
Object-Oriented Action Semantics Specifications

Claudio Carvilhe
(Catholic University of Paraná, Brazil

carvilhe@ppgia.pucpr.br)

Martin A. Musicante
(Federal University of Paraná, Brazil

mam@inf.ufpr.br)

Abstract: Action Semantics is a framework for the formal specification of program-
ming languages. Two different, recently proposed approaches provide modularity to
the framework, allowing for specification reusability and extension. In this work, we
analyze the previous approaches, and introduce Object-Oriented Action Semantics, a
new form of modular organization of Action Semantics descriptions. Object-oriented
Action Semantics does not modify the syntax in which actions are written; the ad-
dition of object-oriented features (like classes and objects) is done as an upper layer
to the semantic entities and functions. A simple Pascal-like, imperative programming
language is described using the formalism. The extension and reuse capabilities of
Object-Oriented Action Semantics are demonstrated by adding new features to the
description. The semantics of the object-oriented action notation is also presented.

Key Words: formal semantics, action semantics, object-oriented specification.

Category: F.3.2, D.3.1, D.3.2

1 Introduction

Action Semantics [Mosses, 1992, Watt, 1991, Mosses, 1999] is a formal frame-
work for the definition of programming languages. One of the goals of the Ac-
tion Semantics project is to provide a notation that is both formal and suitable
to be used in the description of real programming languages. Action Seman-
tics descriptions have shown to have good reusability and extensibility proper-
ties [Mosses and Musicante, 1994]; however, the standard Action Semantics no-
tation lacks of syntactic support for the definition of libraries, whose components
would be reused in new descriptions [Labra Gayo, 2002].

Two solutions for this problem have been addressed by different authors.
In [Doh and Mosses, 2003], the standard Action Notation is extended to define
modules. In [Menezes and Moura, 2001] the notation is adapted to define com-
ponents. These solutions have important pros and cons.

In this work, we propose the use of Object-Oriented concepts for the defi-
nition of a new extension of Action Notation. Our proposal tries to solve some
problematic aspects of the previous Action Semantics extensions. A main ad-
vantage of our approach is the use of the standard Action Notation for the

Journal of Universal Computer Science, vol. 9, no. 8 (2003), 910-934
submitted: 24/2/03, accepted: 30/5/03, appeared: 28/8/03 J.UCS

specifications “in-the-small”, combined with class constructors, to provide an
object-oriented way of composing specifications.

This work is organized as follows: The next section briefly presents Action
Semantics. Sections 3 and 4 summarize the introduction of modules and compo-
nents in the formalism. Section 5 introduces Object-Oriented Action Semantics
by means of an example. The operational semantics of our notation is also given
in this section. Section 6 presents a case study: a simple imperative language is
specified. This description is extended, in order to demonstrate the capabilities
of our proposal. Section 7 is devoted to the conclusions of this work.

2 Action Semantics

Action Semantics [Mosses, 1992], [Watt, 1991], [Mosses, 1999] is a formal frame-
work for describing programming languages semantics. In Action Semantics, the
meaning of each phrase of a language is specified using ad-hoc entities called
actions. Actions can be performed, processing data. Actions are defined using
a special Action Notation, which defines basic actions and action combinators.
Action semantics uses English words to enhance readability.

As in operational or denotation semantics, specifications in Action Semantics
are traditionally structured using semantic functions and semantic equations.

In Action Semantics, the meaning of each phrase of a language is represented
in terms of special entities called actions. Actions can be performed to process
information, with various possible outcomes: normal termination (performance
of the action completes), exceptional termination (it escapes), unsuccessful ter-
mination (it fails) or non-termination (it diverges). Action notation provides
some primitive actions, and various combinators for forming complex actions,
corresponding to the main fundamental concepts of programming languages.

A data notation is used to describe the information processed by actions.
The standard data notation (included in action notation) provides a collection of
algebraically defined abstract data types, including numbers, characters, strings,
sets, tuples, maps, etc.; further data may be specified ad hoc.

There is also a third class of entities in action notation, called yielders. A
yielder represents data whose value depends on the current information available
to the primitive action in which it occurs. Yielders are evaluated to yield data.
An example of a standard yielder is the data bound to I , which depends on
the current bindings that are received by the enclosing primitive action.

Action notation possesses five so-called ‘facets’:

Basic: This facet deals with pure control flow, without reference to information
processing issues. This facet includes combinators for sequencing, interleav-
ing and non-deterministic, angelic choice between actions. For example, the
compound action

911Carvilhe C., Musicante M.A.: Object-Oriented Action Semantics Specifications

A1 and then A2

performs the action A1 first; The action A2 is performed after A1 completes.

Functional: This facet deals with transient data, which is given to or by an
action. For example, when the primitive action

give the successor of the given natural

is given a natural number n as transient data, it completes, giving n + 1 as
a transient. The compound action

A1 then A2

performs the action A1 first; all transient data given by A1 is passed on to
A2, which is performed after A1 completes.

The primitive action choose D, where D is a sort of data, makes a non-
deterministic choice of an individual of sort D, giving the chosen datum as
a transient.

Declarative: This facet deals with the manipulation of scoped information,
represented by associations of tokens to bindable data. For example, perfor-
mance of the primitive action

bind ‘‘max-length’’ to 256

completes, producing a binding of the token ‘‘max-length’’ to the natural
number 256.

Imperative: This facet is concerned with storage handling. A storage in action
notation is simply a mapping from (the currently allocated) cells to storable
data. For example, consider the action

allocate a cell

then

store 26 in the given cell

This action combines features of the functional and imperative facets. Notice
that indentation was used to indicate precedence of operators and combina-
tors.

Communicative: This facet provides a system of agents , which can each be
‘contracted’ to perform particular actions. Initially only a special ‘user’ agent
is active. Agents can communicate using asynchronous message passing: the

912 Carvilhe C., Musicante M.A.: Object-Oriented Action Semantics Specifications

sending of a message is non-blocking. Each agent has its own communication
buffer , in which all the messages sent to the agent are placed. Communication
is reliable, in the sense that no message can be lost during transmission;
however, there is no bound to the amount of time taken for a message to
reach its destination agent. Moreover, each agent is created with its own
storage, which cannot be affected (nor inspected) by other agents. Arbitrary
data can be contained in messages, including the identities of agents.

Most of the primitive actions have a use in connection with only one facet
each, but the action combinators generally involve a mixture of the basic, func-
tional, and declarative facets, determining the flow of control, transient data,
and bindings between the subactions.

Encapsulation of actions as data is also provided within action notation. This
feature gives a simple way to support the description of procedure and function
abstractions in programming languages. An abstraction is an item of data which
encapsulates an action. Abstractions can be enacted; this operation results in
the performance of the encapsulated action. Both transients and bindings can be
supplied to abstractions before their enaction, for use by the encapsulated action.
Abstractions can be treated just like any other data, i.e., given as transients,
bound to tokens, stored in cells, and sent in messages. They are also used to
determine the ‘contracts’ offered to agents in the communicative facet.

Apart from the communicative facet (which deals with communicating ac-
tions), all of the facets and combinators described above are used for specifying
“in the small”. They define the internal organization of a processing block.

As reported in [Doh and Mosses, 2003], Action Semantics specifications are
inherently modular. However, in standard Action Semantics there are no con-
structors available to explicitly define and compose reusable blocks. Such capa-
bility would constitute an important feature in the context of the creation of
new languages specifications, based on existing ones.

Two methods were recently proposed to improve modularity. Both methods
are summarized in the following sections.

3 Adding modular structure to Action Semantics

In [Doh and Mosses, 2003], the use of modules to structure Action Semantics
descriptions is proposed. In this approach, the specification of a programming
language is constructed by the combination (or extension) of modules. Each
module is specified by two main sections: Syntax and Semantics. The first section
defines the syntax of the phrases to be defined by the module. The semantics
part defines the meaning of these phrases, using (action) semantic functions.

The following example (adapted from [Doh and Mosses, 2003]) illustrates the
definition and extension of a module to define arithmetic expressions.

913Carvilhe C., Musicante M.A.: Object-Oriented Action Semantics Specifications

Base Expressions {
syntax:

Expr.
semantics:

datum >= expressible.
(*) evaluate: Expr -> action [giving an expressible]

}

The module above states that Expr is a syntactic sort, and that evaluate is
a semantic function, taking an expression and being defined by an action. This
module captures the basic behavior of expressions.

The module can be extended to define any kind of expressions. For example,
the definition of arithmetic expressions can be done by defining a new module
(which imports the above one), as follows:

Arithmetic Expressions {
import Base Expressions.

syntax:
Expr ::= Num | [[Expr "+" Expr]].
Num ::= [[digit+]].
E1, E2 : Expr; N: Num.

semantics:
expressible >= natural.
(1) evaluate N = give decimal string-of-characters N.
(2) evaluate [[E1 "+" E2]] =

(evaluate E1 and evaluate E2) then
give the sum(the given natural #1,

the given natural#2).
}

The module Arithmetic Expressions defines the syntax and semantics of
sum expressions (of natural numbers). The semantics of these expressions is
given in the usual Action Semantics style.

Other specific expressions modules can be constructed, in order to define
the syntax and semantics of different kinds of expressions, like Boolean Expres-
sions, Relational Expressions, etc. All these modules can be imported into an
Expressions module, to describe all the expressions of a given programming
language.

Further composition of modules could lead us to the definition of a complete
programming language. For instance, an imperative programming language can
be described as a combination of library modules, as follows:

Imp Imperative Language {
import Expressions, Commands, Declarations

syntax:
Program ::= [[Decl ";" Cmd]].
D:Decl; C:Cmd.

914 Carvilhe C., Musicante M.A.: Object-Oriented Action Semantics Specifications

semantics:
bindable >= cell.
storable >= expressible.
run [[D ; C]] = elaborate [[D]]

hence execute [[C]].
}

The organization of actions proposed by the modular Action Semantics facil-
itates the construction of module libraries, from which predefined modules can
be used in new programming language projects.

A main advantage of the modular Action Semantics is that the actions used in
the semantic functions can be exactly the same as in traditional Action Seman-
tics; furthermore, the notation can be straightforwardly changed in accordance
to the advent of new versions of Action Semantics, as long as its algebraic base
does not change [Doh and Mosses, 2003]. This contributes to the easy transfor-
mation of previous specifications, at the same time in which only a small amount
of retraining would be needed for users who already work with the framework.

It must be noticed that the module import operation has the effect of merging
the involved modules, yielding to a flat organization of the items being defined.
As noticed in [Doh and Mosses, 2003], this form of module combination can be
problematic, since it can lead to inconsistencies, in some cases, when the same
name is used to describe different language constructors.

Let us now resume the characteristics of the modular approach:

– The notation for defining modules is simple, improving the readability of the
resulting specifications;

– Reusability is enhanced. Specification parts can be used in new specifications;

– Modules can be combined, including already existing ones in a current project;

– Modules combination is problematic, and can cause inconsistencies.

4 Component-based Action Semantics

Component-based Action Semantics [Menezes and Moura, 2001], allows the cre-
ation of generic components and component libraries, using some ideas present
in Montages [Kutter and Pierantonio, 1997]. The specification of a programming
language is constructed by the combination of building blocks, called compo-
nents. As in the modular approach, components can contain both syntactic and
semantic definitions.

Let us exemplify the use of components in the definition of a programming
language. Our description is adapted from [Menezes and Moura, 2001]. Initially,
an auxiliary generic component called binary is defined, to be used to define
binary operators:

915Carvilhe C., Musicante M.A.: Object-Oriented Action Semantics Specifications

binary _ _ _ :: component, string, yielder -> component

binary c s y =
syntax

[[c s c]]
semantics
| | semantics of the c defined by the subtree #1
| and semantics of the c defined by the subtree #3
then give y

The (component) operation semantics of takes a component and returns
an action. In this case, to evaluate the sub-expressions of a sum.

The (higher order) component binary expects three parameters: a compo-
nent (to define which kind of expressions are to be evaluated), a string, repre-
senting an operator (name) and a yielder, to represent the operation on values.

The above component is meant to be the skeleton of other components. It
can be used to define a new component for arithmetic expressions:

Expression = ... ++ binary Expression "+" (the sum of them)
++ binary Expression "-" (difference of them)
++ ...

The operator “++” is provided by the new notation to be the composition of
components. The application of this operator permits to define the Expression

component above as the combination of the components defining each constant
and operation of the language.

Notice that in the final component, the semantics of each syntactic part is
defined locally, having no need to merge and unify the sorts and operations that
are being defined.

In order to define programming languages, the notation needs to include
primitives to deal with the definition and extension of predefined modules. This is
done in Component-based Action Semantics by the introduction of new syntactic
constructors, to deal with languages. Two primitives for language construction
are the combinators extends and and. The former is used to build and extend
languages, while the latter is used to combine languages to obtain new ones. The
signature of these operations can be given as follows:

extends [_] with _ :: identifier, component
-> language description.

_ and _ :: language description, language description
-> language description.

Let us exemplify the use of these combinators to construct the specification of
an imperative programming language. Suppose that there already exist language
descriptions for the declarations, expressions and commands of this language. In
this case, the description of programs can be given by:

916 Carvilhe C., Musicante M.A.: Object-Oriented Action Semantics Specifications

Imperative Language =
| Declarations and Commands and Expressions
and
| extends [Program] with
| syntax [[Declaration ";" Command]]
| semantics
| | | semantics of the subcomponent #1
| | hence semantics of the subcomponent #2

Let us now resume the characteristics of the component-based approach:

– Component notation and Programming Language Notation provide an ad-
vanced way to create components and to define language specifications;

– Components are generic and can be used in new projects, avoiding repetition;

– A component library can be defined;

– Functions and operators provided by the framework are cumbersome. Spec-
ifications can be obscure.

5 Object-Oriented Action Semantics

In the previous sections we present two approaches to the introduction of modu-
larity in Action Semantics. The first approach (Modular Action Semantics) has
the advantage of using previous versions of Action Notation, without introduc-
ing new constructors for actions (new syntax is added just to define modules).
However, the modular approach can be problematic in certain cases, since the
locality of definitions is not enforced by the formalism. On the other hand, the
component-based approach does not have this problem, but at the cost of sig-
nificantly changing the syntax of actions, as well as its usage.

In both approaches, specification parts can be reused in new projects. A mod-
ule or component can be written in an abstract way and extended to meet actual
needs. The readability is increased in relation to traditional Action Semantics,
since small specification parts can compose a large project.

In this context, we introduce (yet) another approach for the organization of
specifications in Action Semantics. Our proposal, consists in the use of Object-
Oriented concepts for structuring specifications.

An Object-Oriented Action Semantics specification consists on the definition
of a hierarchy of objects and classes, in which the methods and attributes are
defined by means of a standard Action Semantics semantic functions and data.
The class hierarchy for a given language is derived from its syntactic structure.
Each language phrase (declarations, commands, expressions, etc) is represented
by one or more objects.

917Carvilhe C., Musicante M.A.: Object-Oriented Action Semantics Specifications

Command

Null Assignment DoWhile Sequencing

Figure 1: Toy command language class hierarchy.

Let us exemplify these concepts using a toy language of commands, whose
syntax is defined as follows:

Cmd ::= “skip”

| Id := Expr

| “do” Cmd “while” Expr

| Cmd ;Cmd

The non-terminal symbol Cmd defines the commands present in the lan-
guage: the null command, assignments, iterations and sequences. There exist
some features that are common to all commands. However, each one of them
presents a particular structure and meaning. Such context can be represented
using the class hierarchy, defined in Figure 1. In that figure, each box repre-
sents a class. The class Command should contain all the features common to all
commands. Specific features can be expressed by the Command sub-classes: Null,
Assignment, DoWhile and Sequencing.

As in the previous sections, we shall organize classes in Object-Oriented
Action Semantics as having two basic parts: syntax and semantics. The top level
class of commands can be represented as follows.

Class Command
syntax:

Cmd
semantics:

execute[[_]] : Cmd -> Action
End Class

The class Command, detailed above, is defined to be the basic class for com-
mands. In the syntax section (syntax), the syntactic sort Cmd is introduced. This
sort will be extended by the subclasses of command to contain all the command
syntactic trees.

918 Carvilhe C., Musicante M.A.: Object-Oriented Action Semantics Specifications

A semantic function ‘execute [[_]]’ is defined in the semantics section
(semantics) indicating a mapping from syntactic sort Cmd to an Action. It is
worth noticing that the sort Action corresponds to the same sort as in traditional
Action Semantics.

In our framework, semantic functions and semantic equations are respectively
similar to methods and method definitions [Rumbaugh, 1994], [Meyer, 1997].
The semantic function ‘execute’ is seen as a method of the class Command, and
can be overloaded by its sub-classes. (This concept is usually called polymor-
phism by the Object-Oriented community.)

Let us now construct the sub-class of command dealing with the do-while
loop:

Class Do-WhileCommand
extending Command
using E:Expression, C:Command
syntax:

Cmd ::= "do" C "while" E
semantics:

execute[["do" C "while" E]]=
unfolding
((execute C and then evaluate E)
then
(unfold else complete))

End Class

The extending directive indicates that the Do-WhileCommand class is a sub-
class of Command. Two objects (E:Expression and C:Command) are instantiated
by the using directive. These objects will match the sub-phrases of commands.

The syntax section of the class adds a new command structure, redefining the
syntax tree (Cmd). The ‘execute’ method is then overloaded and the do-while
command Action Semantics is given.

The classes Command and Expression must provide the methods ‘execute’
and ‘evaluate’, respectively. These methods will be called within the definition
of the method execute= for the Do-WhileCommand class.

The next subsection extends standard Action Notation to express object-
oriented concepts. The big-step operational semantics of the notation is given in
section 5.2.

5.1 Syntax

Specifications in Object-Oriented Action Semantics are structured as a finite set
of classes. The relationship between classes is specified using directives, indicat-
ing which objects will be instantiated by the actual class, as well as its position
in the class hierarchy. The syntactic structure for classes is defined next. This

919Carvilhe C., Musicante M.A.: Object-Oriented Action Semantics Specifications

syntax definition simply extends the standard Action Notation to include the
class apparatus.

(1) Class-Module ::= “Class” Class-Name Class-Body “End-Class”

(2) Class-Body ::= 〈 “extending” Base-Class-Name 〉?
〈 “using” Objects-Declaration 〉? 〈Class-Definition 〉?

(3) Base-Class-Name ::= Class-Name
| Class-Name “::” Base-Class-Name

(4) Objects-Declaration ::= Object-Declaration
Object-Declaration “,” Objects-Declaration

(5) Object-Declaration ::= Identifier “:” Class-Name

(6) Class-Definition ::= “syntax” “:” Syntactic-Part
“semantics” “:” Semantic-Part

(7) Syntactic-Part ::= TokenName TokenName “::=” syntax-tree

(8) Semantic-Part ::= 〈Semantic-Functions 〉? 〈Semantic-Equations 〉?
(9) Semantic-Functions ::= Semantic-Function

Semantic-Function Semantic-Functions

(10) Semantic-Function ::= Function-Name “[[” “ ”* “]]” Tokens
“->” ‘‘Action”
data

(11) Tokens ::= TokenName TokenName “,” Tokens

(12) Semantic-Equations ::= Semantic-Equation
Semantic-Equation Semantic-Equations

(13) Semantic-Equation ::= Function-Name “[[” syntax-tree “]]”
‘‘=” Action

(14) Action ::= “complete” “fail” “unfold”
Action “and” Action Action “and then” Action
“unfolding” Action “give” Yielder
“check” Yielder Action “then” Action
“bind” Yielder “to” Yielder “furthermore” Action
Action “hence” Action Action “moreover” Action
Action “before” Action “store” Yielder “in” Yielder
“deallocate” Yielder “allocate a” Sort
“enact” Yielder Action “else” Action
“recursively” “bind” Yielder “to” Yielder

920 Carvilhe C., Musicante M.A.: Object-Oriented Action Semantics Specifications

(15) Yielder ::= “the” Sort “#”n “the” Sort “bound” “to” k
“the” Sort “stored” “in” Yielder
Yielder “with” Yielder “closure” Yielder
“abstraction of” Action

(16) Sort ::= “bindable” “cell” “cell” “[” Sort “]”
“storable” “abstraction” “datum” “integer”
“value” “truth-value” Sort “|” Sort

Rules (1) to (13) define the structure of classes in our approach, as exemplified
in section 5. Rules (14) to (16) incorporate Action Semantics to classes.

The following subsection defines the operational semantics of this notation.

5.2 Semantics

Base-classes defined using our notation are implicitly part of a hierarchy. We
shall define a class to which all classes belong. This super-class is called State.
All classes defined in Object Oriented Action Semantics are sub-classes of State.

The class State has generic attributes, corresponding to transient informa-
tion, bindings and storage; and provide operations, allowing us to handle such
attributes. These operations are all the basic actions and action combinators.
Both attributes and operations of State are visible to its sub classes.

Notice that although this is a new way of looking at actions, nothing is
changed in the practical use of them to define semantic functions.

We define the State methods behavior by means of a big-step operational
semantics [Winskel, 1993], characterized by the following relation:

B, t, b, s � o � o′, t′, b′, s′

The relation schema above identifies B as a methods environment (containing
references to all user-defined methods), t as the transient information, b as bind-
ings and s as the current store. We say that the operation (action) o, when per-
formed, produces the outcome o′, together with transient information t′, bindings
b′ and storage s′. The definition of this relation is adapted from [Moura, 1993].

Let us now give some examples of the definition of the big step operational
semantics for actions in our context.

B, t, b, s � complete � completed, {}, {}, s (1)

B, t, b, s � fail � failed, {}, {}, s (2)

921Carvilhe C., Musicante M.A.: Object-Oriented Action Semantics Specifications

B, t, b, s � a1 � completed, t1, b1, s1

B, t, b, s1 � a2 � completed, t2, b2, s2

mergeable t1t2 mergeable b1b2

B, t, b, s � a1 and then a2 � completed, t1 ⊕ t2, b1 ⊕ b2, s2

(3)

B, t, b, s � a1 � o1, t1, b1, s1 o1 �= completed
B, t, b, s � a1 and then a2 � o1, t1, b1, s1

(4)

B, t, b, s � a1 � completed, t1, b1, s1

B, t, b, s1 � a2 � o2, t2, b2, s2

o2 �= completed
B, t, b, s � a1 and then a2 � o2, t2, b2, s2

(5)

Rules (1) and (2) define the semantics of the operations complete and fail,
respectively. Both of them terminate. The former represents successful termina-
tion, while the latter finishes without success. Rules (3), (4) and (5) define the
behavior of the and then operation. Rule (3), establishes the behavior of the and
then operation when both sub-operations (sub-actions) a1 and a2 complete. Op-
erator (⊕) defines merging of transient and bindings as defined in [Moura, 1993].
All the information received by the compound action is passed to each sub-action.
If both sub-actions terminate with success, then the transients and bindings that
resulted from the execution of these sub-actions are merged to compound the
transients and bindings returned by the compound action. Rule (4) defines the
behavior of the and then operation when the first sub-operation a1 does not
complete, and rule (5) establishes the behavior when sub-operation a2 does not
complete. In both cases, the result of the compound action is obtained from the
unsuccessful sub-action, propagating its outcome.

The semantics of the other actions and yielders are given using the same spec-
ification style. The complete set of equations can be found in [Carvilhe, 2002].

5.2.1 Methods environment

All user-defined methods are stored in the methods environment. Two opera-
tions are needed to handle methods: insertion and fetch. The definition of these
operations is given next.

Methods are syntactically structured as f [[H]] = O, where H is a syntax-tree
schema and O is an operation (action). A syntax tree schema is defined as a
syntax tree with (free) variables standing for sub-trees.

The behavior of methods definitions is then defined by the following rules:

B � f [[H]] = O � B[f [[H]] → O]
(6)

922 Carvilhe C., Musicante M.A.: Object-Oriented Action Semantics Specifications

(f [[H]] → O) ∈ dom(B), B, t, b, s � O[H/h] � o, t′, b′, s′

B, t, b, s � f [[h]] � o, t′, b′, s′
(7)

Rule (6) indicates that methods whose syntax is ‘f [[H]] = O’ are added to the
methods environment. The notation B[f [[H]] → O] indicates that a new method
is inserted. The resulting method environment is similar to the original one (B),
with the addition of a new method (f), which will be applied to syntactic trees
that match the tree schema H . Rule (7) states that methods defined as f [[h]]
produce the result o, t′, b′, s′, provided that the method f exists in the methods
environment B, and that it can be executed, after substituting the syntax-tree
schema H by the matching syntax-tree h on the action O.

6 A case study - The µ-Pascal Language

In this section we present the use of Object-Oriented Action Semantics to define
a toy language similar to Pascal. µ-Pascal is a simple imperative programming
language which contains commands and expressions. The language possesses a
block-structure.

The Object-Oriented Action Semantics of µ-Pascal is defined in this work
to exemplify the extensibility properties of our framework. In section 6.2, the
µ-Pascal Object-Oriented Action Semantics will be extended to a language with
procedures and functions. µ-Pascal syntax is defined as follows.

(1) Program ::= Declaration “;” Command

(2) Declaration ::= “var” Identifier “:” Type 〈 “=” Expression 〉?
“const” Identifier “:” Type “=” Expression

(3) Type ::= “boolean” “integer”

A Program is formed by a declaration followed by commands. Constants and
Variables can be declared indicating their type.

(4) Command ::= “let” Declaration “in” Command
Identifier “:=” Expression
“if” Expression “then” Command 〈 “else” Command 〉?
“repeat” Command “until” Expression
Command “;” Command

(5) Expression ::= “true” “false” Numeral Identifier
Expression (“+” “-” “*” “<” “=”) Expression

(6) Identifier ::= Letter 〈Letter | Digit 〉*

923Carvilhe C., Musicante M.A.: Object-Oriented Action Semantics Specifications

(7) Numeral ::= Digit 〈Digit 〉*

Commands in µ-Pascal contain assignments, selections, iterations and se-
quences. Expressions can be arithmetical or logical.

6.1 µ-Pascal Semantics

The syntax of the language is our departing point to construct the class hierarchy
of the specification. The syntactic rules of the language definition can be mapped
into objects which incorporate syntax and semantics. Some diagrams will be
constructed, using a tree notation to express the class hierarchy.

Let us begin by constructing classes to represent the language identifiers,
numerals and types. After this phase, we define the declarations, commands and
expressions hierarchy to express the meaning of the language.

Class Identifier
syntax:

Id ::= letter [letter | digit]*
End Class

Class Numeral
syntax:

N ::= digit+
semantics:

valuation [[_]] : N -> integer
End Class

Class Type
syntax:

T ::= "boolean" | "integer""
semantics:

allocate-for-type [[_]] : T -> Action
allocate-for-type[["boolean"]] =

allocate a cell [truth-value]
allocate-for-type[["integer"]] =

allocate a cell [integer]
End Class

The class Identifier represents names (variables and constants). This class
has only syntactic definition.

The class Numeral represents integer numbers. In the semantics section a
valuation [[_]] method is defined to map numerals to integers. The defi-
nition of the valuation function is straightforward. As it is usual in semantic
descriptions, the double bracket notation is used to remark that the function
parameter is a syntactic entity.

924 Carvilhe C., Musicante M.A.: Object-Oriented Action Semantics Specifications

Declaration

ConstantDec VariableDec

Figure 2: µ-Pascal declarations hierarchy.

The class Type represents the language data types. The method allocate-

for-type is defined, establishing truth-value or integer data types allocation.
Constants and variables can be declared in µ-Pascal. The declarations hier-

archy can be constructed in accordance to Figure 2, as follows.

Class Declaration
using I:Identifier, E:Expression
syntax:

Dec
semantics:

elaborate [[_]]: Dec -> Action
End Class

The class Declaration instantiates two objects: I and E, respectively of
classes Identifier and Expression. Both objects are not used by the class itself.
They are defined at this point to be available to the sub-classes of Declaration.
Notice that the class hierarchy allows us to instantiate those objects only in
the base-class Declaration, inhibiting repetition. A non-terminal symbol Dec is
introduced at the syntax section to be redefined by the sub-classes. A method
called elaborate [[_]] is declared in the semantics section, to be overloaded
by the sub-classes.

Let us now give a sub-class of Declaration, to define the meaning of constant
definitions:

Class ConstantDec
extending Declaration
using T:Type
syntax:

Dec ::= "const" I ":" T "=" E
semantics:

elaborate[["const" I ":" T "=" E]]=
evaluate E then
bind I to the value

End Class

The Dec token is redefined in the ConstantDec class (above), establishing the
syntax if constant definitions. In the semantics part, the elaborate [[_]]

925Carvilhe C., Musicante M.A.: Object-Oriented Action Semantics Specifications

Command

DecCommand Assignment Selection Repeat Sequencing

Figure 3: µ-Pascal commands hierarchy.

method is overloaded, to deal with the new syntax. The objects I:Identifier

and E:Expression are used at this point, and the semantics of a constant dec-
laration is defined using standard Action Notation.

The following class deals with variable declarations in µ-Pascal:

Class VariableDec
extending Declaration
using T:Type
syntax:

Dec ::= "var" I ":" T ["=" E]
semantics:

elaborate[["var" I ":" T]]=
allocate-for-type T
then bind token I to the cell #0

elaborate[["var" I ":" T "=" E]]=
(evaluate E and allocate-for-type T)

then
(bind I to the cell #1
and store the value #0 in the cell #1)

End Class

The Dec token is redefined in the VariableDec class (above), establishing
the structure for variable declarations. This class instantiates a T:Type ob-
ject. The variable declaration syntax is redefined at the syntax section. The
elaborate [[_]] method is redefined twice, considering the absence (or not)
of an expression E. The T:Type object is not defined in the base-class Declaration,
but it is used both in ConstantDec and VariableDec. The semantics of a vari-
able declaration is defined using standard Action Notation.

The commands class hierarchy is depicted in Figure 3. The main class of this
hierarchy is Command, defined as follows.

Class Command
syntax:

Com
semantics:

execute [[_]] : Com -> Action
End Class

926 Carvilhe C., Musicante M.A.: Object-Oriented Action Semantics Specifications

In the syntax section, the token Com is introduced to represent the syntactic
sub-trees of commands. The method execute [[_]] is declared in the seman-
tics section to be redefined by the sub-classes of Command. These sub-classes are
defined next.

Class DecCommand
extending Command
using D:Declaration, C:Command
syntax:

Com ::= "let" D "in" C
semantics:

execute[["let" D "in" C]]=
(furthermore elaborate D)
hence execute C

End Class

The class DecCommand defines the syntax and semantics of command blocks.
Two objects are instantiated by DecCommand class: D:Declaration and C:Com-

mand. In the syntax section the sort Com is redefined to express command blocks.
In the semantics section the (standard) Action Semantics description of blocks
is given.

Class Assignment
extending Command
using I:Identifier, E:Expression
syntax:

Com ::= I ":=" E
semantics:

execute[[I ":=" E]]=
evaluate E

then
store the value in the cell bound to I

End Class

The class Assignment, above, instantiates two objects I:Identifier and E:

Expression. In the syntax section the structure of assignments is defined. The
semantics of an assignment is given by the evaluation of the expression, followed
by the storage of the resulting value. The remaining classes of the command
hierarchy (Selection, Repeat and Sequencing) are structured in the same way
as DecCommand and Assignment; they are omitted here.

Let us now define the expressions of the language, whose class hierarchy is
defined in figure 4.

The super-class Expression, defined below, presents a similar structure to
that of Command. In the syntax section a token Exp is introduced to repre-

927Carvilhe C., Musicante M.A.: Object-Oriented Action Semantics Specifications

Expression

SumExp

SubtExp

ProductExp

NumeralExp

IdentifierExp

Equality

LessThan

FalseExp

TrueExp

Figure 4: µ-Pascal expressions hierarchy.

sent the syntactic sub-trees of expression. In the semantics section the method
evaluate [[_]] is introduced.

Class Expression
syntax:

Exp
semantics:

evaluate [[_]] : Exp -> Action
End Class

All the subclasses of Expression can be defined in a similar way as the
subclasses of Command.

The definition of the addition operation can be given as:

Class SumExp
extending Expression
using E1:Expression, E2:Expression
syntax:

Exp ::= E1 "+" E2
semantics:

evaluate[[E1 "+" E2]] =
(evaluate E1 and evaluate E2)
then give sum(the integer#1, the integer#2)

End Class

The class SumExp, instantiates two objects from classes Expression (E1 and
E2). The syntactic sort Exp is redefined in the syntax section. The semantics of a
sum expression is specified by evaluating both sub-expressions and adding their
results. All the operators of the language can be defined in a similar manner.

Let us now define the meaning of identifiers within expressions:

928 Carvilhe C., Musicante M.A.: Object-Oriented Action Semantics Specifications

Class IdentifierExp
extending Expression
using I:Identifier
syntax:

Exp :: = I
semantics:

evaluate [[I]] =
(give the value bound to I) or
(give the value stored in the cell bound to I)

End Class

The class IdentifierExp instantiates an object I:Identifier. The syntax
of expressions is extended to represent identifiers. In the semantics section, the
meaning of a identifier is defined. Notice that an identifier can be a constant or
variable; both cases are covered by the previous specification by using the action
combinator ’ or ’.

The other classes of expressions can be defined using the same principles.

Once the language’s declarations, commands and expressions are represented
using hierarchies, it is possibly to specify a class representing the whole µ-Pascal
language:

Class muPascalLanguage
using D:Declaration, C:Command
syntax:

Prog ::= D ";" C
semantics:

run[[_]] : Prog -> Action
run[[D ";" C]] =
elaborate D hence execute C

End Class

Two objects are instantiated in the muPascalLanguage class: D:Declaration
and C:Command. The Prog token defines the µ-Pascal program general structure.
In the semantics section, a run[[_]] method is defined mapping a program
to an action.

6.2 Extending the Specification - The m-Pascal Language

Let us now use the class hierarchy defined in the previous sections, to create a
new language, which we will call m-Pascal. The language incorporates procedure
and function abstractions to µ-Pascal. Let us now extend the language to contain
the new structures:

929Carvilhe C., Musicante M.A.: Object-Oriented Action Semantics Specifications

Declaration

ConstantDec VariableDec ProcedureDec FunctionDec

Figure 5: m-Pascal declarations hierarchy.

(1) Declaration ::= ...
“proc” Identifier “(” Formal-Par “)” “=” Command
“func” Identifier “(” Formal-Par “)” “=” Expression

(2) Formal-Par ::= “var” Identifier “:” Type

(3) Command ::= ... “call” Identifier “(” 〈Actual-Par 〉 “)”

(4) Expression ::= ... Identifier “(” 〈Actual-Par 〉 “)”

(5) Actual-Par ::= Expression

The abstract syntax of declarations is extended by rule (1) to define procedure
and function definitions. Commands and expressions are also changed in (3) and
(4) respectively, to include procedure and function calls.

The objects containing the definitions of procedures and functions are ex-
pressed by extending the Declaration class defined in the µ-Pascal specifica-
tion. The declarations hierarchy will be changed to include two new sub-classes:
ProcedureDec and FunctionDec (Figure 5):

Class ProcedureDec
extending Declaration
using C:Command, FP:FormalPar
syntax:

Dec ::= "proc" I "(" FP ")" ":" C
semantics:
elaborate[["proc" I "(" FP ")" ":" C]] =

recursively bind I to
(closure abstraction of

(furthermore elaborateFP FP
hence execute C))

End Class

The class ProcedureDec, gives the syntax and semantics of procedure dec-
larations. The class representing function declarations is similar to the above
one:

Class FunctionDec
extending Declaration

930 Carvilhe C., Musicante M.A.: Object-Oriented Action Semantics Specifications

Command

DecCommand Assignment Selection Repeat Sequencing ProcedureCom

Figure 6: m-Pascal commands hierarchy.

Expression

SumExp

SubtExp

ProductExp

NumeralExp

IdentifierExp

FunctionExp

Equality

LessThan

FalseExp

TrueExp

Figure 7: m-Pascal expressions hierarchy.

using FP:FormalPar
syntax:

Dec ::= "func" I "(" FP ")" ":" E
semantics:
elaborate[["func" I "(" FP ")" ":" E]] =

recursively bind I to
(closure abstraction of

(furthermore elaborateFP FP
hence
(evaluate E then give the value)

)
)

End Class

Notice that an auxiliary class FormalPar, which represents formal parame-
ters, is instantiated by ProcedureDec and FunctionDec; its definition is straight-
forward, and it is omitted here.

Procedure calls and function applications require additions to the Command

and Expression hierarchies. These changes are represented in Figure 6 and Fig-
ure 7, respectively. The classes corresponding to the new language constructions
are given below:

931Carvilhe C., Musicante M.A.: Object-Oriented Action Semantics Specifications

Class ProcedureCommand
extending Command
using I:Identifier, AP:ActualPars
syntax:

Com ::= "call" I "(" AP ")"
semantics:

execute[["call" I "(" AP ")"]] =
evaluateAP AP

then
enact (the procedure bound to I with the value)

End Class

Class FunctionExpression
extending Expression
using I:Identifier, AP:ActualPars
syntax:

Exp ::= I "(" AP ")"
semantics:

execute[["call" I "(" AP ")"]] =
evaluateAP AP

then
enact(the function bound to I with the value)

End Class

The class definitions above use an auxiliary class ActualPar, which represents
actual parameters and the operations over them. The definition of this class is
omitted here for space reasons.

Object-Oriented features were applied to extend the µ-Pascal language. Pro-
cedureDec and FunctionDec objects were created extending Declaration, to
represent procedures and functions. Procedure calls were incorporated to Command,
by the creation of the ProcedureCommand object and function applications were
incorporated to expressions. This allows us to define the main class of the lan-
guage specification as:

Class mPascalLanguage
using D:Declaration, C:Command
syntax:

Prog ::= "declare" D "used-in" C
semantics:

run _ : Prog -> Action
run[["declare" D "used-in" C]] =

elaborate D
hence execute C

End Class

932 Carvilhe C., Musicante M.A.: Object-Oriented Action Semantics Specifications

Notice that since the language was redefined at the declarations, commands
and expressions levels, the body of the most general class for the language re-
mains unchanged.

7 Conclusions

Object-Oriented Action Semantics is a new framework to organize Action Se-
mantics descriptions. In this new framework, semantic functions are seen as
methods, describing the meaning of constructions, defined locally within a class.

The hierarchical structure of the specifications makes it possible to choose
which methods are to be applied to each syntactic object. Our proposal does not
change the syntax of actions, maintaining the traditional style of writing Action
Semantics specifications.

Reusability and extension are the main motivations of our proposal. Reusabil-
ity is achieved in Object-Oriented Action Semantics by using class instantiation.
Extension is improved by the definition of class hierarchies.

We have shown, in a simple case study, a way to construct objects, as well
as their instantiation and specialization. In the case study, we have built a class
hierarchy for a simple Pascal-like language. The specification of this language
was then changed to add new syntactic constructions.

The (big step) operational semantics of the new notation is given. The only
addition to the existent operational semantics of Action Notation is the use of
a methods environment, to contain the definition of methods.

The characteristics of our proposal can be summarized as:

• Object-Oriented Action Notation is simple. The class structure is based on
the modules notation introduced by [Doh and Mosses, 2003], and was in-
spired by the notions of classes and hierarchy from object-oriented program-
ming;

• Reusability is improved. Instantiation and extension permit the construction
of libraries of programming languages concepts, that can be instantiated in
programming languages projects.

References

[Carvilhe, 2002] Carvilhe, C. (2002). Object-oriented action seman-
tics. Master’s thesis, Federal University of Paraná. Available at
http://www.ppgia.pucpr.br/~carvilhe/full. (In portuguese).

[Doh and Mosses, 2003] Doh, K.-G. and Mosses, P. D. (2003). Composing program-
ming languages by combining action-semantics modules. Science of Computer Pro-
gramming, 47(1):3–36. Elsevier Science Publishers.

933Carvilhe C., Musicante M.A.: Object-Oriented Action Semantics Specifications

[Kutter and Pierantonio, 1997] Kutter, P. and Pierantonio, A. (1997). Montages speci-
fications of realistic programming languages. Journal of Universal Computer Science,
3(5):416–442.

[Labra Gayo, 2002] Labra Gayo, J. (2002). Reusable semantic specifications of pro-
gramming languages. In SBLP 2002 - VI Brazilian Symposium on Programming
Languages, Rio de Janeiro, Brazil. Pontif́ıcia Universidade Católica do Rio de Janeiro
- PUC-Rio.

[Menezes and Moura, 2001] Menezes, L. C. and Moura, H. (2001). Component-based
action semantics: A new approach for programming language specifications. In SBLP
2001 - V Brazilian Symposium on Programming Languages, pages 152–163, Curitiba,
Brazil. Universidade Federal do Paraná.

[Meyer, 1997] Meyer, B. (1997). Object-oriented software construction. In Object-
Oriented Software Construction 2nd ed. Prentice-Hall.

[Mosses, 1992] Mosses, P. D. (1992). Action semantics. In Action Semantics. Cam-
bridge University Press.

[Mosses, 1999] Mosses, P. D. (1999). A modular SOS for Action Notation. Technical
Report BRICS RS-99-56, University of Aarhus, Dep. of Computer Science.

[Mosses and Musicante, 1994] Mosses, P. D. and Musicante, M. A. (1994). An Action
Semantics for ML concurrency primitives. Number 873 in Lecture Notes in Computer
Science, Barcelona, Spain. FME, Springer-Verlag.

[Moura, 1993] Moura, H. (1993). In Action Notation Transformations - Ph.D. Thesis.
University of Glasgow.

[Rumbaugh, 1994] Rumbaugh, J. (1994). In Object-Oriented Modeling and design.
Campus.

[Watt, 1991] Watt, D. A. (1991). Programming Language Syntax and Semantics.
Prentice Hall International Series in Computer Science. Prentice Hall.

[Winskel, 1993] Winskel, G. (1993). The Formal Semantics of Programming Lan-
guages: An Introduction. Foundations of Computing Series. MIT Press.

934 Carvilhe C., Musicante M.A.: Object-Oriented Action Semantics Specifications

