S., Traon, Y., and Jèzèquel, J. (2003). Auto-
mated requirements-based generation of test cases for product families. In Automated
Software Engineering, 2003. Proceedings. 18th IEEE International Conference on.

[Neto et al., 2011] Neto, P. A. d. M. S., Machado, I. C., and McGregor, J. D. (2011). A
systematic mapping study of software product lines testing. Information & Software
Technology, 53(5).

[Neves et al., 2011] Neves, L., Teixeira, L., Sena, D., Alves, V., Kulezsa, U., and Borba,
P. (2011). Investigating the safe evolution of software product lines. In Proceedings
of the 10th International Conference on Generative Programming and Component
Engineering, USA. ACM.

[Olimpiew and Gomaa, 2005] Olimpiew, E. M. and Gomaa, H. (2005). Model-based
testing for applications derived from software product lines. In Proceedings of the 1st
international workshop on Advances in model-based testing, USA. ACM.

[Pohl and Metzger, 2006] Pohl, K. and Metzger, A. (2006). Software product line test-
ing. Commun. ACM, 49.

[Reuys et al., 2005] Reuys, A., Kamsties, E., Pohl, K., and Reis, S. (2005). Model-
based system testing of software product families. In Proceedings of the 17th Inter-
national Conference Advanced Information Systems Engineering, Portugal, volume
3520.

[Runeson, 2003] Runeson, P. (2003). Using students as experiment subjects - an anal-
ysis on graduate and freshmen student data. In Proceedings of the 7th International
Conference on Empirical Assessment in Software Engineering. Keele University, UK.

[Staron, 2007] Staron, M. (2007). Using students as subjects in experiments–A quan-
titative analysis of the influence of experimentation on students’ learning proces. In
CSEE&T. IEEE Computer Society.

[Tevanlinna et al., 2004] Tevanlinna, A., Taina, J., and Kauppinen, R. (2004). Product
family testing: a survey. ACM SIGSOFT Software Engineering Notes, 29(2).

[Wohlin et al., 2000] Wohlin, C., Runeson, P., and Höst, M. (2000). Experimentation
in Software Engineering. Kluwer Academic Publishers.

639Accioly P., Borba P., Bonifacio R.: Controlled Experiments ...

