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Abstract: Logics for time intervals provide a natural framework for dealing with time
in various areas of computer science and artificial intelligence, such as planning, natu-
ral language processing, temporal databases, and formal specification. In this paper we
focus our attention on propositional interval temporal logics with temporal modalities
for neighboring intervals over linear orders. We study the class of propositional neigh-
borhood logics (PNL) over two natural semantics, respectively admitting and exclud-
ing point-intervals. First, we introduce interval neighborhood frames and we provide
representation theorems for them; then, we develop complete axiomatic systems and
semantic tableaux for logics in PNL.

Categories: F.4.1 [Mathematical Logic and Formal Languages]: Temporal Logic; I.2.4
[Knowledge Representation Formalisms and Methods]: Temporal Logic

Keywords: Interval Temporal Logic, Axiomatic Systems, Tableau Systems

1 Introduction

Logics for time intervals provide a natural framework for dealing with time
in various areas of computer science and artificial intelligence, such as plan-
ning and natural language processing, where reasoning about time intervals
rather than time points is far more natural and closer to common sense (dif-
ferences and similarities between point-based and interval-based temporal logics
are systematically analyzed in [Ben91]). Various interval temporal logics have
been proposed in the literature. The most important propositional ones are
Halpern and Shoham’s Modal Logic of Time Intervals (HS) [HS91] and Ven-
ema’s CDT logic [Ven91], while relevant first-order interval logics are Zhou and
Hansen’s Neighborhood Logic (NL) [ZH98] and Moszkowski’s Interval Temporal
Logic (ITL) [Mos83]. (In [GMS03c] we survey the main developments, results,
and open problems on interval temporal logics and duration calculi.)
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HS features four basic operators: 〈B〉 (begin) and 〈E〉 (end), and their trans-
poses 〈B〉 and 〈E〉. Given a formula ϕ and an interval [d0, d1], 〈B〉ϕ holds at
[d0, d1] if ϕ holds at [d0, d2], for some d2 < d1, and 〈E〉ϕ holds at [d0, d1] if ϕ
holds at [d2, d1], for some d2 > d0. All other temporal operators corresponding
to Allen’s relations can be defined by means of the basic ones. In particular,
it is possible to define the (strict) after operator 〈A〉 (resp., its transpose 〈A〉)
such that 〈A〉ϕ (resp., 〈A〉ϕ) holds at [d0, d1] if ϕ holds at [d1, d2] (resp., [d2, d0])
for some d2 > d1 (resp., d2 < d0), and the sub-interval operator 〈D〉 such that
〈D〉φ holds at a given interval [d0, d1] if φ holds at a proper sub-interval [d2, d3]
of [d0, d1]. Complete axiomatic systems for HS with respect to several classes
of structures are given in [Ven90], while the undecidability of HS over various
linear orders has been proved in [HS91] by encoding the halting problem in it.
Venema’s CDT has three binary operators, namely, C (chop), D, and T , which
correspond to ternary interval relations occurring when an extra point is added
in one of the three possible distinct positions with respect to the two endpoints
of the current interval (between, before, and after), and a modal constant π
which holds over an interval [d0, d1] if d0 = d1. Axiomatic systems for CDT can
be found in [Ven91]. Since HS can be embedded into CDT, the undecidability
of the latter follows from that of the former. Furthermore, in [Lod00] Lodaya
shows that the fragment of HS that only contains 〈B〉 and 〈E〉, interpreted over
dense linear orders, is already undecidable. Since both 〈B〉 and 〈E〉 can be easily
defined in terms of C and π, it immediately follows that a logic only provided
with C and π is undecidable as well.

Zhou and Hansen’s NL features the two ‘expanding’ modalities ♦r and ♦l and
a special symbol l denoting the length of the current interval. Given a formula
ϕ and an interval [d0, d1], ♦rϕ holds at [d0, d1] if ϕ holds at [d1, d2], for some
d2 ≥ d1; ♦lϕ holds at [d0, d1] if ϕ holds at [d2, d0], for some d2 ≤ d0; and the
valuation of l over [d0, d1] is d1−d0. Some properties, applications, and extensions
of NL are given in [BZ97, Roy97], while a complete axiomatic system can be
found in [BRZ00]. NL undecidability can be easily proved by embedding HS in it.
Moszkowski’s ITL is a first-order interval logic providing two modalities, namely
© (next) and C. In ITL an interval is defined as a finite or infinite sequence
of states. Given two formulas ϕ, ψ and an interval s0, . . . , sn, ©ϕ holds over
s0, . . . , sn if ϕ holds over s1, . . . , sn, while ϕCψ holds over s0, . . . , sn if there exists
i, with 0 ≤ i ≤ n, such that ϕ holds over s0, . . . , si and ψ holds over si, . . . , sn.
Studies of axiomatic systems and completeness for fragments and extensions of
ITL include [Dut95, Gue00]. ITL has been proved to be undecidable even at
the propositional level by a reduction from the problem of testing the emptiness
of the intersection of two grammars in Greibach form [Mos83]. As a matter of
fact, the results given in [Lod00] prove the undecidability of (a variant of) ITL
with the C and the modal constant φ for point-intervals, interpreted over dense
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linear ordering. A decidable fragment of propositional ITL with quantification
over propositional variables has been obtained by imposing a suitable locality
constraint [Mos83]. Such a constraint states that each propositional variable is
true over an interval if (and only if) it is true at its first state. This allows one
to collapse all the intervals starting at the same state into the single interval
consisting of the first state only. By exploiting such a constraint, decidability of
Local ITL can be easily proved by embedding it into Quantified Propositional
Linear Temporal Logic.

In order to model duration properties of real-time systems, both NL and
ITL have been extended with a notion of ‘state variable’ that represents an
instantaneous observation of the system behavior. In particular, the Duration
Calculus (DC) extends ITL by adding temporal variables (also called state ex-
pressions) as integrals of state variables [ZH98, ZHR91, HZ97]. Temporal vari-
ables make it possible to represent the duration of intervals as well as numerical
constants. As an example [SRR90], the specification of the behavior of a gas
burner can include conditions as the following one: “for any period of 30 seconds
the gas may leak, that is, flow and not burn, only once and for 4 seconds at
most”. Such a condition is expressed by the DC formula: l > 30 ∨ ((

∫
(¬Gas∨

Flame) = l); (
∫
(Gas ∧ ¬Flame) = l ∧ l ≤ 4); (

∫
(¬ Gas ∨ Flame) = l)), where

Gas (the gas is flowing) and Flame (the gas is burning) are two state variables.
In [ZHS93] Zhou et al. show that DC is undecidable, the main source of undecid-
ability being the fact that state changes in real-time systems can occur at any
time point.

In this paper we study propositional interval neighborhood temporal logics,
the family of which we denote by PNL. Logics in PNL can express meaningful
timing properties, without being excessively expressive to an extent easily lead-
ing to high undecidability, a typical phenomenon for interval logics. They feature
two modalities which correspond to Allen’s meet and met by relations [All83],
intuitively capturing a right neighboring interval and a left neighboring inter-
val. There are two natural semantics for interval logics interpreted over linearly
ordered domains, namely a non-strict one, which includes intervals with coin-
cident endpoints (point-intervals), and a strict one, which excludes them and
was already studied in [AH85, Lad87]. To make it easier to distinguish between
the two semantics from the syntax, the modal operators ♦r and ♦l are used in
the case of non-strict propositional neighborhood logics, generically denoted by
PNL+, while for the strict ones, denoted by PNL−, ♦r and ♦l are replaced
by 〈A〉 and its transpose 〈A〉, respectively. While the logics in PNL+are built
on the propositional fragment of NL, those in PNL−can be viewed as based on
the AA-fragment of HS. In fact, the semantics of HS admits point-intervals and
hence, according to our classification, it is non-strict. However, the modalities
〈A〉 and 〈A〉 only refer to strict intervals, and thus the semantics of the fragment
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AA can be considered essentially strict.
The main contributions of the paper are: (i) representation theorems for

strict and non-strict interval neighborhood structures; (ii) complete axiomatic
systems for logics in PNL; (iii) complete semantic tableaux for PNL logics.
Unlike classical logic and most modal and temporal logics, where the first-order
axiomatic systems are obtained by extending their propositional fragments with
relevant axioms for the quantifiers, the first-order NL was axiomatized first,
without its propositional fragment having been identified. It now turns out that
the latter was hidden into the originally introduced first-order axiomatic system,
the propositional axioms of which, taken alone, are substantially incomplete. In
particular, a curious feature of NL is that while it can be finitely axiomatized, its
propositional fragment involves an infinite axiom scheme. The strict analogue,
however, is a finitely axiomatized subsystem of the latter. As for the tableaux,
there is no a straightforward way of adapting existing tableaux for point-based
propositional and first-order temporal logics to interval temporal logics [Wol85,
Eme90]. We develop an original tableau method for PNL logics which combines
features of classical first-order tableau and point-based temporal tableaux. (For
a detailed account of the existing tableau methods see [DGHP99].)

There are very few tableau methods for time interval logics and duration
calculi in the literature. In [BT03], Bowman and Thompson consider an exten-
sion of Local ITL, which, besides the chop operator C, contains a projection
operator proj and the modal constant π. They introduce a normal form for
the formulas of the resulting logic that allows them to exploit a classical tableau
method, devoid of any mechanism for constraint label management. In [CSdC00],
Chetcuti-Sperandio and Fariñas del Cerro identify a decidable fragment of DC,
which is expressive enough to model the above-given condition on the behavior
of a gas burner, that imposes no restriction on state expressions, but encom-
passes a proper subset of DC operators, namely, ∧ , ∨ , and C. The tableau
construction for the resulting logic combines application of the rules of classical
tableaux with that of a suitable constraint resolution algorithm and it essen-
tially depends on the assumption of bounded variability of the state variables.
Finally, tableau systems for the propositional and first-order Linear Temporal
Logic (LTL), which employ a mechanism for labeling formulas with temporal
constraints somewhat similar to ours, are given in [SGL97] and [CMP99], re-
spectively. The main differences between these tableau methods and ours are:
(i) they are specifically designed to deal with integer time structures (i.e., linear
and discrete) while ours is quite generic; (ii) LTL is essentially point-based, and
intervals only play a secondary role in it (viz., a formula is true on an interval
if and only if it is true at every point in it), while in our systems intervals are
primary semantic objects on which the truth definitions are entirely based; (iii)
the closedness of a tableau is defined in terms of unsatisfiability of the associated
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set of temporal constraints, while in our system it is entirely syntactic.

The rest of the paper is organized as follows. In Section 2 we introduce interval
neighborhood frames and structures; then, in Section 3 we provide representation
theorems for both strict and non-strict semantics. In Section 4 we give syntax
and semantics of PNL, and in Section 5 we define various logics in this class.
In Section 6 we briefly discuss the expressive power of PNL and we give some
examples of its use. Sections 7 and 8 are devoted to the axiomatic systems and
respective completeness theorems for both semantics. In Section 9 we develop
semantic tableaux for PNL logics, and prove their soundness and completeness.
In the last section we provide an assessment of the work done and we briefly
discuss our ongoing research on PNL.

2 Interval Neighborhood Frames and Structures

In this section, we introduce the basic notions of interval neighborhood frame
and structure.

Definition 1. A neighborhood frame is a triple F = 〈I, R, L〉 where I is a
non-empty set and R,L are binary relations on I.

For every sequence S1, ..., Sk ∈ {R,L}, we denote the composition of the relations
S1, ..., Sk by S1...Sk. Also, we put:

BF = {w ∈ I | there is no v ∈ I such that wLv},

B2
F = {w ∈ I | there are no u, v ∈ I, with u 
= v, such that wLv and wLu},

EF = {w ∈ I | there is no v ∈ I such that wRv}, and

E2
F = {w ∈ I | there are no u, v ∈ I, with u 
= v, such that wRv and wRu}.

Consider the following conditions:

(NF1) R and L are mutually inverse;

(NF2) ∀x∀y(∃z(xLz∧zRy)→ ∀z(xLz→ zRy)) and
∀x∀y(∃z(xRz∧zLy)→∀z(xRz → zLy));

(NF3) RL ⊆ LRR∪LLR∪E on I−B2
F and LR ⊆ RLL∪RRL∪E on I−E2

F,
where E is the equality, that is,

∀x∀y(∃z∃u(xLz ∧ zLu)∧∃z(xRz∧zLy) →x = y∨
∃w∃z((xLw∧wRz∧ zRy)∨ (xLw∧wLz∧zRy)))
and

∀x∀y(∃z∃u(xRz ∧ zRu)∧ ∃z(xLz ∧zRy) →x = y∨
∃w ∃z((xRw ∧wLz ∧ zLy)∨(xRw∧wRz∧ zLy)));
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(NF4) RRR ⊆ RR, i.e. ∀w∀x∀y∀z(wRx∧xRy∧yRz → ∃u(wRu∧uRz)).

Definition 2. An interval neighborhood frame is a neighborhood frame F =
〈I, R, L〉 satisfying the conditions NF1,. . . ,NF4.

Note that, assuming NF1, NF4 is equivalent to

∀w∀x∀y∀z(wLx ∧ xLy ∧ yLz → ∃u(wLu ∧ uLz)).

Definition 3. An interval neighborhood frame F = 〈I, R, L〉 is said to be:

– strict, if the relation LRR is irreflexive, and non-strict if the relation LRR
is reflexive (note that ‘not strict’ does not imply ‘non-strict’);

– open, if it satisfies the condition ∀x(∃y(xLy)∧∃y(xRy));

– rich, if it satisfies the condition ∀x(∃y(xRy∧yRy) ∧ ∃y(xLy∧yLy));

– normal, if it satisfies the condition
∀x∀y(∀z(zRx ↔ zRy)∧∀z(zLx↔ zLy)→x = y);

– tight, if it satisfies the condition ∀x∀y((xRRy ∧ yRRx)→x = y);

– weakly left-connected (resp., weakly right-connected) if the relation
LR ∪ LRR ∪ LLR (resp., RL ∪ RRL ∪ RLL) is an equivalence relation on
I− BF (resp., I− EF); left-connected (resp., right-connected) if that
relation is the universal relation on I− BF (resp., I− EF);

– weakly connected if each of the relations LR ∪ LRR ∪ LLR and RL ∪
RRL ∪ RLL is an equivalence relation on I; connected, if each of these
relations is the universal relation on I.

Now, consider the following definitions:

(NF5) NF2 implies LRL ⊆ L and RLR ⊆ R, that is,
∀x∀y((xLRLy → xLy) ∧ (xRLRy → xRy));

(NF6) assuming NF2, normality implies
∀x∀y(∃z(zRx ∧ zRy) ∧ ∃z(zLx ∧ zLy) → x = y), that is,
∀x∀y(xLRy ∧ xRLy → x = y).
Assuming also openness, normality becomes equivalent to that condition;

(NF7) in every non-strict interval neighborhood frame, RR = RRR and LL =
LLL;

(NF8) every rich interval neighborhood frame is non-strict and open;
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(NF9) every non-strict interval neighborhood frame is weakly connected. Every
strict interval neighborhood frame is weakly left- and right-connected;

(SNF) in every strict interval neighborhood frame each of L, R, LLR, RRL,
and RLL is irreflexive, too;

(NNF) an interval neighborhood frame is non-strict iff either of LRR ∪ LLR
and RLL ∪RRL is an equivalence relation on I.

Proposition 4. NF5, NF6, NF7, NF8, SNF, and NNF are consequences of the
definitions.

Eventually, we are interested in concrete interval neighborhood structures.

Definition 5. If 〈D, <〉 is a linearly ordered domain, an interval in D is a pair
[d0, d1] such that d0, d1 ∈ D and d0 ≤ d1. [d0, d1] is a strict interval if d0 < d1,
while it is a point interval if d0 = d1.

Definition 6. A non-strict interval neighborhood structure is a neighbor-
hood frame 〈I(D)+, R, L〉, where I(D)+ is the set of all intervals over some linear
ordering 〈D, <〉 and R,L are mutually inverse binary relations over I(D)+ such
that vRw holds if and only if w is a right neighbor of v, i.e. v = [d0, d1] and
w = [d1, d2] for some d0, d1, d2 ∈ D. Then v is said to be a left neighbor of
w. The substructure of the interval neighborhood structure 〈I(D)+, R, L〉 con-
taining only the strict intervals will be called strict interval neighborhood
structure, denoted by 〈I(D)−, R, L〉.

Proposition 7. Every strict (resp., non-strict) interval neighborhood structure
is a strict (resp., non-strict) interval neighborhood frame.

Proof. Straightforward. ��

If a linear order 〈D, <〉 has a particular property (i.e. it is dense, discrete,
unbounded, etc.), we say that the interval neighborhood structure based on it
has that property.

3 Representation Theorems for Interval Neighborhood
Frames

In this section, we provide representation theorems for both strict and non-strict
semantics (as for the strict case, it must be noted that similar representation
results can be found in [Lad87]).

Theorem8 (Non-strict Representation Theorem). If F is a tight, rich,
connected, and normal interval neighborhood frame, then F is isomorphic to a
non-strict interval neighborhood structure.
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Proof. Let F = 〈I, R, L〉 be a tight, rich, connected, and normal interval neigh-
borhood frame. We construct an underlying linear ordering for F and then we
show that F is isomorphic to the non-strict interval neighborhood structure over
that ordering.

Let P(I)= {u ∈ I|uRu}. Note that P(I) is non-empty and uLu for every
u ∈ P(I). We will show that for every u, v ∈ P(I),

uLRv iff u = v.

Indeed, uLuRu, i.e. uLRu. Conversely, let uLRv. Note that, by NF5, LR is an
equivalence relation on P(I). Furthermore, if uLRv then uRuLRv, i.e. uRLRv,
so uRv, hence uRLv and so, likewise, uLv. Now, for every w, vRw implies
uRLRw, hence uRw. Likewise, uRw implies vRw. Analogously, uLw implies
vLw and vice versa. Then, by normality, u = v. From this, it follows that for
every w ∈ I there is a unique v ∈ P(I), hereafter denoted by b(w), such that
wLv. Likewise, there is a unique v ∈ P(I), hereafter denoted by e(w), such that
wRv. We now define a relation � on P(I) as follows:

u � v iff uRRv.

The relation � is a linear ordering on P(I): reflexivity is obvious, transitivity
follows from NF7 and NF8, and anti-symmetry follows from tightness. As for the
linearity: for any u, v ∈ P(I), uLRRv or uLLRv since LRR∪LLR is the universal
relation on I. Suppose uLRRv. Then uRuLRRv, i.e., uRLRRv, hence uRRv,
i.e., u � v. Likewise, if uLLRv then uLLv, hence vRRu, i.e., v � u. Note that
for every w ∈ I, b(w)RwRe(w), hence b(w) � e(w). Now, we define a mapping
µ from I to the non-strict interval neighborhood structure 〈I+(P(I)),L,R〉 over
〈P(I),�〉 as follows:

µ(w) = (b(w), e(w)).

1. µ is an injection. If µ(w1) = µ(w2), then let b(w1) = b(w2) = b and
e(w1) = e(w2) = e. Then, for every x ∈ I, w1Rx implies w2Re(w2)(=
e(w1))Lw1Rx, i.e., w2RLRx, hence w2Rx. Likewise, w2Rx implies w1Rx.

Analogously, w1Lx iff w2Lx. Then, by normality, w1 = w2.

2. µ is onto. If u, v ∈ P(I) and u � v, then uRRv, i.e., uRwRv for some w ∈ I
and hence µ(w) = (u, v).

3. µ is an isomorphism. If w1Rw2, then e(w1)Re(w1)Lw1Rw2, that is, e(w1)
RLRw2. Hence e(w1)Rw2, and thus e(w1) = b(w2) by uniqueness of b(w2).
It follows that µ(w1)Rµ(w2). Conversely, if µ(w1)Rµ(w2), then w1Re(w1)L
e(w1) (= b(w2))Rw2, i.e., w1 RLRw2, and hence w1Rw2. Likewise, w1Lw2

iff µ(w1) L µ(w2).

This completes the proof. ��
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Theorem9 (Strict Representation Theorem). We have that:

1. Every weakly connected, strict and normal interval neighborhood frame is
isomorphic to a strict interval neighborhood structure;

2. Every connected, open, strict and normal interval neighborhood frame is iso-
morphic to a strict unbounded interval neighborhood structure.

Proof. We prove 2 (the proof can be easily modified for 1). Let F− = 〈I, R, L〉 be
a connected, open, strict, and normal interval neighborhood frame. We construct
an underlying point-based linear ordering and we show that F− is isomorphic
to the strict unbounded interval neighborhood structure over that ordering.

First, for every w ∈ I, we define [w]b = {v ∈ I | wLRv} and [w]e = {v ∈ I |
wRLv}. By NF5, we have that LRL ⊆ L and RLR ⊆ R. Hence, the relations LR
and RL are equivalence relations in I, and thus the sets Pb = {[w]b | w ∈ I} and
Pe = {[w]e | w ∈ I} are partitions of I. Now, we define the mapping θ : Pe �→ Pb

as follows:
θ([w]e) = [v]b where wRv.

First, note that the definition is correct: if [w1]e = [w2]e, [v1]b = [v2]b, and w1Rv1
then w2RLRLRv2. By NF5, we obtain w2RLRv2 and thus w2Rv2 by NF5 again.
Then, θ is a function: if wRv1 and wRv2 then v1LRv2, i.e., [v1]b = [v2]b; also,
if wRv and w1 ∈ [w]e, then w1RLw. Hence w1RLRv, and thus w1Rv. Further-
more, θ is a bijection between Pe and Pb. Indeed, if θ([w1]e) = θ([w2]e) = [v]b,
then w1Rv and w2Rv, and hence w1RLw2, i.e., [w1]e = [w2]e. The surjectivity
immediately follows from the definition of Pb. From now on, we will identify Pe

with Pb via θ and we will only deal with Pb. We define a relation < on Pb as
follows:

[w]b < [v]b iff wLRRv.

Correctness of the definition: if [w1]b = [w2]b, [v1]b = [v2]b, and w1LRR v1, then
w2LRw1LRRv1LRv2, i.e., w2(LRL)R(RLR)v2, and thus w2LRRv2 by NF5.
Now we show that the relation < is a strict linear ordering on Pb:

1. Irreflexivity holds because F− is strict.

2. Transitivity: let w1LRRw2LRRw3, i.e., w1LR(RLR)Rw3. Hence, we have
that w1 LRRRw3 by NF5, and thus w1 LRRw3 by NF4.

3. Linearity: we have to show that for every [w]b, [v]b ∈ Pb, [w]b < [v]b or
[w]b = [v]b or [v]b < [w]b, i.e., wLRRv or wLRv or vLRRw, that is, wLLRv,
which is precisely the connectedness condition on F−.

Note that 〈Pb, <〉 is open: for every [w]b ∈ Pb there exists v ∈ I such that
vRw and there exists u ∈ I such that vLu. Hence, vLRRw, i.e., [v]b < [w]b.
Likewise, there exists [v]b such that [w]b < [v]b. It remains to show that the
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strict interval structure on 〈Pb, <〉 is isomorphic to F−. The isomorphism is
given by the mapping µ : F− �→ I(Pb)− determined by

µ(w) = ([w]b, θ([w]e)).

Let θ([w]e) = [v]b where wRv. We have that wLRRv, and thus [w]b < [v]b.
Hence, µ associates intervals from I(Pb)− with every w ∈ F−. Now, if [w1]b =
[w2]b and θ([w1]e) = θ([w2]e), then w1LRw2, and w1Rv1 and w2Rv2, for v1, v2
such that [v1]b = [v2]b and thus v1LRv2. Hence w1RLRLw2, and thus w1RLw2

by NF5. From w1LRw2 and w1RLw2, it follows that w1 = w2 by NF6, that
is, NF2 plus normality. Finally, for every interval ([w]b, [v]b) in I(Pb)−, we have
[w]b < [v]b, i.e., wLRRv, and thus wLRu and uRv for some u ∈ F−. Then
[u]b = [w]b and θ([u]e) = [v]b, i.e., ([w]b, [v]b) = µ(u). Thus, µ is an isomorphism
and the proof is completed. ��

4 Propositional Neighborhood Logics: Syntax and Semantics

The language L+ for the class PNL+ of non-strict propositional neigh-
borhood logics contains a set of propositional variables AP, the propositional
logical connectives ¬ and →, and the modalities �r and �l, the dual operators
of which will be denoted by ♦r and ♦l, respectively. The remaining classical
propositional connectives, as well as the logical constants � (true) and ⊥ (false),
can be considered as abbreviations.

The formulas of PNL+, denoted by φ, ψ, . . ., are recursively defined as
follows:

φ = p | ¬φ | φ∧ψ | �rφ | �lφ.

The language L− for the class PNL− of strict propositional neighbor-
hood logics differs from L+ only in the notation for the modalities, now denoted
by [A] and [A], with dual operators 〈A〉 and 〈A〉, respectively. The formulas of
PNL− are defined as follows:

φ = p | ¬φ | φ∧ψ | [A]φ | [A]φ.

We use different notations for the modalities in L+ and L− only to reflect
their historical links and to make it easier to distinguish between the two se-
mantics from the syntax. Clearly, there is a straightforward translation between
the two languages.

The semantics of a propositional neighborhood logic is given in non-strict or
strict models, respectively based on non-strict and strict interval neighborhood
frames and equipped with a valuation function for the propositional variables.
Valuation functions are defined as V : I �→ 2AP in such a way that, for any
p ∈ AP and w ∈ I, if p ∈ V (w), then p is true over w, otherwise it is false.
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Satisfiability at an interval w ∈ I in a non-strict (resp., strict) model M is
defined by induction on the structure of the formulas:

1. M, w � p iff p ∈ V (w), for all p ∈ AP;

2. M, w � ¬ψ iff it is not the case that M, w � ψ;

3. M, w � φ∧ψ iff M, w � φ and M, w � ψ;

4. M, w � �lφ (resp., [A]φ) iff for every interval v such that wLv we have
M, v � φ;

5. M, w � �rφ (resp., [A]φ) iff for every interval v such that wRv we have
M, v � φ.

We will also take into consideration the extension of logics in PNL+ with
the modal constant π:

6. M+, w � π iff w is a point-interval.

Finally, the relevant notion of p-morphism between (non-strict or strict)
models for PNL is defined in a standard way, and it satisfies the usual truth-
preservation property well-known from modal/temporal logics (see e.g. [Ben91]).

5 Some Propositional Neighborhood Logics

The logics of the (valid formulas in the) classes of all non-strict, respectively
strict, interval neighborhood structures will be denoted by PNL+, respectively
PNL−. Besides the valid formulas in the class of all interval neighborhood struc-
tures, we will be interested in some natural subclasses of non-strict or strict
interval structures:

– the unbounded linear orderings, denoted by u;

– the dense linear orderings (between every two different points there is a
point), denoted by de;

– the discrete linear orderings (every point having a successor, respectively,
a predecessor, has an immediate one), denoted by di;

– the Dedekind complete linear orderings (where every non-empty and
bounded above set of points has a least upper bound), denoted by c;

– the unbounded and dense linear orderings, denoted by ude;

– the unbounded and discrete linear orderings, denoted by udi;
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– the unbounded and Dedekind complete linear orderings, denoted by
uc.

The logics of these classes will be denoted accordingly: in the class PNL+ by
PNLλ+ and in the class PNL− by PNLλ−, where λ ∈ {u,de,di, c,ude,udi,uc}.
For example, the logic PNLudi+ is the logic of the valid formulas in all non-strict
unbounded and discrete neighborhood structures. Furthermore, the logic PNL+

(resp., PNLλ+) endowed with π will be denoted by PNLπ+ (resp., PNLλπ+).

Consider the following formulas:

(A-SNFur) [A]p→〈A〉p (or, equivalently, 〈A〉�);

(A-SNFder) (〈A〉〈A〉p→〈A〉〈A〉〈A〉p) ∧ (〈A〉[A]p→〈A〉〈A〉[A]p);

(A-SNFaux) 〈A〉�→〈A〉〈A〉�;

(A-SNFdir) ([A]⊥ → [A]([A][A]⊥∨ 〈A〉(〈A〉� ∧ [A][A]⊥)))∧
((〈A〉� ∧ [A](p ∧ [A]¬p ∧ [A]p)) → [A][A]〈A〉(〈A〉¬p ∧ [A][A]p));

(A-SNFc) 〈A〉〈A〉[A]p∧〈A〉[A] ¬[A]p →〈A〉(〈A〉[A] [A]p∧[A]〈A〉¬[A]p).

Proposition 10. In the strict semantics:

1. The class of all unbounded structures is defined by the formula A-SNFur and
its inverse A-SNFul (let A-SNFu be A-SNFur ∧ A-SNFul).

2. The class of all dense structures, extended with the 2-element linear order-
ing1, is defined by the formula A-SNFder and its inverse A-SNFdel or, alter-
natively, the formula A-SNFaux (let A-SNFde be A-SNFder ∧ A-SNFdel).

3. The class of all discrete structures is defined by the formula A-SNFdir and
its inverse A-SNFdil (let A-SNFdi be A-SNFdir ∧ A-SNFdil).

4. The class of all Dedekind complete structures is defined by the formula A-
SNFc.

5. The class of all unbounded and dense structures is defined by the formulas
A-SNFur, A-SNFder, and their inverses A-SNFul, A-SNFdel.

6. The class of all unbounded and discrete structures is defined by the formulas
A-SNFur, A-SNFdir, and their inverses A-SNFul, A-SNFdil.

7. The class of all unbounded and Dedekind complete structures is defined by
the formulas A-SNFur and its inverse A-SNFul, and A-SNFc.

Proof. Sketch:
1 The 2-element linear ordering cannot be separated in the language of PNL−.
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1. Straightforward.

2. The formula A-SNFder says that every interval with a left neighbor can be
split into two sub-intervals. In addition, A-SNFaux guarantees that if there
are at least 2 intervals (i.e., at least 3 points), then the left-most interval, if
there is one, can be split into two sub-intervals, too.

3. The formula A-SNFdir (resp. A-SNFdil) says that every point which has a
successor (resp. predecessor) has an immediate one.

4. The formula A-SNFc says that every non-empty and bounded above set of
points has a least upper bound. ��

Proposition 11. The above-defined logics satisfy the following relations:

1. For every λ1, λ2 ∈ {u, de, di, c, ude, udi, uc}, PNLλ1−�PNLλ2− if and only
if the class of linear orders characterized by the condition λ2 is strictly con-
tained in the class of linear orders characterized by the condition λ1;

2. PNLude−�PNL+, where the inclusion is in terms of the obvious translation
between the two languages.

3. PNL+ = PNLu+ = PNLde+ = PNLude+ = PNLdi+ = PNLudi+.

Proof. Sketch:

1. First, PNL−�PNLu− because the formula A-SNFu ∈ PNLu− − PNL−. Like-
wise, PNLde−�PNLude−. PNL−�PNLde− because the formula A-SNFde ∈
PNLde− − PNL−, since it is valid in every strict and dense neighborhood
structure, but e.g. not in the one based on Z. Likewise, PNLu−�PNLude−.
PNL−�PNLdi− because the formula A-SNFdi ∈ PNLdi− − PNL−, since it is
valid in every strict and discrete neighborhood structure, but not in the one
based on Q. Likewise, PNLu−�PNLudi−. PNL−�PNLc− because the for-
mula A-SNFc ∈ PNLc− − PNL−, since it is valid in every Dedekind-complete
strict neighborhood structure, but not in the one based on Q. Finally, we
have that PNLdi−�PNLudi−, PNLu−�PNLuc−, and PNLc−�PNLuc−.

2. Every PNL+-formula satisfiable in a model M+ over non-strict neighborhood
structure is satisfiable in a dense and unbounded strict one. Indeed, replacing
every point in M+ by a copy of Q produces a dense and unbounded strict
model M−∗ such that M+ is a p-morphic copy of M−∗.

3. Essentially the same construction works for the equalities PNL+ = PNLu+

= PNLde+ = PNLude+, but now we take the non-strict version of M∗. For
the equality PNL+ = PNLudi+, we can similarly replace every point in M by
a copy of Z, and thus produce an unbounded and discrete non-strict model
which maps p-morphically onto M. ��
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Figure 1: Relative expressive power of PNL logics.

It is worth noting that the logic PNLudi− does not yet characterize the in-
terval structure of the integers, because the formula

〈A〉p∧[A](p→〈A〉p)∧[A][A](p→〈A〉p)→[A]〈A〉〈A〉p

is valid in the integers, but not in PNLudi− since it fails in a PNLudi−-model
based on Z+ Z.

The above proposition shows that there is a collapse of the expressiveness in
the non-strict semantics, while the strict one is at least as expressive as the point-
based temporal logic over linear orders. The situation is graphically depicted in
Figure 1, where λ ∈ {u, de, di, ude, udi}.

6 Expressing Timing Properties in PNL

Here we give some simple examples of properties that can be expressed in PNL.
First of all, note that PNL−, besides distinguishing among different properties
of the underlying linear order, is powerful enough to express the difference
operator:

D(q) ≡ [A][A][A]q∧[A][A][A]q∧[A][A][A]q∧[A][A][A]q,

and consequently to simulate nominals: n(q) ≡ q∧[
=](¬q), that is, to express
the fact that q holds in the current interval and nowhere else. Therefore, every
universal property of strict interval structures can be expressed in PNL−.

The following more practical examples are borrowed from typical applica-
tion domains in Artificial Intelligence. As a first example, consider the case of
a robot that, in order to accomplish a given goal, must pick a finite set of ob-
jects a1, a2, . . . , an in whatever order. Moreover, assume that the robot cannot
pick up more than one object at a time. Such a scenario can be modeled as
follows. Let the propositional variable pai

, with 1 ≤ i ≤ n, denote the action
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“the robot is picking up the objects ai” and the propositional variable hai1 ,...,aik
,

with aij
∈ {a1, . . . , an} and 1 ≤ k ≤ n, denote the state “the robot holds the

objects ai1 , . . . , aik
”. The constraint that picking up and holding each object is a

necessary pre-condition of any situation in which the robot simultaneously holds
all objects can be expressed in PNL+ as follows:

ha1,...,an
→ ♦l♦l(pa1 ∧ ♦rha1) ∧ . . . ∧ ♦l♦l(pan

∧ ♦rhan
)

Note that such a formulation does not constrain “picking up” actions to be
instantaneous. However, such a condition can be easily expressed in PNLπ+:

ha1,...,an
→ ♦l♦l(pa1 ∧ π ∧ ♦rha1) ∧ . . . ∧ ♦l♦l(pan

∧ π ∧ ♦rhan
).

As another example, we note that both PNL+ and PNL− allows one to define
an interval version of the until operator by means of the formulas

φ♦uψ ≡ ♦r(φ∧♦rψ) and φ〈U〉ψ ≡ 〈A〉(φ∧〈A〉ψ),

respectively. Such an operator can be used to express conditions of the form
“The flight from Milano to Johannesburg initiates a period of time during which the

traveler is in Johannesburg” as follows:

Milano-to-Johannesburg〈U〉Stay-in-Johannesburg.

Moreover, in PNLπ+ one can express the constraint that “the non-instantaneous

period of time during which the light is on is initiated (resp. terminated) by an

instantaneous action of switch on (resp. switch off)” as follows:

Switch-On ∧ π ∧ ((Light-On ∧ ¬π)♦u(Switch-Off ∧ π)).

As a matter of fact, the proposed interval version of the until operator suffers
from some limitations. In particular, to obtain a decomposable version of it we
should force homogeneity either implicitly (via the assumption of the homogene-
ity principle [AF94]) or explicitly (by means of sub-interval operators). Besides
the well-known fields of planning and natural language processing, successful ap-
plications of interval temporal logics can be found in the areas of digital system
design and verification [Mos83] and of model validation phase support [PPH98].
As for Moszkowski’s ITL, the logic PNLdiπ+ can be exploited to express various
interesting statements about digital systems. As an example, one can constrain
“the output q of a device to strictly follow the input p” (being p and q two non-
instantaneous states of the device) as follows:

(¬π ∧ p) → (¬π♦u(¬π ∧ q)).

Other useful statements about digital systems can be captured by exploiting the
difference operator. As for the model validation task, interval temporal logics
have been used to keep significantly low the number of states to be checked in
HSTS Planner, a model-based planning system of the Remote Agent autonomous
system architecture [PPH98].

1151Goranko V., Montanari A., Sciavicco G.: Propositional Interval Neighborhood ...



7 Axiomatic Systems for PNL+

7.1 An Axiomatic System for PNL+

We propose the following axioms for PNL+, where the inverse of a formula is
obtained by interchanging �r and �l:

(A-NT) enough propositional tautologies;

(A-NK) the K axioms for �r and �l;

(A-NNF0) �rp→♦rp, and its inverse;

(A-NNF1) p→�r♦lp, and its inverse;

(A-NNF2) ♦r♦lp→�r♦lp, and its inverse;

(A-NNF3) �r♦lp→♦l♦r♦rp∨♦l♦l♦rp, and its inverse;

(A-NNF4) ♦r♦r♦rp→♦r♦rp, and its inverse;

(A-NNF∞) �rq∧♦rp1∧ . . .∧♦rpn→♦r(�rq∧♦rp1∧ . . .∧♦rpn), and its in-
verse, for each n ≥ 1.

The rules of inference are, as usual, Modus Ponens, Uniform Substitution,
and �r and �l Generalization.

Proposition 12. A neighborhood frame F+ = 〈I, R, L〉 is an interval neighbor-
hood frame if and only if the axioms A-NNF1,. . . ,A-NNF4 are valid in F+.

Proof. It is simple to check that the axioms A-NNF1, . . . , A-NNF4 modally
define the semantic conditions NF1-NF4 in the non-strict semantics. ��

We show that the given axiomatic system for PNL+ is sound and complete.

Lemma13. The following formulas and their inverses are derivable in PNL+:

1. ♦rp→�r�l♦rp;

2. ♦r♦l♦rp→♦rp;

3. ♦l♦rp→♦r♦l♦lp∨♦r♦r♦lp.

Proof. For 1, use A-NNF1 and A-NNF2. For 2, observe that PNL+� ♦r♦l♦rp→
♦r�l♦rp by Axiom A-NNF2 (and Axiom A-NNF0), hence PNL+� ♦r♦l♦rp→
♦rp by Axiom A-NNF1. Finally, 3 follows from A-NNF2 and A-NNF3. ��

Lemma14. Let M+∗ = 〈I∗, R∗, L∗, V ∗〉 be any generated sub-model of the
canonical model for PNL+ and let w ∈ I∗. Then there is wb ∈ I∗ such that
{φ | �lφ ∈ w}∪ {♦lψ | ♦lψ ∈ w}∪ {�lξ | �lξ ∈ w} ⊆ wb, and we ∈ I∗ such that
{φ | �rφ ∈ w} ∪ {♦rψ | ♦rψ ∈ w} ∪ {�rξ | �rξ ∈ w} ⊆ we.
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Proof. It suffices to show that the set Γ = {φ | �lφ ∈ w} ∪ {♦lψ | ♦lψ ∈ w} ∪
{�lξ | �lξ ∈ w} is PNL+-consistent. Suppose otherwise. Then for some φ such
that �lφ ∈ w, �lξ ∈ w, and {♦lψ1, . . .♦lψn} ⊆ w, the set {φ,♦lψ1, . . .♦lψn,

�lξ} is PNL+-inconsistent, i.e., PNL+� φ→¬(�lξ∧♦lψ1∧ . . .∧♦lψn). Hence
PNL+� �lφ→�l¬(�lξ∧♦lψ1∧ . . .∧♦lψn). Thus �l¬(�lξ∧♦lψ1∧ . . .∧♦lψn) ∈
w, i.e., ¬♦r(�lξ∧♦lψ1∧ . . .♦lψn) ∈ w. On the other hand, ♦l(�lξ ∧ ♦lψ1 ∧ . . .∧
♦lψn) ∈ w by A-NF∞, which is a contradiction. Thus, Γ is contained in a max-
imal PNL+-consistent set wb in I∗. The existence of we is proved likewise. ��

Theorem15 (Soundness and Completeness). PNL+ is (sound and) com-
plete for the class of all non-strict interval neighborhood structures.

Proof. Soundness is straightforward. Note that the truth of most axioms, in-
cluding the axiom scheme A-NNF∞, hinges on the inclusion of point intervals.

For the completeness, we take any PNL+-consistent formula φ. It is satis-
fied at the root w of some generated sub-model M+ of the canonical model
for PNL+. Regarding that generated sub-model as a first-order structure of
the language with =, R, L, and unary predicates corresponding to the atomic
propositions occurring in φ, we take (using the Downwards Löwenheim-Skolem
theorem) a countable elementary substructure M+∗ of M+ containing w. Let
M+∗ = 〈F+∗

, V ∗〉, where F+∗ = 〈I∗, R∗, L∗〉. The elements of I∗ will henceforth
be called ‘intervals’. Note that M+∗

, w � φ since truth of an interval formula at
a given interval of a given PNL+-model is a first-order property. Furthermore,
Lemma 14 implies the truth of the first-order formulas ∀x(∃y(xLy∧∀t(xLt ↔
yLt))) and ∀x(∃z(xRz∧∀t(xRt↔ zRt))) in M+ and hence in M+∗. Thus, with
every interval v, M+∗ contains intervals vb and ve satisfying the conditions of
Lemma 14. Note also that the ‘point intervals’ in M+∗ are distinguished by be-
ing both R∗ -reflexive and L∗-reflexive. (In fact, one reflexivity implies the other
since R∗ and L∗ are mutually inverse.)

Now, let wb and we be as in Lemma 14. We are going to build step-by-step
an interval neighborhood structure, mapping p-morphically over F+∗. We will
inductively define a chain of interval neighborhood structures F+

0 ⊆ . . .F+
n ⊆ . . .,

where F+
n = 〈I(D)n, Rn, Ln〉, and a sequence of mappings fn : F+

n �→ F+∗,
for n = 0, 1, 2, . . ., satisfying the conditions: (i) yRnz→fn(y)R∗fn(z), and (ii)
yLnz→fn(y)L∗fn(z), as follows. Let D0 = {d0, d1}, with d0 < d1. R0 and L0 are
standard right neighbor and left neighbor relations on I(D)+0 . f0([d0, d1]) = w,
f0([d0, d0]) = wb, and f0([d1, d1]) = we. Clearly, the function f0 preserves the
right and left neighbor relations.

Suppose now that F+
n and fn are defined and satisfy the conditions (i) and

(ii). Let Dn = {d0, . . . , dn}, where d0 < . . . < dn. In general, fn is not a p-
morphism from F+

n to F+∗ because there are p-morphism defects in F+
n which

we will have to repair during the construction, viz.: the image under fn of an
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interval [dk, dm] in F+
n has a right neighbor (resp., a left neighbor) v in F+∗,

which is ‘missing’ in F+
n , i.e., v is not an fn-image of any interval from I(D)+n ,

related likewise to [dk, dm]. Let all possible defects, i.e., pairs of neighboring
intervals from F+∗ (which are countably many since F+∗ is countable), each
repeated countably many times, be listed in a sequence D = {δn}n<ω, and let δ
be the first one in the sequence, which has not been dealt with yet, and which
occurs in F+

n . We are going to expand F+
n to F+

n+1 in such a way that the defect
δ will be fixed.

Suppose that δ relates the (image of the) interval [dk, dm] from F+
n and, say,

a right neighbor v of fn([dk, dm]) in F+∗, which is not an image of any interval
from F+

n . (In particular, that means that fn([dk, dm]) 
= v.) We then extend F+
n

to F+
n+1 with a new point dh and fn to fn+1 so that fn+1([dm, dh]) = v . We must

still find an appropriate place of dh in the linear ordering Dn and define fn+1 over
all other intervals with an endpoint dh in a way which preserves the neighborhood
relations. Note that fn([dk, dm])R∗R∗L∗v, hence fn([d0, dm])R∗R∗R∗L∗v, and so
fn([d0, dm])R∗R∗L∗v by axiom A-NNF4. Let dm+i be the greatest element of F+

n

such that fn([d0, dm+i]) R∗R∗L∗v. Then, for each j = 0, . . . ,m + i, fn([d0, dj ])
R∗R∗L∗ fn([d0, xm+i]), so fn([d0, dj ]) R∗R∗L∗R∗R∗L∗v, and hence fn([d0, dj ])
R∗R∗L∗v by Lemma 13 (part 2) and axiom A-NF4. Therefore, for each j =
0, . . . ,m+ i, there is wj ∈ F+∗ such that fn([d0, dj ])R∗wj and wjR

∗L∗v.
We now place dh between dm+i and dm+i+1 (if m + 1 ≤ n, otherwise we

place dh to the right of dn) and extend fn over all new intervals as follows. First,
we put fn+1([dm, dh]) = v. Then, for each j = 1, . . . ,m + i, j 
= m, we define
fn+1([dj , dh]) = wj . For j > m+ i, it is not the case that fn([dm, dj ])R∗R∗L∗v
(otherwise, fn([d0, dj ])R∗R∗L∗v). On the other hand, fn([dm, dj ])L∗R∗v be-
cause fn([dm, dj ])L∗fn([dk, dm]) and fn([dk, dm])R∗v by assumption. Then, by
Lemma 13 (part 3), fn([dm, dj ])R∗L∗L∗v. Therefore, there exists wj ∈ F+∗ such
that fn([dm, dj ])R∗L∗wj and wjL

∗v. We define fn+1([dh, dj ]) = wj . Finally,
choose ve ∈ F+∗ satisfying the condition of Lemma 14 and put fn+1([dh, dh]) =
ve. It is straightforward to check that conditions (i) and (ii) still hold for F+

n+1.
For example, if dj < dh < dl, then [dj , dh]Rn+1[dh, dh], and thus fn+1([dj , dh])R∗

L∗v and fn+1([dh, dl])L∗v. Hence fn+1([dj , dh])R∗L∗R∗fn+1 ([dh, dl]), and there-
fore fn+1([dj , dh]) R∗fn+1 ([dh, dl]). This completes the inductive procedure.

Now, we define Dω =
⋃

n<ω
Dn, Lω =

⋃

n<ω
Ln, Rω =

⋃

n<ω
Rn, fω =

⋃

n<ω
fn

and F+
ω = 〈I(D)+ω , Rω, Lω〉. Finally, we define a valuation Vω in F+

ω according
to V ∗ in F+∗, viz. for all p ∈ AP, Vω(p) = {i ∈ I(D)+ω | fω(i) ∈ V ∗(p)}. Let
M+

ω = 〈F+
ω , Vω〉. Then fω : M+

ω �→ M+∗ is a surjective p-morphism, hence
M+

ω , [d0, d1] � φ. ��
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7.2 An Axiomatic System for PNLπ+

We extend the axiomatic system for PNL+ to PNLπ+ by adding the following
axioms:

(A-π1) ♦lπ ∧ ♦rπ;

(A-π2) ♦r(π ∧ p)→�r(π → p) and its inverse ♦l(π ∧ p)→�l(π → p);

(A-π3) ♦rp ∧ �rq → ♦r(π ∧ ♦rp ∧ �rq) and its inverse
♦lp ∧ �lq → ♦l(π ∧ ♦lp ∧ �lq).

By induction on n, one can show that all formulas ♦r(π ∧ p1) ∧ ... ∧ ♦r(π ∧
pn)→♦r(π ∧ p1 ∧ ... ∧ pn) and their inverses are derivable in PNLπ+, and thus
that �rq∧♦rp1∧ ...∧♦rpn→♦r(π∧�rq∧♦rp1∧ ...∧♦rpn) is derivable as well.
Therefore, the infinite scheme A-NNF∞ becomes derivable, hence redundant, in
PNLπ+.

The completeness proof for PNL+ is readily adaptable to PNLπ+.

8 Axiomatic Systems for PNL−

8.1 An Axiomatic System for PNL−

Except for the scheme A-NF∞, which is no longer valid, the axioms for PNL−

are very similar to those for PNL+ (accordingly modified to reflect the fact that
point-intervals are now excluded), where ♦r,♦l are replaced by 〈A〉, 〈A〉, and
�r,�l accordingly by [A], [A]. We propose the following system for PNL−:

(A-ST) enough propositional tautologies;

(A-SK) the K axioms for [A] and [A];

(A-SNF1) p→[A]〈A〉p and its inverse;

(A-SNF2) 〈A〉〈A〉p→[A]〈A〉p and its inverse;

(A-SNF3) (〈A〉〈A〉� ∧ 〈A〉〈A〉p)→p∨〈A〉〈A〉〈A〉p∨〈A〉〈A〉〈A〉p and its in-
verse;

(A-SNF4) 〈A〉〈A〉〈A〉p→〈A〉〈A〉p and its inverse.

Proposition 16. A neighborhood frame F = 〈I, R, L〉 is an interval neighbor-
hood frame if and only if the axioms A-SNF1, . . . , A-SNF4 are valid in F.

Proof. As in Proposition 12. ��

Note that the axioms cannot guarantee strictness of the neighborhood frame
as irreflexivity is not definable in the language of PNL−.
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Theorem17 (Soundness and Completeness). PNL− is (sound and) com-
plete for the class of all strict interval neighborhood structures.

Proof. We closely follow the technique applied in the proof of Theorem 15.
Again, the soundness is straightforward. For the completeness, we take any
PNL−-consistent formula φ. It is satisfied at the root w of some generated
sub-model of the canonical model for PNL−. We then pick a countable ele-
mentary sub-model M−∗ = 〈F−∗

, V ∗〉 which contains w and satisfies φ there.
Let F−∗ = 〈I∗, R∗, L∗〉. Note that F∗ is a weakly connected interval neighbor-
hood frame in which the axioms A-SNF1, . . . , A-SNF4 are valid since they are
canonical (being of Sahlqvist type, up to tautological equivalence) and first-order
definable. We then build step-by-step a model over a strict interval neighborhood
structure, which maps p-morphically over M−∗ very much like in the proof of
Theorem 15, but easier, because we need not worry about point-intervals. ��

8.2 Axiomatic Systems for Extensions of PNL−

Theorem18 (Soundness and Completeness). We have the following com-
pleteness results:

1. the axiomatic system for PNL− extended with A-SNFu is sound and complete
for PNLu−;

2. the axiomatic system for PNL− extended with A-SNFde, is sound and com-
plete for PNLde−;

3. the axiomatic system for PNL− extended with A-SNFdi is sound and com-
plete for PNLdi−;

4. the axiomatic system for PNL− combining PNLu− and PNLde− is sound
and complete for PNLude−;

5. the axiomatic system for PNL− combining PNLu− and PNLdi− is sound and
complete for PNLudi−.

Proof. All proofs are adaptations of the one for PNL−, because the respective
axioms are canonical and define semantic conditions which either are reflected
by p-morphisms (unboundedness) or can be forced during the step-by step con-
struction to hold in the limit structure (density or discreteness).

9 Semantic Tableau for PNL

In this section we devise a classical tableau method for PNL. We will do the work
in detail for the logic PNL+, and then we will present the necessary modifications
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for PNL−. The method can also be adapted to include π. (In [GMS03a] we
generalize the method to a large class of propositional interval temporal logics.)

First, some basic terminology. A finite tree is a finite directed connected
graph in which every node, apart from one (the root), has exactly one incoming
arc. A successor of a node n is a node n′ such that there is an edge from n to
n′. A leaf is a node with no successors; a path is a sequence of nodes n1, . . . ,nk

such that, for all j = 0, . . . , k − 1, nj+1 is a successor of nj; a branch is a path
from the root to a leaf. The height of a node n is the maximum length (number
of edge) of a path from n to a leaf. If n,n′ belong to the same branch and
the height of n is less than or equal to the height of n′, we write n ≺ n′. Let
〈C, <〉 be a finite linear order. A labeled formula, with label in C, is a pair
(φ, [ci, cj ]), where φ is a formula in the language of PNL+ (φ ∈ PNL+ for short)
and [ci, cj ] ∈ I(C)+. For a node n in a tree, the decoration ν(n) is a triple
((φ, [ci, cj ]),C, un), where 〈C, <〉 is a finite linear order, (φ, [ci, cj ]) is a labeled
formula, with label in C, and un is a local flag function which associates the
values 0 or 1 with every branch B containing n. Intuitively, the value 0 for a
node n with respect to a branch B means that n can be expanded on B. For
the sake of simplicity, we will often assume the interval [ci, cj ] to consist of the
elements ci < ci+1 < · · · < cj , and sometimes, with a little abuse of notation,
we will write C = {c1 < c2 < . . .}. A decorated tree is a tree in which every
node has a decoration ν(n). For every decorated tree, we define a global flag
function u acting on pairs (node, branch through that node) as u(n, B) = un(B).
Sometimes, for convenience, we will include in the decoration of the nodes the
global flag function instead of the local ones. For any branch B in a decorated
tree, we denote by CB the ordered set in the decoration of the leaf B, and for
any node n in a decorated tree, we denote by Φ(n) the formula in its decoration.
If B is a branch, then B · n denotes the result of the expansion of B with the
node n (addition of an edge connecting the leaf of B to n). Similarly, B · n1

| . . . | nk denotes the result of the expansion of B with k immediate successor
nodes n1, . . . ,nk (which produces k branches extending B). A tableau for PNL+

will be defined as a special decorated tree. We note again that C remains finite
throughout the construction of the tableau.

Definition 19. Given a decorated tree T , a branch B in T , and a node n ∈ B

such that ν(n) = ((φ, [ci, cj ]),C, u), with u(n , B) = 0, the branch-expansion
rule for B and n is defined as follows (in all the considered cases, u(n′ , B′) = 0
for all new pairs (n′ , B′) of nodes and branches).

– If φ = ¬¬ψ, then expand the branch to B · n1, with ν(n1) = ((ψ, [ci, cj ]),
CB , u).

– If φ = ψ0 ∧ ψ1, then expand the branch to B · n1 ·n2, with ν(n1) =
((ψ0, [ci, cj ]),CB, u) and ν(n2) = ((ψ1, [ci, cj ]),CB, u).
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– If φ = ¬(ψ0 ∧ ψ1), then expand the branch to B · n1|n2, with ν(n1) =
((¬ψ0, [ci, cj ]),CB, u) and ν(n2) = ((¬ψ1, [ci, cj ]),CB, u1).

– If φ = �rψ and c is the least element of CB, with cj ≤ c, which has not been
used yet to expand n on B, then expand the branch to B · n1 with ν(n1)
= ((ψ, [cj , c]),CB, u).

– If φ = �lψ and c is the greatest element of CB, with c ≤ ci, which has not
been used yet to expand n on B, then expand the branch to B · n1 with
ν(n1) = ((ψ, [c, ci]),CB, u).

– If φ = ¬�rψ, then expand the branch to B · nj | . . . |nn|n′
j| . . . |n′

n, where

1. for all j ≤ k ≤ n, ν(nk) = ((¬ψ, [cj , ck]),CB, u), and

2. for all j ≤ k ≤ n, ν(n′
k) = ((¬ψ, [cj, c]),Ck, u), where, for j ≤ k ≤ n− 1,

Ck is the linear ordering obtained by inserting a new element c between
ck and ck+1 in CB, and, for k = n, Ck is the linear ordering obtained by
inserting a new element c after cn in CB.

– if φ = ¬�lψ, then expand the branch to B · n1| . . . |ni|n′
1| . . . |n′

i, where:

1. for all 1 ≤ k ≤ i, ν(nk) = ((¬ψ, [ck, ci]),CB, u), and

2. for all 1 ≤ k ≤ i, ν(n′
k) = ((¬ψ, [c, ci]),Ck, u), where, for 2 ≤ k ≤ i,

Ck is the linear ordering obtained by inserting a new element c between
ck−1 and ck in CB, and, for k = 1, C1 is the linear ordering obtained by
inserting a new element c before c1 in CB.

Finally, for any node m ( 
= n) in B and any branch B′ extending B, let u(m, B′)
be equal to u(m, B), and for any branch B′ extending B, u(n, B′) = 1, unless
φ = �lψ or φ = �rψ (in such cases u(n, B′) = 0).

The universal formula �rψ (the same holds for �lψ) states that, for all
cj ≤ c, ψ holds over [cj , c]. As a matter of fact, the expansion rule imposes such
a condition for a single element c in CB (the least element which has not been
used yet), and it does not change the flag (which remains equal to 0). In this
way, all elements will be eventually taken into consideration, including those
elements greater than cj that will be added to CB in some subsequent steps of
the tableau construction.

Let us define now the notions of open and closed branch. We say that a node
n in a decorated tree T is available on a branch B to which it belongs if and
only if u(n, B) = 0. The branch-expansion rule is applicable to a node n on a
branch B if the node is available on B and the application of the rule generates
at least one successor node with a new labeled formula. This second condition
is needed to avoid looping of the application of the rule on universal formulas.
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((p ∧ ¬�r¬�l¬p, [c1, c2]), c1 < c2, 1)

((p, [c1, c2]), c1 < c2, 0)

((¬�r¬�l¬p, [c1, c2]), c1 < c2, 1)

((¬¬�l¬p, [c2, c2]), c1 < c2, 1) ((¬¬�l¬p, [c2, c3]), c1 < c2 < c3, 1)
�

�
�

�

((�l¬p, [c2, c2]), c1 < c2, 0) ((�l¬p, [c2, c3]), c1 < c2 < c3, 0)

((¬p, [c2, c2]), c1 < c2, 0)

((¬p, [c1, c2]), c1 < c2, 0)

((¬p, [c2, c2]), c1 < c2 < c3, 0)

((¬p, [c1, c2]), c1 < c2 < c3, 0)

Figure 2: Example of the tableau method for PNL+

Definition 20. A branch B in a tableau for φ is closed if and only if there
are two nodes n,n′ ∈B such that ν(n) = ((ψ, [ci, cj ]),C, u) and ν(n′) = ((¬ψ,
[ci, cj ]), C′, u) for some formula ψ and ci, cj ∈ C ∩ C′, otherwise it is open.

Definition 21. The branch-expansion strategy for a branch B in a deco-
rated tree T is as follows: (1) apply the branch-expansion rule to a branch B

only if it is open; (2) if B is open, apply the branch-expansion rule to B on
the closest to the root available node for which the branch-expansion rule is
applicable.

Definition 22. A tableau for a given formula φ ∈PNL+ is any finite decorated
tree T obtained by expanding the one-node decorated tree ((φ, [c1, c2]), {c1, c2},
u), where the (only) value of u is 0, through successive applications of the branch-
expansion strategy to currently existing branches.

Definition 23. A tableau for a given formula φ ∈PNL+ is closed if and only if
every branch in it is closed, otherwise it is open.

In Figure 2 we showed the case of the tableau for the formula p ∧ ¬�r¬�l¬p,
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that is, ¬ A-NNF1. As one can expect, all branches of the tableau are closed,
meaning that the formula is not satisfiable.

9.1 Soundness and Completeness

Definition 24. Given a set S of labeled formulas with labels in a linear or-
dering 〈C, <〉, we say that S is satisfiable over C if there exists a non-strict
model M+ = 〈I(D)+, R, L, V 〉 such that 〈D, <〉 is an extension of 〈C, <〉 and
M+, [ci, cj ] � ψ for all (ψ, [ci, cj ]) ∈ S.

Clearly, the above notion is equivalent to the notion of satisfiability of a
formula in the case that S contains only one labeled formula.

Theorem25 (Soundness). If φ ∈PNL+and a tableau T for φ is closed, then
φ is not satisfiable.

Proof. We prove by induction on the height h of a node n in the tableau T a
stronger claim: if every branch containing n is closed, then the set S(n) of all
labeled formulas in the decorations of the nodes between n and the root is not
satisfiable over C, where C is the linear ordering in the decoration of n.

If h = 0, then n is a leaf and the unique branch B containing n is closed.
Then S(n) contains (ψ, [ck, cl]) and (¬ψ, [ck, cl]) for some PNL+-formula ψ. Take
any model M+ = 〈(I(D)+, R, L, V 〉, where 〈D, <〉 is an extension of 〈C, <〉.
M+, [ck, cl] � ψ iff M+, [ck, cl] 
� ¬ψ, and thus S(n) is not satisfiable over C.

Suppose h > 0. Then either the branch-expansion rule has been applied to
some labeled formula (ψ, [ci, cj ]) ∈ S(n) to extend the branch at n, or n has
been generated as the first of the two successors obtained by an application of a
∧-rule. We will only consider in detail the former case, as the latter is subsumed
by it.

Let C = {c1, . . . , cn}, where c1 < . . . < cn, be the linear ordering from the
decoration of n. Note that every branch passing through any successor of n must
be closed, so the inductive hypothesis applies to all successors of n.

We consider the possible cases for the branch-expansion rule applied at n.

– Let ψ = ¬¬ξ. Then there exists n1 such that ν(n1) = ((ξ, [ci, cj ]),C, u) and
n1 is a successor of n. Since every branch containing n is closed, then every
branch containing n1 is closed. By the inductive hypothesis, S(n1) is not
satisfiable over C (since n1 ≺ n). Since ξ0 and ¬¬ξ0 are equivalent, S(n)
cannot be satisfiable over C.

– Let ψ = ξ1 ∧ ξ2. Then there are two nodes n1 ∈ B and n2 ∈ B such
that ν(n1) = ((ξ1, [ci, cj ]),C, u), ν(n2) = ((ξ2, [ci, cj ]),C, u), and, without
loss of generality, n1 is the successor of n and n2 is the successor of n1.
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Since every branch containing n is closed, then every branch containing
n2 is closed. By the inductive hypothesis, S(n2) is not satisfiable over C
since n2 ≺ n. Since every model over C satisfying S(n) must, in particular,
satisfy (ξ1∧ξ2, [ci, cj ]), and hence (ξ1, [ci, cj ]) and (ξ2, [ci, cj ]), it follows that
S(n), S(n1), and S(n2) are equi-satisfiable over C. Therefore, S(n) is not
satisfiable over C.

– let ψ = ¬(ξ1∧ξ2). Then there exist two successor nodes n1 and n2 of n, such
that ν(n1) = ((ξ0, [ci, cj ]),C, u0), ν(n2) = ((ξ1, [ci, cj ]),C, u1), n1,n2 ≺ n.
Since every branch containing n is closed, then every branch containing n1

and every branch containing n2 is closed. By the inductive hypothesis, S(n1)
and S(n2) are not satisfiable over C. Since every model over C satisfying S(n)
must also satisfy (ξ0, [ci, cj ]) or (ξ1, [ci, cj ]), it follows that S(n) cannot be
satisfiable over C.

– Let ψ = ¬�rξ. Assuming that S(n) is satisfiable over C, there is a model
M+ = 〈(I(D)+, R, L, V 〉, where 〈D, <〉 is an extension of 〈C, <〉, such that
M+, [ci, cj ] � θ for all (θ, [ci, cj ]) ∈ S(n). In particular, M+, [cj , d] � ¬ξ for
some d ≥ cj . Consider 2 cases:

1. d ∈ C. Then d = cm for some m ≥ j. But one of the successor nodes of
n is nm, where ν(nm) = ((¬ξ, [cj, cm]),C, u), and since nm ≺ n,, by the
inductive hypothesis, S(nm) = S(n) ∪{(¬ξ, [cj, cm])} is not satisfiable
over C, which is a contradiction.

2. d /∈ C. Then there is an m such that j ≤ m ≤ n− 1 and cm < d < cm+1,

or m = n and cn < d. In either case, there is a successor node n′
m of

n such that ν(n′
m) = ((¬ξ, [cj, d]),C ∪ {d}, u), and since n′

m ≺ n, by
the inductive hypothesis S(n′

m) = S(n) ∪{(¬ξ, [cj, d])} is not satisfiable
over C ∪ {d}, which, again, is a contradiction.

Thus, in either case S(n) is not satisfiable over C.

– The case of ψ = ¬�lξ is analogous.

– Let ψ = �rξ. Then ν(n1) = ((ξ, [cj, cm]),C, u), with j ≤ m ≤ n, for the
successor n1 of n. Now, any model over C satisfying S(n1) must, in partic-
ular, satisfy (�rξ, [ci, cj ]), and hence (ξ, [cj , cm]). Thus, the sets S(n) and
S(n1) = S(n) ∪ {(ξ, [cj, cm])} are equi-satisfiable over C. Since n1 ≺ n, by
the inductive hypothesis S(n1) is not satisfiable over C, and thus S(n) is
not satisfiable over C.

– The case of ψ = �lξ is analogous. ��

Definition 26. If T0 is the one-node tableau ((φ, [c1, c2]), {c1, c2}, 0) for a given
PNL+-formula φ, the limit tableau T for φ is the (possibly infinite) decorated
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tree obtained as follows. First, for all i, Ti+1 is the tableau obtained by simulta-
neous application of the branch-expansion strategy to every branch in Ti. Then,
we ignore all flags from the decorations of the nodes in every Ti. Thus we ob-
tain a chain by inclusion of decorated trees: T0 ⊆ T1 ⊆ . . . . Now we define

T :=
∞⋃

i=0

Ti.

Note that the chain above may stabilize at some Ti if it closes, or if the
branch-expansion rule is not applicable to any of its branches. We associate

with each branch B in T the linear ordering CB =
∞⋃

i=0

CBi
, where, for all i, CBi

is the linear ordering from the decoration of the leaf of the (sub-)branch Bi of
B in Ti. The definitions of closed and open branches readily apply to T.

Definition 27. A branch in a (limit) tableau is saturated if there are no nodes
on it to which the branch-expansion rule is applicable on the branch. A (limit)
tableau is saturated if every open branch in it is saturated.

In what follows we will show that the set of all labeled formulas on an open
branch in a limit tableau has the saturation properties of a Hintikka set in first-
order logic.

Lemma28. Every limit tableau is saturated.

Proof. Given a node n in a limit tableau T, we denote by d(n) the distance
(number of edges) between n and the root of T. Now, given a branch B in T,
we will prove by induction on d(n) that after every step of the expansion of that
branch at which the branch-expansion rule becomes applicable to n (because n
has just been introduced, or because a new point has been introduced in the
linear ordering on B) that rule is subsequently applied on B to that node.

Suppose the inductive hypothesis holds for all nodes with distance to the root
less than m. Let d(n) = m and the branch-expansion rule has become applicable
to n. If there are no nodes between the root (including the root) and n (excluding
n) to which the branch-expansion rule is applicable at that moment, the next
application of the branch-expansion rule on B is to n. Otherwise, consider the
closest to n node n∗ between the root and n to which the branch-expansion rule
is applicable, or becomes applicable on B at least once thereafter. (Such node
exists because there are only finitely many nodes between n and the root.) Since
d(n∗) < d(n), by the inductive hypothesis the branch-expansion rule has been
subsequently applied to n∗. Then the next application of the branch-expansion
rule on B must have been to n and that completes the induction. Now, assum-
ing that a branch in a limit tableau is not saturated, consider the closest to the
root node n on that branch B to which the branch-expansion rule is applica-
ble on that branch. If Φ(n) is neither �rψ nor �lψ, then the branch-expansion
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rule has become applicable to n at the step when n is introduced, and by the
claim above, it has been subsequently applied, at which moment the node has
become unavailable thereafter, which contradicts the assumption. If Φ(n) =�rψ

or Φ(n) =�lψ, then an application of the rule on B must create at least one suc-
cessor with a new label (ψ, [ci, cj ]) on B. But ci, cj have already been introduced
at some (finite) step of the construction of B and at the first step when both
of them, as well as n, have appeared on the branch, the branch-expansion rule
has become applicable to n, hence is has been subsequently applied on B and
that application must have introduced the label (ψ, [ci, cj ]) on B, which again
contradicts the assumption. ��

Corollary 29. Let φ be a PNL+-formula, and T the limit tableau for φ. Then,
for every open branch B in T:

– if there is a node n ∈ B such that ν(n) = ((¬¬ψ, [ci, cj ]),C, u), then there
is a node n1 ∈ B such that ν(n1) = ((ψ, [ci, cj ]),C, u1);

– if there is a node n ∈ B such that ν(n) = ((ψ1∧ψ2, [ci, cj ]),C, u), then there
is a node n1 ∈ B such that ν(n1) = ((ψ1, [ci, cj ]),C, u1) and a node n2 ∈ B

such that ν(n2) = ((ψ2, [ci, cj ]),C, u2);

– if there is a node n ∈ B such that ν(n) = ((¬(ψ1 ∧ ψ2), [ci, cj ]),C, u), then
there is a node n1 ∈ B such that ν(n1) = ((¬ψ1, [ci, cj ]),C, u1) or a node
n2 ∈ B such that ν(n2) = ((¬ψ2, [ci, cj ]),C, u2);

– if there is a node n ∈ B such that ν(n) = ((¬�rψ, [ci, cj ]),C, u), then, for
some c ∈ CB such that cj ≤ c there is a node n′ ∈ B such that ν(n′)
= ((¬ψ, [cj, c]),C′, u′);

– likewise for every node n with Φ(n) = ¬�lψ;

– if there is a node n ∈ B such that ν(n) = ((�rψ, [ci, cj ]),C, u), then for
all c ∈ CB such that cj ≤ c, there is a node n′ ∈ B such that ν(n′) =
((ψ, [cj , c]),C′, u′);

– likewise for every node n with Φ(n) = �lψ.

Lemma30. If the limit tableau for some formula φ ∈PNL+is closed, then some
finite tableau for φ is closed.

Proof. Suppose the limit tableau for φ is closed. Then every branch closes at
some finite step of the construction and then remains finite. Since the branch-
expansion rule always produces finitely many successors, every finite tableau is
finitely branching, and hence so is the limit tableau. Then, by König’s lemma,
the limit tableau, being a finitely branching tree with no infinite branches, must
be finite, hence its construction stabilizes at some finite stage. At that stage a
closed tableau for φ is constructed. ��
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Theorem31 (Completeness). Let φ ∈PNL+be a valid formula. Then there
is a closed tableau for ¬φ.

Proof. We will show that the limit tableau T for ¬φ is closed, whence the the-
orem follows by the previous lemma.

By contraposition, suppose that T has an open branch B. Let CB be the
linear ordering associated with B and Φ(B) be the set of all labeled formulas
on B. Consider the model M+ = 〈I(CB)+, R, L, V 〉 where, for every [ci, cj ] ∈
I(CB)+ and p ∈ AP,

p ∈ V ([ci, cj ]) iff (p, [ci, cj ]) ∈ Φ(B).

We are going to show by induction on ψ that, for every (ψ, [ci, cj ]) ∈ Φ(B),

M+, [ci, cj ] � ψ.

1. If ψ = p or ψ = ¬p where p ∈ AP, the claim follows by definition, because
if (¬p, [ci, cj ]) ∈ Φ(B), then (p, [ci, cj ]) /∈ Φ(B) since B is open (the same for
(p, [ci, cj ]) ∈ Φ(B)).

2. Let ψ = ¬¬ξ. Then by Lemma 29, (ξ, [ci, cj ]) ∈ Φ(B), and by inductive
hypothesis M+, [ci, cj ] � ξ. So M+, [ci, cj ] � ψ.

3. Let ψ = ξ0 ∧ ξ1. Then by Lemma 29, (ξ0, [ci, cj ]) ∈ Φ(B) and (ξ1, [ci, cj ]) ∈
Φ(B). By inductive hypothesis, M+, [ci, cj ] � ξ0 and M+, [ci, cj ] � ξ1, so
M+, [ci, cj ] � ψ.

4. Let ψ = ¬(ξ0∧ξ1). Then by Lemma 29, (¬ξ0, [ci, cj ]) ∈ Φ(B) or (¬ξ1, [ci, cj ])
∈ Φ(B). By inductive hypothesis M+, [ci, cj ] � ¬ξ0 or M+, [ci, cj ] � ¬ξ1, so
M+, [ci, cj ] � ψ.

5. Let ψ = ¬�rξ. Then by Lemma 29, (¬ξ, [cj, c]) ∈ Φ(B) for some c ∈ CB

such that cj ≤ c. Thus, by inductive hypothesis, M+, [cj , c] � ¬ξ. So,
M+, [ci, cj ] � ψ.

6. The case of ψ = ¬�lξ is similar.

7. Let ψ = �rξ. Then by Lemma 29, (ξ, [cj , c]) ∈ Φ(B) for all c ∈ CB such
that cj ≤ c. Hence, by inductive hypothesis, for all c ∈ CB such that cj ≤ c

M+, [cj , c] � ξ, and so M+, [ci, cj ] � ψ.

8. The case of ψ = �lξ is similar.

This completes the induction. In particular, we obtain that ¬φ is satisfied in
M+, which is in contradiction with the assumption that φ is valid. ��
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The tableau method for PNL+ developed here can be easily adapted to the
case of PNL−. Indeed, the method requires the following straightforward modi-
fication of the branch-expansion rule: in the cases of ¬[A], ¬[A], [A], and [A] the
rule does not introduce a successor node with label [cj , cj ]. With that modifica-
tion, all theorems and their proofs included in this section can be accordingly
adapted for PNL−.

10 Conclusion and Possible Developments

In this paper we have studied the class of Propositional Neighborhood Log-
ics (PNL), and we have provided complete axiomatic systems and a classical
tableau method for them. Currently the questions about the decidability of PNL
logics are open (as a matter of fact, the technique suggested by Montanari and
Sciavicco in [MS02], as it stands, does not work). Generally speaking, the prob-
lem of finding decidable fragments of interval temporal logics has been raised by
several authors, including Halpern and Shoham (cf. Problem 4 in [HS91]) and
Venema (cf. Question 3.20 in [Ven91]). Possible approaches to prove decidability
are via finite model property or interpretation into other decidable logics. Note,
however, that the finite model property with respect to standard models fails
in both semantics [GMS03b], and thus one could only hope for a finite model
properrty with respect to non-standard models.
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