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Abstract: This paper considers temporal constraints that can impose a minimum
and maximum time distance between the occurrences of two events by specifying the
minimum and maximum values in terms of a time granularity. When several constraints
using different time granularities are part of the specification of a single problem, a
reasonable question is how to convert the constraints in terms of a single granularity
in order to apply standard temporal constraint algorithms. This paper investigates the
problem of converting a distance constraint expressed in terms of a granularity into
another one in terms of a different time granularity. An expressive formal model for
time granularities is assumed including common granularities like hours and days as
well as user-defined granularities like business days and academic semesters.
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1 Introduction

There is a wide spectrum of applications that have to deal with temporal con-
straints, either for simply specifying a partial order of events, or for specify-
ing more complex qualitative or quantitative time relations. Reactive systems,
scheduling, planning, temporal data management, and workflows are just a few
examples of the research areas where such applications can be found. Integrated
e-commerce applications, in particular, are interesting examples where an ad-
vanced and efficient management of temporal aspects may be a significant advan-
tage over the competition. In these complex systems the temporal relationships
between events and activities involving different components are often described
in terms of different time units. For example, the time between the receipt of an
online order and the forwarding of item orders to the warehouses is described in
minutes, while the time between the shipment of the order and the delivery is
described in business days.

This paper considers a formalization of the notion of temporal constraint with
granularity originally introduced in [Bettini et Al. 98a]. These constraints can be
used to impose a minimum and maximum time distance between the occurrences
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of two events by specifying the minimum and maximum values in terms of a time
granularity. For example, a constraint of the form [1, 3] b-day between variables
X and Y (representing event occurrence times) imposes that any assigment tx
and ty for X and Y , respectively, is such that the distance between tx and ty
is at least 1 business day and at most 3 business days. Note that tx and ty
may actually denote a specific hour, minute or arbitrary finer granularity used
when detecting the event occurrences, but the constraint satisfaction is checked
by first identifying the business days containing tx and ty respectively and then
checking their distance. The paper investigates the problem of converting this
kind of constraints in terms of different granularities. This may be desirable
for at least two reasons: a) there are well-known algorithms to process temporal
constraint networks where all the constraints are in terms of the same granularity
[Dechter et Al. 91], and b) it may be useful for the sake of application process
monitoring to view all the constraints in terms of a particular granularity.

It will be immediately clear to the reader that the conversion problem is not
a trivial one, even if we only consider common granularities like hours and days.
For example, by saying that one event should occur the next day with respect
to another one, we do not mean that the event should occur 24 hours after the
other. Nor it is satisfactory to allow a range between 1 and 47 hours, as it may
be suggested. Indeed 1 and 47 hours are actually the minimum and maximum
distance between the occurrence of two events if they occur in consecutive days.
However, a distance of 47 hours may also be the distance between two events
whose occurrence is 2 days apart. This example actually says that an exact
conversion does not exist, i.e., the constraint we obtain is not equivalent to the
one we take as input.

Hence, our goal is, given a constraint in terms of a source granularity G, and
given a target granularity H , to identify the constraint in terms of H which is the
tightest among those implied by the input constraint or a good approximation
of it. Being the tightest means that the set of distances allowed by the constraint
is contained by any other logically implied constraint. If [m, n]G represents the
constraint imposing a distance of at least m and at most n time units of G, then
in the above example [1, 47]hour is the tightest among the constraints in terms of
hour implied by [1, 1]day. Indeed, other constraints, as for example, [0, 48]hour
are logically implied by [1, 1]day, but none of them can exclude distances between
1 and 47.

The concept of granularity as an abstraction tool has been deeply inves-
tigated in the AI and DB literature probably starting from [Hobbs 85]. The
formalization of time granularity as adopted in this paper has been defined in
[Bettini et Al. 98a] and used in several papers on the subject. Interesting re-
cent work on this topic can also be found in [Montanari 99, Dyreson et Al. 00,
Goralwalla et Al. 01, Bettini et Al. 02a]. Symbolic formalisms to represent time
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granularities have been proposed in [Leban et Al. 86] and [Chandra et Al. 94]
among others. The complex mathematical relations among granularities and cal-
endars have been studied also in [Dershowitz and Reingold 90]. There are few
approaches considering temporal constraints in terms of different granularities
(e.g., [Dean 89, Goralwalla et Al. 01]), but in most cases they are restricted to
common granularities. Our goal is to admit powerful constraints and very general
user-defined granularities both to accurately model the new application domains
and to select appropriate abstraction levels. A first comprehensive solution to
this problem has been given in [Bettini et Al. 98a] proposing two alternative al-
gorithms for constraint conversion. The main contribution of this paper with
respect to [Bettini et Al. 98a] is the construction of a set of formulas based on
granularity relationships enabling an efficient implementation of the direct con-
version algorithm for a significant set of periodical granularities. The conversion
algorithm presented here has a slightly different, theoretically equivalent, for-
mulation regarding the treatment of minimal distances equal to zero, which was
introduced to simplfy the implementation. Moreover, the implementation of the
conversion algorithm proposed in this paper is supported by extensive experi-
mentation with a prototype system developed at the University of Milan.

The conversion algorithm can be applied in several application areas where
multi-granularity temporal constraints have been shown to be useful: data min-
ing [Bettini et Al. 98b], workflow management [Bettini et Al. 02b], and clinical
data management [Combi and Chittaro 99] among others.

The rest of the paper is organized as follows. In the next section we introduce
the formal notions of granularity and temporal constraints with granularities. In
Section 3 we illustrate a general algorithm for granularity conversion and we
prove its correctness, while in Section 4 we show how the algorithm can be
implemented exploiting the periodicity of granularities. In Section 5 we give an
example of constraint network conversion, and Section 6 concludes the paper.

2 Temporal Constraint Networks with Granularities

We first define a granularity system, called GGR (General Granularities on Re-
als) in [Bettini et Al. 98a], as the set of granularities satisfying the following
definition.

Definition 1. A granularity is a mapping G from the set of the integers to 2R

(i.e., all subsets of reals) such that G(i) = ∅ for each non-positive integer i,
and for all positive integers i and j with i < j, the following two conditions are
satisfied:

– G(i) �= ∅ and G(j) �= ∅ imply that each real number in G(i) is less than all
real numbers in G(j), and
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– G(i) = ∅ implies G(j) = ∅.
This is a very general notion of granularity modeling standard ones like hour,

day, week and month as well as more specific ones like academic semester,
b-day (business day), or b-week (business week), and arbitrarily user-defined
granularities. For example, b-week may be defined by the mapping of each pos-
itive integer (index) to a set of elements of the temporal domain denoting the
period from a Monday through the next Friday every week. Each set of these
sets of elements is called a granule of the granularity. If we decide to model time
starting from Monday 2001/1/1, then the index 1 is mapped to the instants
denoting the period from 2001/1/1 through 2001/1/5, forming the first gran-
ule b-week(1), the index 2 is mapped to b-week(2), denoting 2001/1/8 through
2001/1/12, and so on.

In order to have finite representations of the granularities suitable to be
automatically manipulated, we further restrict the granularities to those whose
granules can be defined as a periodical pattern with respect to the granules of a
fixed bottom granularity. For this purpose we first need to introduce a granularity
relationship.

Definition 2. A granularity G groups periodically into a granularity H if
1. for each non-empty granule H(i), there exists a set of positive integers

{j0, . . . , jk} such that H(i) =
⋃k

r=0 G(jr), and

2. there exist R, P ∈ Z
+, where R is less than the number of granules of H ,

such that for all i ∈ Z
+, if H(i) =

⋃k
r=0 G(jr) and H(i + R) �= ∅, then

H(i + R) =
⋃k

r=0 G(jr + P ).

Condition 1 says that any granule H(i) is the union of some granules of
G; for instance, assume it is the union of the granules G(j0), G(j1), . . . , G(jk),
where j0, . . . , jk are not necessarily contiguous positive integers. The periodicity
property (condition 2) ensures that if the Rth granule after H(i) exists (i.e.,
H(i + R) �= ∅), then it is the union of G(j0 + P ), G(j1 + P ), . . . , G(jk + P ).
This results in a periodic “pattern” of the composition of R granules of H in
terms of granules of G. The pattern repeats along the time domain by “shifting”
each granule of H by P granules of G. The integer P is called the period. Many
common granularities are in this kind of relationship, for example, both days
and months group periodically into years. In general, this relationship guaran-
tees that granularity H can be finitely described providing the specification of
granules of H in terms of granules of G in an arbitrary period and the period
value. For example, b-week can be described by the five business days in the first
week of the time domain, and by the value 7 for the period. A granularity G0

is called bottom granularity if G0 groups periodically into each other granularity
in the system.

We can now define a temporal constraint with granularity.
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Definition 3. Let m, n ∈ Z ∪ {−∞, +∞} with m ≤ n and G a granularity.
Then [m, n] G, called a temporal constraint with granularity (TCG), is the binary
relation on positive integers defined as follows: For positive integers t1 and t2,
(t1, t2) satisfies [m, n] G if and only if (1) �t1�G and �t2�G are both defined, and
(2) m ≤ (�t2�G − �t1�G) ≤ n.

The �x�G function returns the index of the granule of G that includes G0(x),
where G0 is the bottom granularity. Intuitively, to check if a pair of instants
(t1, t2) satisfies the TCG [m, n] G, we derive the indexes of the granules of G

containing t1 and t2, respectively, and then we take the difference. If it is at
least m and at most n, then the pair of instants is said to satisfy the constraint.
For example, the pair (t1, t2) satisfies [0, 0] day if t1 and t2 are within the same
day. Similarly, (t1, t2) satisfies [−1, 1] hour if t1 and t2 are at most one hour apart
(and their order is immaterial). Finally, (t1, t2) satisfies [1, 1] month if t2 is in the
next month with respect to t1.

Definition 4. A constraint network (with granularities) is a directed graph de-
noted by (W, A, Γ, Dom), where W is a finite set of variables, A ⊆ W ×W a set
of arcs, Γ is a mapping from A to the finite sets of temporal constraints with
granularities, and Dom is a mapping from W to a possibly bounded periodical
set of positive integers.

A set of positive integers S is said to be periodical if there exists a granularity
G such that S = {i | �i�G is defined}. The set is bounded if an integer U is given
such that each value in the set must be less than or equal to U .

Intuitively, a constraint network specifies a complex temporal relationship
where each variable in W represents a specific instant (for example the occur-
rence time of an event) in terms of the bottom granularity. The domain of each
variable is essentially a set of granules of the bottom granularity, represented
through the positive integers corresponding to the granule indexes. The set of
TCGs assigned to an edge is taken as conjunction. That is, for each TCG in the
set assigned to the edge (X, Y ), the instants assigned to X and Y must satisfy
the TCG. Fig. 1 shows an example of a constraint network with granularities
with no explicit constraint on domains (Dom(X) = [1,∞) for each variable X).

3 Conversion of Constraints in Different Granularities

As we have pointed out in the introduction, in general, given a TCG, it does
not exists an equivalent one in terms of a different granularity. However, we are
interested in converting a given TCG1 in terms of G1 into a logically implied
TCG2 in terms of G2. Note that a TCG A logically implies a TCG B if any
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X 3X 0

X 2

X 1
[2,2]b-week[-1,1]b-day

[1,6]b-day [0,3]day

Figure 1: A constraint network with granularities

pair of time instants satisfying A also satisfy B. Among all the logically implied
TCGs we prefer the tightest or a good approximation of it. For example, both
[1, 47] hour and [0, 50] hour are logically implied by [1, 1] day, with the first being
preferable since, in this case it is the tightest, and, indeed, it provides a more
precise conversion of the original one. If we only have a total order of granulari-
ties with uniform granules, like e.g., minute, hour, and day, then the conversion
algorithm is trivial since fixed conversion factors can be used. However, if incom-
parable granularities like week and month, or granularities with non-contiguous
granules like b-day and b-week are considered, the conversion becomes more
complex.

Moreover, given an arbitrary TCG1, and a granularity G, it is not always
possible to find a logically implied TCG2 in terms of G. For example, [0, 0] day
does not logically imply [m, n] b-day no matter what m and n are. The reason
is that [0, 0]day is satisfied by any two events that happen during the same day,
whether the day is a business day or a weekend day.

3.1 Allowed conversions

In our framework, we allow the conversion of a TCG of a constraint network
N into another TCG if the resulting constraint is implied by the set of all the
TCGs in N . More specifically, a TCG [m, n] G on arc (X, Y ) in a network N is
allowed to be converted into [m′, n′] H as long as [m′, n′] H is implied by N , i.e.,
for any pair of values tX and tY assigned to X and Y respectively, if (tX , tY )
satisfies [m, n] G and tX and tY belong to a solution of N , then (tX , tY ) also
satisfies [m′, n′] H . To guarantee that only allowed conversions are performed,
we assign to each variable X of a constraint network, a periodical set GX which
is the intersection of the domain of X and all the periodical sets defined by
the granularities appearing in TCGs involving X . Then, a TCG on variables X

and Y can be converted in terms of a target granularity H if each element in
GX ∪ GY is contained in a granule of H .

This condition guarantees the existence of an allowed conversion; Indeed, if
a value tX is assigned to X in a solution of the network, then it must be in GX .
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X Y

Z

[0,0]b-day

[0,0]b-day[0,0]day

Figure 2: A network to illustrate conversion conditions

Similarly, if tY is assigned to Y , tY ∈ GY . Then, both tX and tY are in GX ∪GY ,
and hence each one of them is contained in a (possibly different) granule of H .
Thus, their distance in terms of H can be evaluated.

Example 1. Consider the constraint network in Fig. 2. Both GX and GZ are
b-day. Hence, the constraint [0, 0] day can be converted in terms of b-day since
the target granularity b-day covers a span of time equal to that covered by GX

and GZ (i.e., GXZ ⊆ b− day′, where b− day′ is the periodical set correspond-
ing to the granularity b− day). Similarly, consider the network in Fig. 1. The
TCG in terms of day cannot be converted in terms of b-day or b-week without
considering the other constraints in the network. However, both GX2 and GX3 ,
i.e., the periodical sets obtained as the intersection of the domain of X2 (resp.
X3) and all the periodical sets defined by the granularities appearing in TCGs
involving X2 (resp. X3), can be obtained from day by dropping all granules that
are not a business day. Since both b-day and b-week cover the same span of
time as this granularity, the constraint [0, 3] day can be converted in terms of
b-day and b-week, obtaining [0, 3] b-day and [0, 1] b-week, respectively.

3.2 The conversion algorithm

In Fig. 3 we propose a general conversion method. It is based on the functions
mindist() and maxdist(). Intuitively, mindist(G1, m, G2) denotes the minimal
distance (in terms of the number of granules of G2) between all pairs of instants
in a granule of G1 and in the mth granule after it, respectively. For example,
mindist(b-week, 1, day) = 3, i.e., the minimum distance in terms of days be-
tween two events that occur in two different business weeks is 3 (one instant on
Friday and the other on Monday). The definition restricts the considered pairs
of instants to those in which the first instant is included in GX and the sec-
ond in GY . Indeed, only these pairs are candidate solutions for the constraint
on the arc (X, Y ), and this restriction improves the precision of the conversion
as well as it detects some inconsistencies. The value maxdist(G1, n, G2) is the
corresponding maximum distance. For example, maxdist(b-week, 1, day) = 11,
and maxdist(b-day, 1,day)= 3.
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INPUT: a network N with a TCG [m, n] G1, with m ∈ Z ∪ {−∞} and
n ∈ Z

+ ∪ {+∞}, associated with an arc (X, Y ); a target granularity G2, s.t.
∀t (t ∈ GX ∪ GY ⇒ ∃j �t�G2 = j).

OUTPUT: a logically implied TCG [m, n]G2 for (X, Y ) or undefined.

METHOD:

Step 1 if m = −∞ then m = −∞
else if m > 0 then m = mindist(G1, m, G2)
else m = −maxdist(G1, |m|, G2)

Step 2 if n = +∞ then n = +∞
else n = maxdist(G1, n, G2)

Step 3 if either m or n is undefined, then return undefined
else return [m, n] G2

where
mindist(G1, m, G2) = min(S) if S �= ∅, undefined otherwise, where

S = {�t2�G2−�t1�G2 | t1 ∈ GX , t2 ∈ GY , and �t2�G1−�t1�G1 ≥ m};
maxdist(G1, n, G2) = max(R) if R �= ∅, undefined otherwise, where

R = {�t2�G2−�t1�G2 | t1 ∈ GX , t2 ∈ GY , and �t2�G1−�t1�G1 ≤ n};
GX =

⋂
(Dom(X), H1, . . . , Hk) if H1, . . . , Hk are the periodical sets corre-

sponding to the granularities in the TCGs of N involving node X . (Similarly
for GY .)

Figure 3: A general method for the conversion of constraints

The values of these functions cannot be automatically obtained for general
(infinite) granularities, however, they can be computed efficiently when the in-
volved granularities are periodic, as in most practical cases. The computation of
mindist() and maxdist() is more involved when we want to check the condition,
appearing in their specification, i.e., t1 ∈ GX and t2 ∈ GY . Note that omitting
this check leads to a still sound but less precise conversion. The other condition
involving GX and GY appears in the input description. This cannot be ignored
since it guarantees an allowed conversion.

The method imposes n ∈ Z
+ if n �= +∞ for the input constraint. This is

not a limitation since any constraint [−n,−m] G on (X, Y ) with m, n > 0 can
be expressed as [m, n] G on (Y, X). When only the lower bound is negative, it is
sufficient to consider its absolute value and treat it exactly as the upper bound
except for reversing the sign of the result. For example, for [−1, 1] week we derive
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the upper bound 13 for day according to the method. Since the absolute value
for −1 is 1, we derive [−13, 13] day as the implied constraint. The case of m = 0
must be treated exactly as for negative values.

When m = −∞ and/or n = +∞ the conversion method simply keeps
these constants also for the TCG in the target granularity. It is easily seen
that this always leads to an implied TCG. However, when G1 is bounded, the
∞ constants may be converted more precisely into finite values. For example,
[1, +∞] month-b2000, where month-b2000 denotes the months before year 2000,
is converted into [0, +∞] year, while +∞ in this last TCG may be safely substi-
tuted with the number of years from the beginning of the time line and year 2000.
This refinement is left as an optimization which may be useful in implementing
the method.

Theorem 5. The general conversion method is correct: Any constraint obtained
as output is implied by the original network.

Proof. Suppose, by contradiction, that the derived TCG [m, n]G2 on (X, Y ) is
not implied by the network N . It follows that there exist two values x and y that,
assigned to X and Y , respectively, belong to a solution of the given network,
satisfying the constraint [m, n] G1 between X and Y , but not satisfying the con-
straint [m, n] G2 between the same variables. By definition, if the constraint is
not satisfied, one of the following must hold: (a) �x�G2 or �y�G2 is not defined,
(b) �y�G2 − �x�G2 > n, (c) �y�G2 − �x�G2 < m.
Suppose (a) holds and �x�G2 is not defined. From the definition of ��, this means
that there does not exist j such that x ∈ G2(j). However, since x is part of a
solution of the given network, x ∈ GX(k) for some positive integer k. Then, the
condition ∀i, t (t ∈ GX(i) ∪ GY (i) ⇒ ∃j t ∈ G2(j)) imposed by the algorithm
on its input, guarantees ∃j x ∈ G2(j), leading to a contradiction. The same
argument applies to �y�G2 .
Suppose (b) holds. Let n′ = �y�G2 − �x�G2 . Hence, n′ > n. From the computa-
tion of n by the algorithm, we have either n = +∞, which would immediately
contradict (b), or n = max(R), where R = {r | ∃t1, t2, �t1�GX and �t2�GY

are both defined, �t2�G1 − �t1�G1 ≤ n and �t2�G2 − �t1�G2 = r}}. Let t1 = x

and t2 = y. Clearly, �x�GX and �y�GY are both defined since x and y are part
of a solution. �y�G1 − �x�G1 ≤ n since (x, y) satisfies the TCG [m, n]G1, and
�y�G2 − �x�G2 = n′ by hypothesis. Then, n′ ∈ R and hence, n′ ≤ n = max(R).
This is a contradiction since we assumed n′ > n.
Finally, suppose (c) holds. Let m′ = �y�G2 − �x�G2 . Hence, m′ < m. We first
consider the case when m ≥ 0. From the computation of m by the algorithm,
we have m′ < min(S), where S = {s | ∃t1, t2, �t1�GX and �t2�GY are both
defined, �t2�G1 − �t1�G1 ≥ m and s = �t2�G2 − �t1�G2}}. Let t1 = x and
t2 = y. Clearly, �x�GX and �y�GY are both defined since x and y are part
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of a solution. �y�G1 − �x�G1 ≥ m since (x, y) satisfies the TCG [m, n]G1, and
m′ = �y�G2 −�x�G2 by hypothesis. Then, m′ ∈ S and hence, m′ ≥ m = min(S).
This is a contradiction since we assumed m′ < m. When m < 0, either m′ = −∞,
which would immediately contradict (c), or the fact that m′ < m can be inter-
preted as the distance between x and y in terms of granules of G2 being greater
(in absolute value) than the bound given by the algorithm. The violation of
the bound and the corresponding proof are, in this case, equivalent to point (b)
above, since the values of x and y can be exchanged, reversing the sign of the
bounds. The conversion algorithm, indeed, treats the negative lower bound as a
positive upper bound, reversing the sign of the result.

4 Implementation

In this section, we show how the conversion algorithm can be implemented.
Essentially, this can be done by exploiting the periodicity of granularities and
variable domains. First of all, we need to ensure that the conversion is allowed,
as required by the condition specified on the INPUT in Fig. 3. Secondly, we
need to compute the values of the distance functions mindist() and maxdist()
for arbitrary parameters.

4.1 Excluding illegal conversions

From Section 3, we know that the conversion of a constraint on the distance
from X to Y with target granularity G2 is allowed if each element in GX ∪ GY

is in G2. If we consider G′
2 as the periodical set induced by G2, it is easily seen

that this condition holds if GX ∩ G′
2 ≡ GX and GY ∩ G′

2 ≡ GY . Intersection of
periodical sets can be easily implemented by considering their common period
(see [Bettini et Al. 02a]), and similarly can be implemented equivalence.

4.2 Computation of distance functions

The computation of mindist() and maxdist() following the formulas in their
definition may be computationally very inefficient. Our choice is to devise an
efficient computation method which return values equivalent to min(S) and
max(R) respectively, assuming that the conditions t1 ∈ GX , t2 ∈ GY , appearing
in the definitions of the distance functions, are always satisfied. Note that, if this
is not the case, we derive a constraint which is looser than the optimal constraint,
but still logically implied by the input constraint network. Based on extensive
experiments we have seen that the resulting approximation is very good, and
hence the trade-off between efficiency and precision favors our solution, except
for special critical applications.
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Origin Target Computation of mindist(), maxdist()

day hour mindist(day, k, hour) = 24 ∗ (k − 1) + 1
maxdist(day, k, hour) = 24 ∗ (k + 1) − 1

week hour mindist(week, k, hour) = 168 ∗ (k − 1) + 1
maxdist(week, k, hour) = 168 ∗ (k + 1) − 1

bday hour mindist(bday, k, hour) = 24 ∗ (k − 1) + 48 ∗ (k DIV 5) + 1
maxdist(bday, k, hour) = 24 ∗ (k + 1) + 48 ∗ ((k + 4) DIV 5) − 1

bweek hour mindist(bweek, k, hour) = 168 ∗ (k − 1) + 49
maxdist(bweek, k, hour) = 168 ∗ (k + 1) − 49

day bday mindist(day, k, bday) = if (k + 5) MOD 7 �= 0
then k − ((k + 4) DIV 7) ∗ 2
else k − 1 − ((k + 4) DIV 7) ∗ 2

maxdist(day, k, bday) = if (k + 2) MOD 7 �= 0
then k − ((k + 2) DIV 7) ∗ 2
else k + 1 − ((k + 2) DIV 7) ∗ 2

day bweek mindist(day, k, bweek) = (k + 2) DIV 7
maxdist(day, k, bweek) = (k + 4) DIV 7

week day mindist(week, k, day) = 7 ∗ (k − 1) + 1
maxdist(week, k, day) = 7 ∗ k + 6

day week mindist(day, k, week) = k DIV 7
maxdist(day, k, week) = (k + 6) DIV 7

year day mindist(year, k, day) = 365 ∗ (k − 1) + 1 + ((k − 1) DIV 4)
maxdist(year, k, day) = 365 ∗ (k + 1) + (k DIV 4)

year month mindist(year, k, month) = 12 ∗ (k − 1) + 1
maxdist(year, k, month) = 12 ∗ (k + 1) − 1

month year mindist(month, k, year) = k DIV 12
maxdist(month, k, year) = (k + 11) DIV 12

bweek bday mindist(bweek, k, bday) = 5 ∗ (k − 1) + 1
maxdist(bweek, k, bday) = 5 ∗ k + 4

bday bweek mindist(bday, k, bweek) = k DIV 5
maxdist(bday, k, bweek) = (k + 4) DIV 5

bweek week mindist(bweek, k, week) = k
maxdist(bweek, k, week) = k

bday day mindist(bday, k, day) = k + (2 ∗ (k DIV 5))
maxdist(bday, k, day) = k + (2 ∗ ((k + 4) DIV 5))

bweek day mindist(bweek, k, day) = 7 ∗ (k − 1) + 3
maxdist(bweek, k, day) = 7 ∗ k + 4

Table 1: Computation of mindist() and maxdist()

The method we have implemented is based on a table lookup for each pair of
source and target granularities. Each table entry contains a formula for mindist(k)
and maxdist(k) having k as the only variable. Intuitively, each formula is based
on the relationship between the structures of the two granularities. In some cases
the formulas are trivial, but this is not true in general. For example, in order to
derive the formula mindist(month, k, year), it is sufficient to consider that each
year is made of 12 months; indeed that formula is k DIV 12.

Less intuitive is how to evaluate mindist(bday, k, hour), since we have to take
into account noncontiguous granules. In Table 1 we report some of the formulas
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Origin Target Computation of mindist(), maxdist()

month day mindist(month, k, day) = mindist(month, k MOD 12, day)+
365 ∗ (k DIV 12) + ((k + 10) DIV 48)

maxdist(month, k, day) = maxdist(month, k MOD 12, day)+
365 ∗ (k DIV 12) + ((k + 37) DIV 48)

Table 2: Computation of mindist(month, k, day) and maxdist(month, k, day)

involving a quite rich set of granularities. Note that, according to the algorithm,
the values of mindist() need to be computed only for k ≥ 1; Hence, for example,
our formula mindist(year, k, day) does not give a correct value for k = 0 (it gives
−364 while the value, considering leap years, should be −365), but the algorithm
would correctly compute the desired value, since −maxdist(year, 0, day) would
be used.

There are pairs of source and target granularities for which is particularly
complex to derive a direct formula. This happens in particular when the granules
of the source granularity have different sizes in terms of the target granularity,
as for example, in the computation of mindist(month, k, day). Our choice in this
case is to precompute the value of the distance functions for some values of k (less
than the number of granules of the source granularity in the common period of
the two granularities). For example, in order to compute mindist(month, k, day)
and maxdist(month, k, day), we precompute them for k = 0, . . . , 11 based on
their definition, and obtain all other values by the formulas in Table 2.

A library of formulas for common granularities can definitely speed up the
conversion process. For cases in which formulas do not exist yet, and are not
trivial to derive, we may consider an alternative conversion algorithm based on
the relationship of each of the source and target granularities with the bot-
tom granularity. A preliminary version of such an algorithm was illustrated in
[Bettini et Al. 98a]. However, that method introduces an additional source of
approximation.

5 Application of direct conversions

Given a constraint network, we can derive a logically implied network in terms
of a target granularity H by applying the conversion algorithm to each con-
straint for which a conversion into H is allowed. The following example shows
the derivation of an implied network following the steps of the algorithm and
the implementation techniques illustrated in the previous section.

Example 2. Suppose we want to derive from the network in Fig. 1 an implied
network in terms of business days. This means the constraints on arcs (X1, X3)
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and (X2, X3) must be converted. Considering [2, 2] b-week, the lower bound is 2,
hence we must compute mindist(b-week, 2, b-day). Looking at Table 1, this value
is 5 ∗ (2− 1)+1 = 6. For the upper bound, we have maxdist(b-week, 2, b-day) =
5∗2+4 = 14. Accordingly to the algorithm, we obtain the new TCG [6, 14] b-day.
In Example 1, we have seen that, considering the whole network, the TCG on arc
(X2, X3) can be converted in terms of b-day and b-week, despite its granularity
is day. Its conversion accordingly to the algorithm and Table 1 is [0, 3] b-day,
and the resulting implied network in terms of b-day is shown in Fig. 4.

X3X0

X 2

X 1
[6,14]b−day

[1,6]b−day [0,3]b−day

[−1,1]b−day

Figure 4: Implied network in terms of b-day

Similarly, we can obtain an implied network in terms of b-week shown in
Fig. 5. In this case, the constraints to be converted are those on arcs (X0, X1),
(X0, X2) and (X2, X3). Accordingly to the algorithm, we obtain [−1, 1] b-week,
[0, 2] b-week, and [0, 1] b-week, respectively.

X3X0

X 2

X 1
[2,2]b−week[−1,1]b−week

[0,2]b−week [0,1]b−week

Figure 5: Implied network in terms of b-week

6 Conclusion

In this paper we proposed an algorithm and implementation techniques for the
conversion of temporal constraints in terms of different granularities. By apply-
ing the algorithm, it is possible to derive a new constraint network in terms of a
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single target granularity which is implied by the original set of constraints. The
conversion algorithm can also be integrated with arc and path consistency tech-
niques for constraint propagation [Dechter et Al. 91, Bettini et Al. 02a], leading
to the derivation of implicit constraints, and to the refinement of existing ones.
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