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Abstract: Recent attempts to perform formal knowledge representation and reasoning in cell 
biology have presented new challenges to spatial reasoning. In this paper we formalize two 
distinct notions of containment that were so motivated and which are relevant to reasoning 
about physical systems, a notion of being inside and a notion of being restricted.   We develop a 
formal vocabulary for purposes of representing and reasoning about restrictive containment and 
formalize three kinds of accessibility that are each salient to attempts to reason about the 
possibility of interaction between pairs of objects in a system.  We also consider the relation of 
this calculus to the well known Region Connection Calculus and related calculi for reasoning 
about containment.  Finally, we discuss methods for implementing in a context of uncertainty, 
within a planning system and discuss an application to some simple representation and 
reasoning tasks in virology.  
 
Keywords: qualitative spatial reasoning, molecular biology, spatial accessibility, Bayesian 
reasoning 
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1 Introduction 

In this paper we define a calculus for representing and reasoning about accessibility 
between objects in a system.  The formalism is intended to be compatible with and an 
extension to existing qualitative spatial reasoning methods.  We also discuss methods 
for simplifying reasoning and implementations of the calculus within a Bayesian 
reasoning system.   It is motivated by a desire to extend work that has been done to 
represent central notions in biological structure [Cohn 01] and biological process 
simulation [Cui et al 92].   However, we anticipate that the formalism is sufficiently 
general to be applicable to any system in which containment is relevant, e.g., 
computer network security, building security analysis, etc.   

In the first section below, Section 2, we briefly discuss the knowledge 
representation issues that motivated this effort.  In Section 3 we present a simple set 
of axioms for representing the relatively generic spatial relations required to define 
restrictive containment and accessibility.  We compare this scaled-back spatial 
representation with the Region Connection Calculus (RCC-8) [Randell et al 92] and 
[Cohn et al 97] in Section 3.1.  In Section 4 we extend the initial formalism for 
purposes of representation and reasoning about the restrictive containment and 
accessibility.  We conclude in Section 5 with detailed examples that illustrate how the 
formalism could be implemented in a wide range of reasoning systems and contexts. 

We assume a second order logic or a many-sorted first order universe containing 
physical objects partitioned into non-containers and potential containers, objects that 
could contain other objects.   However, we do not separate out these sorts here, 
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quantifying instead over all objects in our domain.  The logic required for this 
representation becomes second-order because we quantify over first-order relations in 
two supplementary definitions that we introduce for type-level reasoning, see Section 
4.3. 

In the specification we reserve italicized lowercase variables from the end of the 
alphabet, v,w,x,y,z, to range over the physical objects in a physical system and 
italicized uppercase letters from the middle of the alphabet, P,Q,R, act as variables 
ranging over the first-order relations.  We use a,b,c,d as constants denoting specific 
physical objects.  We denote numbered axioms with an ‘A’, e.g., (A2) is the second 
axiom, definitions with a D and provable propositions with a P. 

2 Containment 

Before we introduce containment vocabulary, it is useful to consider two notions of 
containment that are relevant to reasoning about physical systems.   The first is a 
strictly spatial notion concerning the location of one object with respect to the 
boundaries of another.  Something contains something else, depending on the context, 
if and only if the object is inside, located within the convex hull of, encircled by, 
wrapped by, or “located within” the second object.  In this sense of containment, a car 
contains passengers, playgrounds contain children and a stew contains potatoes, etc. 
Let us call this the locational sense of containment. However, there is a second notion 
of containment corresponding to the notion that a prison contains a prisoner in a way 
that it does not contain a prison guard.  This second sense of containment involves 
being constrained from exiting the object which may also contain it in a locational 
sense, i.e., the second sense has to do with accessibility.  Let us refer to this as the 
restrictive sense of containment.  The restrictive sense of containment should be of 
interest in attempts to model dynamic physical systems.  Useful models of such 
systems may require the ability to represent and reason about the accessibility of 
objects or spaces within the system. 

In the rest of this paper, unless otherwise noted, we use ‘containment’ in this 
specialized “restrictive” sense.  When we intend the locational sense of containment 
we simply use ‘inside’ or, if absolutely necessary, refer to “locational containment” to 
disambiguate from the restrictive notion of “contains”. 

Before launching into the formalization, it is useful to briefly consider the 
representational needs that motivate this effort.   It is noteworthy that much useful 
work has been done in the area of qualitative spatial reasoning and topology for 
purposes of reasoning about the ability of the movement of objects in an environment.   
As noted in [Bennett et al 2000]: 
 

The fundamental problems of kinematics are of the forms: can a rigid body move between 
two locations within a confining environment and, if so, what is a possible path between 
the two locations? 

 
This describes the problem with which we concern ourselves here.   Existing 

approaches have done important work in giving a theory of kinematics in purely 
qualitative terms.   In particular, [Bennett et al 2000] give a highly detailed qualitative 
calculus for representing and reasoning about the constraints on rigid bodies in a 
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system and the extent to which the relative sizes and proximity of the objects in the 
system prevent or allow movement of such rigid bodies.   The work in [Bennett et al 
2000] generalizes and builds on earlier related efforts including [Schwartz et al 1983] 
[Davis 87], [Davis 88] and [Mukerjee et al 95].  In this paper we attempt to 
characterize the different kinds of accessibility that can exist between pairs of objects.  
Determining whether some of the relations we define below hold between a pair of 
objects may involve the implementation of methods and formalisms specified in the 
aforementioned articles.  (However, below we discuss how cellular biology provides 
example of situations not easily analyzed in these terms.)   We also focus on how one 
might use knowledge of the accessibility between pairs of objects to reason about 
cross system accessibility, e.g., whether given the set of objects between a and b in 
some physical system and the accessibility relations that hold between any given pair 
of objects in our domain of interest, how do we efficiently determine whether and to 
what extent a is accessible to b?    

Hence, we are less concerned with relative sizes of objects and more concerned 
with developing a formal system for representing the relative constraints that two 
objects can pose to each other, not necessarily on the basis of size and without 
necessarily assuming that pairs of objects maintain rigidity.   Cell biology provides 
interesting examples such as cases of diffusion across lipid bilayers.  In a standard cell 
biology textbook we encounter claims that small nonpolar molecules, unlike charged 
molecules, such as molecular oxygen and carbon dioxide, readily diffuse across a 
lipid bilayer.   

 
The smaller the molecule and, more importantly, the fewer its favorable interactions with 
water (that is, the less polar it is), the more rapidly the molecule diffuses across the 
bilayer. [Alberts 98] 
 

And 
 

… Lipid bilayers are highly impermeable to all ions and charged molecules, no matter 
how small. [Alberts 98] 
 

These examples underscore some important facts about containment.  First, 
whether or not an object restrictively contains another object is not solely a function 
of object size or easily characterized topological features.  Hence, it is not possible to 
reason about containment solely in terms of the size of the objects and the size of the 
pores in the potential containers.  An object’s ability to exit another object may be 
based on its size or features of the contained object that have little to do with size-
related or topological features of the container.  Note, for instance, that an mRNA 
molecule in a eucaryotic cell is able to leave the cell after it has undergone capping 
and polyadenylation.  These processes do not decrease the size of the molecule but 
they alter its stability and ability to pass out of the nucleus intact.  A simpler example 
of how changes unrelated to “pore” size in a container can change its containment 
status is unlocking the door to a prison cell.  The point is that state descriptions in a 
qualitative reasoning system will often have to pay explicit attention to issues of 
containment and permeability in any given state description.  Process descriptions 
will similarly require consideration of how processes affect containment and 
permeability.  It would be difficult to reduce these properties to the spatial properties 
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typically considered in qualitative spatial reasoning and kinematics.  Hence, in some 
applications the properties discussed below may simply be applied as primitive 
relations, i.e., properties not easily subjected to further analysis, while in other 
situations it may be possible to use extant methods and reasoning calculi, such as 
those in [Randell et al 00], to determine whether or not the properties do or do not 
apply between a pair of objects. 

3 Basic Spatial Relations 

A prerequisite for restrictive containment is that the contained object be in the 
appropriate spatial relationship with potential container, i.e., that the contained object 
be inside the potential container.  The inside relation denotes the relationship of 
locational containment and as such is quite general by design.  For example, we do 
not use mereological notions to clarify its intended meaning.  Just as we allude to 
different senses of locational containment when we say that a “building contains 
people” as compared to when we say that the “salad contains carrots” or especially 
when we say things like “the firewall contains the entire network”, we want to avoid 
imposing a very particular spatial implementation on the notion of inside as we 
develop it below.   

The inside relation is given as a primitive of the system.  inside is an irreflexive 
(A1) asymmetric (A2) and transitive (A3) relation as specified in 1-3 below: 

 
(A1) ∀x[¬inside(x,x)]  
(A2)  ∀x∀y[inside(x,y) → ¬inside(y,x)]  
(A3) ∀x∀y∀z[[inside(x,y) ∧ inside(y,z)] → inside(x,z)] 

 
The second primitive relation is the outside relation.  A good comparison point 

here is the “OUTSIDE” relation presented in [Randell et al 92].  In order to keep our 
vocabulary generally applicable we leave our definition more general but it should not 
be inconsistent with the more specific “OUTSIDE” definition.  We discuss this 
further below.  We intend that outside apply to most situations in which neither of two 
distinct objects bear the inside relation to the other, but see overlaps below.  The 
outside relation is irreflexive, above, and symmetric.  Also, outside(x,y) is 
inconsistent with inside(x,y), i.e., inside and outside cannot simultaneously hold of the 
same pair of objects.  
  

(A4) ∀x[¬outside(x,x)] 
(A5) ∀x∀y[outside(x,y) → outside(y,x)]  
(A6) ∀x∀y[inside(x,y) → ¬outside(x,y)]  

 
For completeness sake, we introduce three other basic spatial relations as well: 

overlaps, equals, and inside-1.  overlaps is irreflexive (A6), symmetric (A7) and 
neither transitive nor antitransitive.  Also, 

 
(A7) ∀x[¬overlaps(x,x)] 
(A8) ∀x∀y [overlaps(x,y) → overlaps(y,x)]  
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(A9) ∀x∀y[overlaps(x,y) → [¬inside(y,x) ∧ ¬outside(y,x)]] 
Typically, in a RCC-8 implementation of such vocabulary, a necessary condition 

for the overlaps relation holding of two distinct objects is that some proper part of one 
of the object be found within the region defined by the convex hull of the other.  
equals is the equality relationship and is, of course, reflexive, symmetric and 
transitive.   

 
(A10) ∀x[equals(x,x)]  
(A11) ∀x∀y[equals(x,y) → equals(y,x)] 
(A12) ∀x∀y∀z[[equals(x,y) ∧ equals(y,z)] → equals(x,z)] 
(A13) ∀x∀y[equals(x,y) → [¬overlaps(x,y) ∧ ¬inside(x,y) ∧ ¬outside(x,y)]] 

 
We introduce the relationship of inverse insideness, inside-1, so as to round out 

the set of basic relations.  It can be defined, however, in terms of the inside relation. 
 
(D1) inside-1(x,y) ≡def  inside(y,x) 
(A14) ∀x∀y[inside-1(x,y) → [¬overlaps(x,y) ∧ ¬equals(x,y) ∧ ¬outside(x,y)]]  
(D2)  atLeastPartiallyInside(x,y) ≡def [inside(x,y) ∨ overlaps(x,y)] 

 
From (D1) and (A1-A3) it follows that inside-1 is irreflexive, asymmetric and 

transitive.  The result is a set of relations, {inside, inside-1, outside, equals, overlaps}, 
that is pair-wise disjoint and jointly exhaustive, i.e.,  

 
(A15) ∀x∀y [inside(x,y) ∨ outside(x,y) ∨ overlaps(x,y) ∨ equals(x,y) ∨  

inside-1(x,y)] 
 

To facilitate reasoning about restrictive containment we introduce three other 
spatial relations.  dirInside denotes the relation of being directly inside.  dirOutside 
denotes the relation of being directly outside some other object and not encompassed 
by any other object.  The between relation is ternary and holds when for a pair of 
objects there is some third object such that one element of the pair is outside of it 
while the other is inside it.  The precise definition of these relations is below: 
 

(D3) dirInside(x,y) ≡def [inside(x,y) ∧ ¬∃z[atLeastPartiallyInside(z,y) ∧ 
inside(x,z)]] 

(D4) between(x,y,z) ≡def [inside(x,z) ∧ outside(y,z)] 
(D5) dirOutside(x,y) ≡def [outside(x,y) ∧ ¬∃z[between(x,y,z)] ∧ ¬∃v[(between 

(y,x,v)]] 
 
(D4) and (D5) and (D2) allow us to demonstrate (P1).  The proof is straightforward 
and we do not print it here. 

 
(P1) ∀x∀y[[dirOutside(x,y) ∧ inside(y,z)] → atLeastPartiallyInside(x,z)] 

 
Because inside(x,y) is implied by dirInside(x,y) we can demonstrate its 

irreflexivity (P2) and asymmetry (P3).  For instance, consider the proof for 
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irreflexivity.  Suppose that dirInside was not irreflexive, i.e., for some a, 
dirInside(a,a).  By (D3) inside(a,a) but by (A1), ¬inside(a,a).  Hence, we can reject 
the hypothesis that dirInside is irreflexive.  The proof for the asymmetry of dirInside 
would proceed similarly. 

 
(P2) ∀x[¬dirInside(x,x)] 
(P3) ∀x∀y[dirInside(x,y) → ¬dirInside(y,x)] 

 
We can demonstrate that dirInside is anittransitive as follows: 
 
Suppose that dirInside was not anittransitive, i.e., for some a,b,c, dirInside(a,b), 
dirInside(b,c) and dirInside(a,c).  Then inside(a,c) by (D3)  and 
¬∃v[atLeastPartiallyinside(v,c) and inside(a,v)].  But, also from (D3) and the given 
information, inside(b,c) and inside(a,b).   Hence, there can be no such a,b,c.  dirInside 
is antitransitive.   

 
(P4) ∀x∀y∀z [[dirInside(x,y) ∧ dirInside(y,z)] →   ¬dirInside(x,z)] 

 
Given (D5), (A4) and (A5) it is also easy to show that dirOutside is irreflexive and 
symmetric. 
 

Figure 1 illustrates the difference between dirInside and inside.  In the pair of 
ovals on the left, dirInside(a,b) but on the right, ¬dirInside(a,b) because 
between(a,b,c).  Figure 2 helps to clarify the between relation.  In Scenario 1 of Figure 
2, ¬between(a,c,b), despite its consistency with natural language use of ‘between’, 
but the relation would apply to the objects in Scenario 2 because inside(a,b) and 
outside(c,b) 

 
Figure 1:  (i) dirInside(a,b) and (ii) not dirInside(a,b) 
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Figure 2: Illustration of the ’between’ relation 

3.1 Comparison with Other Meronymy Work  

Many implementations of the locational sense of ‘inside’ may benefit from comparing 
the aforementioned primitive notion to the notions of insideness as spelled out in 
[Randell et al 92].  The authors offer an axiomatization that captures the typical 
meaning of ‘inside’.  Let ‘RegionFn(x)’ denote the region occupied by x in our state 
description and ‘ConvHullFn(x)’ denote the region encompassed by the convex hull 
of the object x while discrete(x,y) means that x and y have no parts in common.  The 
domain in [Randell et al 92] is the set of spatial regions rather than objects so we 
translate their definition in (R). 

 
(R) inside(x,y) ≡def [discrete(RegionFn(x),RegionFn(y)) ∧ part(RegionFn(x), 

ConvHullFn(y)] 
 

Presumably (R) will be consistent with many applications of the inside relation 
we offer here but it can be easily abandoned insofar as nothing in the remainder of the 
accessibility and containment formalization we develop depends on this.  Howver, for 
purposes of illustrating some of these relations we assume that something like the (R) 
definition applies. 

For most applications of this calculus, an object a is inside an object b when all or 
almost all of a’s parts are found inside the boundaries of object b.  It suffices to note 
that whether or not an object a is inside an object b in a system at a given point in 
time will supervene on facts about a’s spatial location relative to b at that point in 
time.  The necessary and sufficient conditions for insideness will depend on the kind 
of accessibility that we are interested in.  In fact, perhaps the notion of spatial 
insideness isn’t necessary for accessibility reasoning at all.  One could imagine 
applying the reasoning system below to some network security system for bank 
accounts in which the notion of insideness is a metaphor for being guarded by some 
security system (e.g., inside the firewall) in which case the spatial notion of insideness 
is irrelevant, so we should be careful not to unnecessarily restrict ourselves to spatial 
applications.  Nevertheless, in systems in which we want to reason about containment 
some kind of insideness will be a prerequisite to being contained.  
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Finally, if we wish to relate this system to a system for reasoning in two 
dimensions and implement only the RCC-8 relations we might naturally map our 
relations as follows. 

Let us assume that we are considering a fixed system, i.e., a set of objects located 
at a specific space-time point.  

 
inside(x,y) ≡def properPart(RegionFn(x),ConvHullFn(y)) 
outside(x,y) ≡def discrete(RegionFn(x),ConvexHullFn(y)) 
overlaps(x,y) ≡def partiallyOverlaps(ConvexHullFn(x),ConvexHullFn(y)) 

 
Note that if we were to implement the above definitions within our calculus, we 

would be able to prove the following assertion, (A16).  However, we will posit it as 
an axiom: 

 
(A16) ∀x∀y∀z[[inside(x,y) ∧ inside(x,z)]→ ¬outside(y,z)] 

 
This axiom allows us to demonstrate the following theorem: 
 

(P5) ∀x∀y[[dirInside(x,y) ∧ ¬inside(y,z) ∧ ¬equals(y,z)] → ¬inside(x,z)] 
 
This proof would proceed from the fact that (D3) and the third conjunct in the 

theorem’s antecedent entail that outside(y,z) and showing that inside(x,z) would 
thereby generate a contradiction because of (A16), i.e., it would be the case that 
inside(x,z) and inside(x,y), which would entail that ¬outside(y,z).   

It is also useful to attempt to relate the inside relation upon which we base our 
definition of containment with efforts to characterize the notion of parthood.  Under 
many senses of ‘parthood’ it makes sense to infer that when a is part of b, a is 
contained by b.  However, note that if two objects x and y are such that inside(x,y), we 
can imagine many senses in which this did not imply a parthood relation.  For 
example, a tourist in the Empire State Building is not necessarily a part of the Empire 
State Building, but only shares a part of its spatial location.  Hence, it is only a limited 
sense of ‘parthood’ to which we would want inside to commit us.  If we consider the 
taxonomy of parthood relations developed in [Winston et al 87], it is conceivable that 
our notion of containment would be relevant to the following part-whole relations: 
“component-object” (the components physically belong to the composite) “portion-
mass” (components and composite are of the same nature), “place-area” (link an area 
to place or location) and, perhaps, “member-collection”.   The kinds of part-whole 
reasoning to which our containment formalization would most readily apply are those 
in which one can make clear sense of what it would be for the part to leave the whole 
and/or enter another for it is in terms of this ability that containment is defined. This 
conceptualization is difficult in the cases of the other kinds of part-whole relations 
identified in [Winston et al 87], i.e., “feature-event”, “phase-activity” and “stuff-
object”.    

In summary, we have purposely kept our suite of spatial representation relations 
relatively unconstrained so as to facilitate application to a wider variety of 
applications, or in other words, to broaden the set of models that will be consistent 
with the formal rules.  Our notions of accessibility do not rely on the ability to make 
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fine grained spatial distinctions about juxtaposition and contact.  We stress that the 
arguments for our spatial relations are the objects themselves rather than the regions 
occupied by the objects.  This is essential because the permeability of barriers and 
containers requires consideration of the objects rather than the regions that they 
occupy.   

4 Accessibility 

Here we turn to the question of accessibility.  Informally, when we claim that b is 
accessible to a we mean that either there is no object z such that between(a,b,z) or 
between(b,a,z) or the objects between a and b are unable to restrict a from getting at 
b.  Formalizing the restrictiveness of objects requires the introduction of two more 
primitive relations, inPerm and outPerm.  inPerm(x,z) is intended to represent the fact 
that the perimeter of z is permeable to x such that x could pass from being directly 
outside (dirOutside) z to being directly inside (dirInside) z.  Similarly, outPerm(x,z) is 
intended to represent the fact that the perimeter of z is permeable to x such that x 
could pass from being directly inside (dirInside) z to being directly outside 
(dirOutside) z.  Both relations are defined as irreflexive. 

 
(A17) ∀x[¬inPerm(x,x)] 
(A18) ∀x[¬outPerm(x,x)] 

 
We require these extra notions because accessibility concerns not just the spatial 

configurations but the extent to which the configured objects present a barrier.  The 
materials in the cupboard under the sink become accessible to the toddler if she is able 
to open the cupboard door, whether the door is closed is irrelevant to accessibility 
given the door-opening skill.  We might spell out the meaning of these relations in 
modal terms, e.g., inPerm(x,y) means that, given the current state of the system, 
dirOutside(x,y) and there exists some z such that dirInside(z,y), ◊[dirInside(x,y) 
∧contact(x,z)] where contact represents a disjunction of the relations PO (partially 
overlaps) and EC (externally connected) [Cohn et al 97].  However, we leave them as 
primitive notions for now.  We also define permeable(x,y) as follows: 

 
(D6) permeable(x,z) ≡def [inPerm(x,z) ∧ outPerm(x,z)] 

 
Our thinking here is that permeability is best understood in terms of breaching.  If 

an object is able to transverse another object only if a breach of some sort has 
occurred, then we would not deem the object permeable.   If, as a default rule, object 
a is able to pass through object b, then we might apply the permeability relation 

In many applications it is not felicitous to insist that either inPerm(a,b) or 
¬inPerm(a,b) for any two objects a and b in the system.  As our cell biology quotes 
above indicate, the ability of molecules to diffuse through a cell membrane is a state 
of affairs that requires representation of degree of permeability.  In general, 
permeability often does in fact admit of degree.  Within systems for which partial 
permeability is relevant to a state description we may need to implement this system 
in a Bayesian network, as we indicate in Section 5.1 below, so as to allow for the 
specification of probabilities of penetration for given objects or object types. 
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We also note the significance of the ability to tease out the inward-outward 
direction of the permeability relation.  It is an important characteristic of many 
physical systems, not to mention an untold number of television programs involving 
characters stuck in storage closets, that objects are able to easily pass into a container 
but are able to leave the container only with great difficulty.  In other words, 
inPerm(x,z) and ¬outPerm(x,z).   

Given this notion of access and permeability, we can now define containment as 
follows: 

 
(D7) containedBy(x,y) ≡def [inside(x,y) ∧¬outPerm(x,y)] 
(D8) blockedBy (x,y) ≡def [outside(x,y) ∧  ¬inPerm(x,y)] 
 

In the sections below, when discussing an object, y, we refer to the objects such 
that blockedBy(x,y) as a ‘barrier’ with respect to y and the objects such that 
containedBy(x,y) as a ‘container’ with respect to y. 

 
These new relations give us a means by which to define accessibility for any two 
objects.  Consider the following relation: 

 
(D9)  inBarrierBetween(x,y,z) ≡def [blockedBy(x,z) ∧ inside(y,z]) 

 
Assertions of the form inBarrierBetween(a,b,c) might be informally interpreted as “a 
cannot access b because c is between them and blocks its progress.” 

 
(D10) outContainerBetween(x,y,z) ≡def [containedBy(y,z) ∧ outside(x,z)] 

 
Assertions of the form outContainerBetween(a,b,c) can be interpreted to mean that b 
cannot access a because b is contained by c.  Finally we define the notion of 
accessibility of one object to another: 

 
(D11) acc(y,x) ≡def ¬∃z[inBarrierBetween(x,y,z) ∨ outContainerBetween(y,x,z)] 

 
As we would expect, from these definitions, we can prove assertions such as the 
following: 

 
(P6) ∀x∀y∀z[[inPerm(x,z) ∧ dirInside(y,.z) ∧  dirOutside(x,z)] → acc(y,x)] 
(P7) ∀x∀y∀z[[outPerm(x,z) ∧ dirOutside(y,z) ∧  dirInside(x,z)] → acc(y,x)] 

 
We prove (P6), proof of (P7) would proceed similarly.  
 

Proof. Consider some arbitrary a,b,c, such that the antecedent of (P6) holds, i.e., 
inPerm(a,c), dirInside(b,c), dirOutside(a,c).   
 
Let us assume that ¬acc(b,a).  Hence, let us suppose that there is some d such that 
[inBarrierBetween(a,b,d) ∨ outContainerBetween(b,a,d)] (1) 
 
Suppose that inBarrierBetween(a,b,d) 
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Then, by (D9) blockedBy(a,d) (2) and inside(b,d) (3).  By (D8) and (2), outside(a,d) 
(4) and ¬inPerm(a,d) (5).   
 
Consider the relationship between d and c.  By (A15), either inside(d,c), 
outside(d,c), inside-1(d,c), equals(d,c), overlaps(d,c).   
 
If equals(d,c), then inPerm(a,d) and ¬inPerm(a,d).  So ¬equals(d,c). 
 
From (D2), (3) and the fact dirInside(b,c) we can infer that 
¬atLeastPartiallyInside(d,c), i.e., ¬inside(d,c) and ¬overlaps(d,c).   
 
But inside-1(d,c), means that inside(c,d) by (D1), so, given (4), we can show that 
between(c,a,d) contrary to the fact that dirOutside(a,c) which, by (D5) implies that 
¬∃z between(c,a,z).  So ¬inside-1(d,c). 
 
So, ¬inBarrierBetween(a,b,d). 
 
If (1) and ¬inBarrierBetween(a,b,d), then, outContainerBetween(b,a,d).  Suppose 
outContainerBetween(b,a,d), then, from (D10), containedBy(a,d) (6) and  
outside(b,d)  (7) and from (6) and (D7), inside(a,d) (8) and ¬outPerm(a,d) (9). 
 
Consider the relation between d and c.   
If ¬equals(d,c), then, from (D4), (7) and (8),  between(a,b,d).   But dirOutside(a,c), 
(hyp.)  
so, from (D5),  ¬∃v[between(a,b,v)].  Hence ¬¬(equals(d,c) or equals(d,c). 
 
But, consider equals(d,c).  From our initial hypothesis, dirOutside(a,c) and so, from 
(D5), outside(a,c).  But if equals(d,c) and (8), we can show inside(a,c).  But given 
(A6), this generates a contradiction.  Hence, ¬outContainerBetween(b,a,d).   
Hence, the assumption that ¬acc(b,a) leads to a contradiction. So acc(b,a) and we 
demonstrate the theorem by universal generalization. QED. 

 
The utility of the relations described in (D7)-(D11) is that they facilitate 

description of the state of a physical system at a given moment in time and the 
analysis of the system for potential problems and possibilities in terms of the 
accessibility of certain objects.  For example, we can consider vulnerabilities in a 
computer network, the effectiveness of a security alarm system or perform more 
accurate in silico experiments about biological systems.  Given a representation of a 
system in terms of the inside and outside relation as well as the expression of the 
capabilities of the objects in the system to easily transverse containers, we are now 
able to pose queries about unidirectional accessibility.  Hence, if we are concerned 
about preventing object a from accessing object b, we can ask: 

 
inbarrierBetween(a,b,?x) 
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In other words, “Which barriers block a from coming in to meet b?” If we want to 
query as to whether there is anything that keeps b in and prevents it from accessing a, 
we can ask 

 
outContainerBetween(b,a,?y) 

 
If there are no bindings for either of these we conclude acc(a,b).  Note that acc is 

not a symmetric relationship as there may be objects, z such that inside(a,z), 
inPerm(b,z) but ¬outPerm(a,z).  In other words, a is accessible to b but b is not 
accessible to a.  

Observe that the above rules concerning accessibility assume that in the attempt 
to generate a path through containers and barriers, the barriers and containers cannot 
themselves be used to transport objects in the system and that the accessed object will 
not itself move so as to become more accessible.  However, let us briefly consider 
how to reason about accessibility in the situations in which: 

 
a) Both objects move: the containers and barriers remain fixed but the two 

objects of interest could both exploit permeability properties in generating a 
path to a state in which both objects are accessible to each other.  We call 
this “weak accessibility.” 

 
b)   Containers move: Some or all of the containers (in the locational sense, at 

least) and barriers do not remain stationary but are also able to exploit 
permeability properties and transports container contents such that contained 
objects become accessible to each other.  For example, consider a border 
crossing that must be crossed by car and not on foot.  We might say 
outPerm(carA,BorderC) or outPermeableType(Car,BorderC)(where ‘Car’ 
denotes the property “being a car”, see below).   The border is outPerm for 
the car but not for the pedestrian.  However, since the car is inPerm and 
outPerm for the pedestrian, s/he can use this car to cross the border.  Of 
course, this is the accessibility maneuver exploited in the Trojan Horse story 
of mythology.  Let us call this “indirect accessibility.”  

4.1 Weak Accessibility 

Suppose that we now want to consider two objects a and b from the perspective of 
determining whether or not they are able to exploit existing permeability properties in 
the various objects that serve as potential barriers and containers so as to be able to 
move to a state such that ¬∃x[between(a,b,x)].  When it is possible for a and b to 
come into contact by moving from their respective initial location by traversing 
permeable boundaries, then we say that weaklyAcc(a,b).    

But when else can we claim that the weaklyAcc relation holds between two 
objects?  We need to determine whether there are any objects in the system that are 
accessible to both of the objects in question.  
 

(D12) weaklyAcc(x,y) ≡def ∃z[[[dirInside(x,z) → acc(x,y)] ∧ [dirInside (y,z) → 
acc(y,x)]] ∨ [[dirOutside(y,z) → acc(y,x)] ∧ [dirOutside(x,z) → 
acc(x,y)]]] 
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This definition states that if there is some point in the system accessible to both a 

and b,  z in the definition, then the objects are accessible to each other.  From the 
definition of weaklyAcc it is straightforward to prove the symmetry of weaklyAcc and 
that weaklyAcc(x,y)  is implied by acc(x,y) and acc(y,x).   

 
(P6) ∀x∀y[weaklyAcc(x,y) → weaklyAcc(y,x)] 
(P7) ∀x∀y[[acc(x,y) ∨ acc(y,x)] → weaklyAcc(x,y)] 

4.2 Indirect Accessibility 

The other accessibility problem that we want to address is that of the potential ability 
of objects to move objects that they contain.  Consider Figure 3.  Suppose that we 
wanted to know whether acc(c,d).  Further suppose that outPerm(c,b), ¬inPerm(d,a) 
and that outPerm(b,a) but ¬outPerm(c,a).  This means that c would not be able to exit 
b and then pass through a.  However, if b were to exit a while containing c, and then c 
were to exit b, c would be able to access d.  Let us call such accessibility indirectAcc.  

 
Figure 3: Illustration for explaining indirect (Trojan Horse) accessibility 

 
We define indirect accessibility, indirectAcc, as follows:  
 

(D13) indirectAcc(x,y) ≡def ∃v∃z[[[inside(x,v) ∧ inside(y,z) ∧ weaklyAcc(v, z)] ∧ 
[dirOutside(v,z) → acc(y,x)] ∧ [dirOutside(z,v) → acc(x,y)]] ∨ 
[[inside(x,v) ∧ weaklyAcc(v,y)] ∧ [dirOutside(y,v) → weaklyAcc(x,y)]] ∨ 
[[inside(y,z) ∧ weaklyAcc(x,z)] ∧ [dirOutside(x,z) → weaklyAcc(x,y)]]] 

 
The three main disjuncts in this lengthy definition correspond respectively to the 

situations in which both x and y could be transported by one of the objects to which 
they bear the inside relation, the situation in which just y would need to be transported 
by one of its containers and the situation in which just x would need to be transported 
by one of its containers.  Of course, we can imagine this being iterated again so that 
we determine whether the containers of x and y are indirectly accessible, etc. 

 
4.3 Relations for Second Order Objects 

Much reasoning about accessibility and containment occurs at the type level.  For 
example, that a lipid bilayer can allow a particular water molecule to pass through 
should be derivable from a more general law relating cells with lipid bilayer 
membranes and water rather than from an explicit assertion about each water 
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molecule in the system we’re representing.  Hence, we appeal to second order objects 
or relations in our domain.  We posit relations that hold first between first order 
objects and unary relations and between pairs of relations.  These second order terms 
would be introduce only for easing representation, i.e., representing a relation once 
for an entire class or pair of classes rather than once for each individual member.  
They do not add extra containment reasoning functionality. 
 

(D14) inPermeableType(P,x) ≡def ∀y[P(y) → inPerm(y,x)]  
 
and we would define outPermeableType(P,x) in a similar manner, substituting 
outPerm in for inPerm in the definition in (D14). 
 

This instance-type level definition would be useful if we wanted to note that a 
particular object  has achieved inward or outward permeability for a certain kind of 
object.  For example, a leaky raincoat allows water to go through it.  However, 
permeability is typically easily represented as a relation between types.  For example, 
let the relation C be the property of being a cell, or perhaps being encompassed by a 
lipid bilayer.  Let the relation ‘IM’ denote the property of being an ionic molecule.  
Then we note, inPermeableTypes(IM,C).  More generally, we define the 
outPermeableTypes in (D15) and this applies, mutatis mutandis, to inPermeableTypes 
and permeableTypes as well.   

 
(D15) outPermeableTypes(P,Q) ≡def ∀x∀y [[P(x) ∧  Q(y)] → outPerm (x,y)] 

5 Implementations and Applications of the Formalism 

In this section we consider possible implementations of the calculus outlined above.  
In Section 5.1 we explore a method for implementing the formalism within a 
Bayesian network so as to reason about systems in which permeability is 
probabilistic.  In Section 5.2 we consider an implementation of the calculus in a 
planning vocabulary.  Finally in Section 5.3 we consider an application of the calculus 
to some simple representation and reasoning problems in cell biology. 

5.1 Uncertainty Reasoning for Accessibility  

Let us reconsider our earlier cell biology textbook quotation.  Some may have 
objected that the ability of a molecule to “diffuse” across a bilayer is not a Boolean-
valued question as the heretofore presentation of our calculus appears to assume.  
Presumably, cell biologists would argue that this is a question of degree.  We can 
imagine this being true of many accessibility analyses. 

Hence, let us consider a probabilistic system for representing and reasoning about 
accessibility when whether or not inPerm(x,y) or outPerm(x,y) is uncertain for many 
ordered pairs, <x,y> in our system.  Let us illustrate the approach by addressing the 
question of determining acc(x,y) for some pair of objects in a system, i.e., is y able to 
traverse all potential containers or barriers between it and x?  One commences by 
constructing a list of all potential containers and barriers for x and y by taking the set 
of objects Obj={z|between(a,b,z) ∨ between(b,a,z)}.  Let us then define the 
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“impediment list” for <x,y> as an ordering of the elements of Obj such that the first 
element is the object a∈Obj such that dirInside(y,a) or dirOutside(y,a), and then 
define the (n+1)th element as the object z such that that the nth element bears the 
relation dirInside or dirOutside to it.  Hence, if a is the first element in <x,y>’s 
impediment list, then the next element is the object b, such that either dirInside(a,b) 
or dirOutside(a,b).  We can then determine y’s ability to access x by determining its 
ability to pass through each of the elements in the <x,y> impediment list. 

Note that for any element in <x,y>’s impediment list, whether or not y can pass 
through it depends on the permeability of the element and on whether or not y can 
pass through the preceding element in the impediment list.  Where the permeability is 
deterministic, this is a relatively simple query.  However, it is more complicated 
where the permeability of any or all of the impediment list elements is uncertain.  To 
address this we construct a Bayesian network (BN) for calculating y’s capability to 
pass through a potential barrier or container z that appears on an impediment list, as 
illustrated in Figure 4.  The key node in such a BN is the one representing the random 
variable for whether or not y can pass through z (“Obj z Permeable” in Figure 4).  The 
parent nodes for this node will be a node whose possible values are determined by 
whether or not y passes through the item preceding z in the <x,y> impediment list 
(“Prior Obj Permeable”) and a node whose values are the possible permeability states 
of z with respect to y, (“Permeability State”), i.e., whether inBarrierBetween(y,x,z) or 
outContainerBetween(x,y,z).  Whether z is a barrier or container depends, of course, 
on whether the inside or outside relation hold between y and b and whether or 
inPerm(x,z) or outPerm(x,z), so the permeability node in our BN has parent nodes 
whose values are determined by the relative location of x and z (“RelativeLocation”, 
and nodes whose values are determined respectively by whether or not inPerm(x,z) 
(“inPerm(y,z)”)  and whether outPerm(x,z) (“outPerm(y,z)”).  The conditional 
probability table for “Permeability State” is defined deterministically and is shown in 
Table 1.  We can see that it implements the definitions specified in (D9) and (D10).   
 

RelativeLocation inPerm(y,z) outPerm(y,z) PermeabilityState 
inside(y,z) true true PermeableTo 
inside(y,z) true false outContainerBetween 
inside(y,z) false true PermeableTo 
inside(y,z) false false outContainerBetween 
outside(y,z) true true PermeableTo 
outside(y,z) true false PermeableTo 
outside(y,z) false true inBarrierBetween 
outside(y.z) false false inBarrierBetween 

Table 1: Deterministic Conditional Probability Table for "Permeability State" 
Variable 

This BN can be applied successively to each list element where the probabilities 
on the values for “Obj z Permeable” for element n are the inputs to the “Prior Obj 
Permeable” node for element n+1.  Equivalently, as we discuss below, we can 
generate a single BN that reasons over the entire impediment list.  Note that the utility 
of this representation is that at each step we are able to express uncertainty about z’s 
permeability with respect to y.  For example, in Figure 4 the BN allows us to assert 
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that ‘(probability(outPerm(y,b) .9)’ and to indicate that the calculated probability of y 
being able to permeate all elements prior to z in the relevant impediment list is .85.   

 

Obj z Permeable
true
false

76.5
23.5

PermeabilityState
PermeableTo
inBarrierBetween
outContainerBetween

90.0
   0

10.0

RelativeLocation
inside
outside

 100
   0

outPerm(y,z)
true
false

90.0
10.0

inPerm(y,z)
true
false

85.0
15.0

Prior Obj Permeable
true
false

85.0
15.0

 
Figure 4: Bayesian network to calculate permeability of a potential barrier or 
container with respect to an object 
 

A full BN for an impediment list would involve the combination of BN fragments 
of the sort illustrated in Figure 4.  Consider an impediment list <u,v,w> for some pair 
<x,y>.  Suppose dirInside(y,u), inside(y,v) and outside(y,w) and further suppose that 
(probability (outPerm(y,u)) .6), and that (probability (outPerm(y,v)) .43),  and that 
(probability (inPerm(y,w)) .9).  Implementing these probabilities in conjunction with 
the definitional rules on inBarrierBetween and outContainerBetween shows that the 
probability that y will be capable of gaining successive access through all of the 
elements in the relevant impediment list is .36.  See Figure 5. 
 

Obj u Permeable
true
false

60.0
40.0

PermeabilityState

PermeableTo
inBarrierBetween
outContainerBetween

60.0
   0

40.0

RelativeLocation
inside
outside
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   0

outPerm(y,u)
true
false

60.0
40.0

inPerm(y,u)
true
false

 100
   0

Obj v Permeable
true
false

36.0
64.0

PermeabilityState

PermeableTo
inBarrierBetween
outContainerBetween

60.0
   0

40.0

RelativeLocation 
inside
outside
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   0

outPerm(y,v)
true
false

60.0
40.0

inPerm(y,v)
true
false

85.0
15.0

Obj w Permeable
true
false

32.4
67.6

PermeabilityState
PermeableTo
inBarrierBetween
outContainerBetween

90.0
10.0
   0

RelativeLocation 
inside
outside

   0
 100

outPerm(y,w)
true
false

   0
 100

inPerm(y,w)
true
false

90.0
10.0

 
 
Figure 5: Bayesian network to calculate probability that the objects listed in a-chain 
(<u,v,w>) are of permeability and configuration such that acc(x,y). 
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It should be fairly clear how we might go about implementing similar BNs for 
reasoning about weaklyAcc(x,y).  This would involve checking points on the 
impediment list for <x,y> or <y,x> that are potentially accessible to x and y. 

Also, note that an another useful feature of a BN representation such as the one 
illustrated above is that we can implement learning techniques to refine or learn the 
probabilities for inPerm(x,y) and outPerm(x,y) for pairs in the system. 

5.2 Application for Process Reasoning  

Finally, we have presented these relations as binary and ternary relations that hold 
between ordered pairs and ordered triplets of objects.  These relations describe system 
states at a given moment in time.  However, it is also important to note that the 
accessibility and permeability relations are best understood as constraints on how the 
system can progress over time assuming no changes in permeability relations.  For 
example, when we say that acc(a,b) we mean that given the current state of the 
system there is a possibility that a future state of the system will have a and b in 
contact with each other.  Similarly, inPerm(a,b) means that future states requiring a 
passage from a into b are not ruled out.  As such we want to be more explicit about 
how these relations might be implemented in a planning or process-reasoning 
environment in which the accessibility of objects may change.  Below we give some 
examples of how the vocabulary used above might be implemented in actual process 
reasoning.  We indicate how a STRIPS-like planning vocabulary might implement the 
accessibility vocabulary and some examples of how the vocabulary above might help 
in representing some example process descriptions in virology and cell biology.   
 
operation: gainsShell (A, B) (a new container is generated.) 
 precondition:  
 add: (inside A,B) 
  
operation: enters (A,B) (an object enters another objects) 

precondition: (overlaps(A,B) ∨dirOutside(A,B)), inPerm(A,B) 
 add: inside(A,B) 
 delete: outside(A,B) 
 
operation: losesShell (A,B) (some container is removed from the system.  This kind 
of operation is particularly salient to cell biology where membranes often dissolve or 
dissipate.) 
 precondition: inside(A,B) 
 add:  
 delete: inside(A,B) 
 
operation: (exits A,B) (Object A leaves B, but B still exists.) 
precondition: dirInside(A,B),outPerm(A,B) 
 add: outside(A,B) 
 delete: inside(A,B) 
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operation: losesContainmentStatus (A,B) (B becomes permeable to A, i.e., will allow 
A to exit if A is inside B.) 
 precondition: 
 add: outPerm(A,B) 
delete: ¬outPerm(A,B) (if that was stated in the system) 
 
operation: losesBarrierStatus (A,B) (B becomes permeable to A, i.e., will allow A to 
enter if A is outside B.) 
 precondition:  
 add: inPerm(A,B) 
delete: ¬inPerm(A,B) (if that was stated in the system) 

5.3 A Simple Knowledge Representation Example  

We conclude by briefly readdressing the issue that motivated this work initially.  We 
noted that this calculus was motivated by knowledge representation requirements in 
cell biology and so it is fitting to consider how it could be used in representing key 
cell biology concepts.  We briefly consider some aspects of the viral life cycle.  Virus 
life cycles require consideration of membrane components and virus types in order to 
reason about the inPerm relation with respect to the virus and a cell.  The viral life 
cycle involves the formation of several new containers and the destruction or 
penetration of the old ones and the abilities of various parts of the cell or virus change 
rapidly with respect to their ability to enter or exit various parts of the cell.  Consider 
the following passage from a virology textbook. 
 

Passage A: The mechanisms by which vaccinia virus attaches to and enters susceptible 
host cells are not well understood.  The result is release of the core into the cytoplasm, 
indicating that entry requires fusion of viral with cellular membranes. [Flint 00] 
 

Many parts of our calculus would be implemented to represent this passage.  To start, 
we would represent this passage by noting: 

 
inPermeableType (Cell, VacciniaVirus)  

 
where ‘Cell’ denotes the property of being a cell and ‘VacciniaVirus’ denotes the 
property of being a vaccinia virus.  The second sentence might be represented as:  

 
∀x∀y∀z [[Cell(x) ∧ VacciniaVirus(y) ∧ attached(x,y)] → inPerm(y,x)] 
 

A second interesting passage from a knowledge representation perspective is the 
following.  
 

Passage B: a spherical particle that is believed to possess a double membrane acquired 
upon wrapping of the membranes of the cellular components of the cis-Golgi network 
about the assembling particle.  The virus particle then matures into the brick-shaped 
intracellular mature virions (IMV), which is released only upon cell lysis. [Flint 00] 

 
Two of the salient points from Passage B can be represented as: 
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∀x[SphericalParticle(x) → ∃x∃y[Membrane(x) ∧ Membrane(y) ∧ dirInside(x,y)) 
∧ dirInside(z,y)] 
∀x∀y [[Cell(x) ∧ inside(y,x) ∧  IMV(y) ∧ CellLysis(z) ∧ patient(x,z)] → 
holdsAfter(z, outPerm(y,x)] 
 

Given the ability to represent the various accessibility relationships, one might 
ask about the kinds of reasoning tasks that these kinds of representations would 
facilitate.  An area of interest in cell biology concerns viral life cycles.  Processes of 
infection, replication and transmission in cellular biology typically involve the 
passages of objects of interest across various sorts of boundaries.   The malaria life 
cycle, for example, involves the passage of sporozoites from a mosquito’s salivary 
gland into the bloodstream of a human, then into the human’s liver at which point 
they must penetrate hepatocytes, multiply, leave the cells they have entered, reenter 
the blood stream, penetrate other blood cells, producing either merozoites or micro 
and macrogametocytes.   Gametocytes may then leave the human blood stream into a 
mosquito vector where the gametocytes are further “processed” and the resulting 
ookinette penetrates the wall of a cell in the midgut, where, after further processing, 
oocysts develop from which new sporozoites emerge and penetrate the host’s salivary 
gland.  [Sherman 98] Obviously, entrance and exit across various membranes is 
essential to this process.  Hence, the ability to reason about the feasibility or existence 
of such passage seems to be a necessary precursor to the development of effective 
tools for formal reasoning about cellular biology.  Let us briefly consider, in a 
simplified example, how the containment calculus might be implemented in reasoning 
about viral life cycles. 
 

 

Figure 6: Identifying Potential Viral Life Cycle Links 

 
Consider the rudimentary scenario depicted in Figure 6. Suppose one wants to 

determine potential vectors in this particular potential viral replication process.  First, 
as depicted, suppose one knows that the virus at development stage N 
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(ViralDevObjN) will or may be inside of ViralContainer1, e.g., a particular kind of 
organ or cell.  A potential reasoning task would be to determine whether 
ViralDevObjN is capable of passing from that “container” to any of the potential 
vectors in which we are interested.  In other words, it would involve finding values of 
?POTVEC in the following query: 
 
   (∧ (type ?POTVEC PotentialVector) (acc ViralDevObjN ?POTVEC)) 
 

Secondly, suppose that one knows that viruses at development stage p 
(ViralDevObjP) can be further incubated given access to ViralMaterialA and/or that 
viruses at development stage m (ViralDevObjM) can be further developed given 
ViralMaterialB.  An important reasoning task then becomes one of determining 
whether there is a potential vector that could be the source of viruses at development 
stage p or m that would be accessible to the ViralContainer2 or ViralContainer3.  In 
other words, given the scenario in Figure 6, we might attempt to find values of 
?POTVEC such that: 
 

(→ 
 (∧ 
  (inside ViralDevObjP ?POTVEC) 

(type ?POTVEC PotentialVector)) 
    (acc ViralMaterialA ViralDevObjP)) 

 
or 
 

(→ 
 (∧ 
  (inside ViralDevObjM ?POTVEC)  

(type ?POTVEC PotentialVector)) 
    (acc ViralMaterialB ViralDevObjM)) 

 
The separate reasoning challenge, of course, concerns the identification of the 

possible vectors identified in such queries that would be capable of incubating viruses 
from stage N (ViralDevObjN) to stage M or P, i.e., ViralDevObjM and ViralDevObjP.  
However, the formal vocabulary developed here could presumably be usefully 
implemented in identifying the vectors suitable for such further analysis. 

6 Concluding Remarks  

Above we have noted that existing approaches to qualitative spatial reasoning allow 
us to represent and reason about the fact that objects are located inside container 
objects.  However, such representation methods will not allow us to represent 
containment in the sense of restriction.  We have attempted to define this important 
notion in terms of the objects and permeability properties of physical systems and in 
terms of different ways in which objects can contain other objects, e.g., inward vs. 
outward permeability.  We have also teased out three different notions of accessibility 
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between objects within a given physical system and suggested methods for 
investigating whether or not two given objects in a system bear these three kinds of 
accessibility relations.   

We contend that the ability to perform this kind of knowledge representation 
could be useful in a very wide range of reasoning contexts.  This includes computer 
security, cell biology, virology, building security analysis, chemical storage.  We have 
also attempted to show how we might implement the tools of Bayesian networks to 
address some of the uncertainties inherent in accessibility and containment 
representation. 

Future work will include an exploration of what we have called “indirect 
accessibility” with respect to a highly dynamic system in which no objects are 
stationary.  We will also investigate how reasoning about the stationary status of 
objects and an ontology of physical objects designed in terms of containment 
capabilities could further facilitate reasoning in this area.  
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