
LuaTS — A Reactive Event-Driven Tuple Space

Marcus Amorim Leal
(PUC-Rio, Brazil,

mleal@inf.puc-rio.br)

Noemi Rodriguez
(PUC-Rio, Brazil,

noemi@inf.puc-rio.br)

Roberto Ierusalimschy
(PUC-Rio, Brazil,

roberto@inf.puc-rio.br)

Abstract: With the goal of assessing the use of the tuple space model in the context of
event-driven applications, we developed a reactive tuple space in the Lua programming
language. This system, which we called LuaTS, extends the original Linda model with
a more powerful associative mechanism for retrieving tuples, supports code mobility
and includes a reactive layer through which the programmer can modify the behavior
of the basic system calls. In this paper we describe the implementation of LuaTS and
illustrate its main features with a few examples.

Key Words: distributed systems, tuple spaces, event-oriented programming

Category: D.1.3, C.2.4

1 Introduction

In spite of its widespread use in the development of distributed systems,
many implementations of the tuple space model, including the original Linda
model [Gelernter, 1985, Carriero and Gelernter, 1989], are not well suited for
wide area network based applications. The main shortcoming of these imple-
mentations is the synchronous behavior of the calls provided to access the tuple
space, which may lead to unacceptable levels of latency and failure.

Event-driven programming is gaining importance, among other reasons, be-
cause it overcomes the limitations associated with the synchronous nature of
the client-server model. The most popular tuple space models in use today, IBM
TSpaces [Wyckoff et al., 1998] and Sun Java Spaces [Freeman et al., 1999], sup-
port the concept of events.

In order to assess the use of the tuple space model in the context of event-
driven applications, we developed a reactive tuple space that provides only
asynchronous calls. This system, which we called LuaTS, was implemented in
the Lua programming language [Ierusalimschy et al., 1996] using the ALua li-
brary [Ururahy and Rodriguez, 1999, Ururahy et al., 2002, Pfeifer et al., 2002].

Journal of Universal Computer Science, vol. 9, no. 8 (2003), 730-744
submitted: 24/2/03, accepted: 30/5/03, appeared: 28/8/03  J.UCS

LuaTS extends the original Linda model with a more powerful associative mech-
anism for retrieving tuples, supports code mobility, and includes a reactive layer
through which the programmer can adapt the behavior of the basic system calls.

Reactive tuple spaces allow greater flexibility in the specification of
software-component interaction, enhancing the time and space decou-
pling promoted by the tuple space model. Recent studies on reactive
tuple spaces have focused on mobile agent coordination, an area that
demands flexible and powerful mechanisms for coordinating and inte-
grating heterogeneous components [Cabri et al., 1998, Cabri et al., 2000b,
Denti et al., 1997, Denti and Omicini, 1999, Omicini and Zambonelli, 1998,
Omicini and Denti, 2001, Silva and Lucena, 2001].

The remainder of this paper is organized as follows. Section 2 discusses the
event-driven paradigm. Section 3 briefly introduces the ALua library. Section 4
describes the implementation of LuaTS. Section 5 presents a few examples and
finally, in Section 6, we draw our conclusions.

2 Event-Driven Programming

Many systems can be best modeled as a stream of events and a set of reactions
triggered by those events. In modern user interfaces, for example, a number
of small graphical devices (widgets) are displayed to mediate human-computer
interaction. By acting upon such widgets the user generates events that cause
certain application routines to be executed. Most servers follow a similar event-
driven dynamics. Event-driven programming tools usually provide conceptual
abstractions that simplify the design and implementation of event-driven appli-
cations.

However, an event-driven architecture can be considered even in systems
that do not have a reactive nature. Several authors suggest the use of event-
driven programming in the development of wide-area network-based applica-
tions or as an alternative to multi-threaded programming [Ousterhout, 1996,
Carzaniga et al., 1998]. Notwithstanding its widespread use, multi-threaded pro-
gramming introduces problems that can have a significant negative impact on
the development and performance of applications. For instance, applications that
share resources require some kind of synchronization mechanism to control the
access to these resources, introducing additional design complexity. The use of
locks and other synchronization mechanisms may lead to deadlocks. Moreover,
the debugging process of a multi-threaded application can be quite difficult due
to the almost random way in which threads are scheduled. Finally, fine-grained
synchronization and an increasing number of threads require extra system re-
sources and frequent context switching, degrading general performance.

An event-driven system is composed by an event dispatcher (or event loop),
an event queue, and event handlers (the piece of code that represents the reac-

731Leal M.A., Rodriguez N., Ierusalimschy R.: LuaTS - A Reactive Event-Driven Tuple ...

tion). Events are captured and queued until retrieved by the event dispatcher,
which activates the appropriate event handler.

There are basically two ways to execute reactions. In the preemptive model
each event has a priority, and the execution of a reaction will be suspended as
soon as a higher priority event arrives at the event queue. In the non-preemptive
model reactions are always executed until completion. Both models allow con-
currency, so that reactions can be executed concurrently by multiple processes or
multiple threads. Clearly this second option introduces the same sort of problems
of traditional multi-threaded programming.

3 The ALua Library

ALua [Ururahy and Rodriguez, 1999, Ururahy et al., 2002] is an event-
driven communication library based on the interpreted language
Lua [Ierusalimschy et al., 1996]. An ALua application is composed by sev-
eral processes (called agents) which can run in one or more different hosts, and
communicate only through an asynchronous primitive (send). Each agent has
a Lua interpreter and an event loop that manages user-interface and network
events.

An ALua agent executes code only as a reaction to an event, such as the
reception of a message. All messages exchanged between agents are composed
of a chunk of code that represents the reaction to be executed by the addressed
agent. Each agent runs only one thread, and always executes each reaction until
completion.

ALua 2.0 [Pfeifer et al., 2002], which we used to implement LuaTS, intro-
duced a few major changes in the original ALua system. Its most important
new feature is the support of traditional communication channels (TCP/IP and
UDP), which allow agents to exchange raw data and also to communicate with
non-ALua applications.

4 LuaTS

LuaTS is a reactive event-oriented tuple space developed for the Lua program-
ming environment. The system architecture (figure 1) is composed by several
instances of two main modules, a client and a server. Communication is always
between a single client and a single server.

The server module is composed by three layers:

Kernel — implements the main data structures and the mechanisms responsi-
ble for keeping tuples, active calls, and reactions.

732 Leal M.A., Rodriguez N., Ierusalimschy R.: LuaTS - A Reactive Event-Driven Tuple ...

Communication

Kernel

S
e

rv
e

r A
P

I

Reactivity

Client API

Client

LuaTS Server

Application

Communication

L
u

a
T

S
 C

lie
n

t

Reactions

network

Communication

Kernel

S
e

rv
e

r A
P

I

Reactivity

Client API

Client

LuaTS Server

Application

Communication

L
u

a
T

S
 C

lie
n

t

Reactions

network

Figure 1: LuaTS Architecture

Reactive Layer — works as a filter between the kernel and the communica-
tion layer, generating side effects and eventually changing the behavior of
the basic system calls according to scripts associated with triplets in the
form (call, client, template). The reactions can be specified dynamically
through a dedicated API (Server API).

Server Communication Layer — interacts with the client module. It waits
for requests and, if necessary, opens new connections to send the correspond-
ing results.

The client module acts as the tuple-space front end and is composed of two
layers:

Client API — implements the calls that allow generic applications to access
the tuple space.

Client Communication Layer — interacts with a LuaTS server and acti-
vates callbacks associated with requests.

733Leal M.A., Rodriguez N., Ierusalimschy R.: LuaTS - A Reactive Event-Driven Tuple ...

4.1 The Client API

As in most tuple-space implementations, LuaTS’s API is very small and simple.
Due to its event-driven nature, all its operations are asynchronous. The main
calls provided by this API are:

write(tuple) — inserts a tuple in the tuple space.

take (template, callback) - retrieves and removes a tuple associated with the
template. The callback function will be called within the client context as
soon as the request is fulfilled, receiving the retrieved tuple as its argument.

read (template, callback) — retrieves a tuple associated with the template,
but does not remove it from the tuple space. The callback function will be
called within the client context as soon as the request is fulfilled, receiving
the retrieved tuple as its argument.

readAll (template, callback) — retrieves all the tuples associated with the
template, without removing them from the tuple space. The callback function
will be called within the client context as soon as the request is fulfilled,
receiving a list with the retrieved tuples as its argument.

The fulfillment of any request, except write, is always indicated by the exe-
cution of a callback within the client context. If the server cannot immediately
fulfill a read or take request, because there are no compatible tuples in the
tuple space, it stores the request and fulfills it as soon as a compatible tuple is
inserted. These stored requests are called active calls.

The readAll request is never stored for late fulfillment (and therefore never
becomes an active call). If the server cannot fulfill it immediately, then it returns
an empty table to the client, activating the registered callback.

Tuples and templates are created using two constructors:

tuple(tag, arg1, ..., argn) — this is the basic tuple and template constructor. It
creates a tuple or template with tag, arg1, ..., argn as its fields. tag is always
a string.

searchFunction (tag, function) - this is a special template constructor. It cre-
ates a template containing a search function and having the string tag as its
first field. Search functions will be explained in the next section.

Finally, it is possible to define a time limit for storage of any particular tuple
or active call in the tuple space. This limit is set with the setTimeout call, which
takes as argument a tuple (or template) and the respective timeout in seconds.

734 Leal M.A., Rodriguez N., Ierusalimschy R.: LuaTS - A Reactive Event-Driven Tuple ...

4.2 Tuples e Templates

Tuples are modeled as ordered Lua tables containing n + 1 fields (n > 1). The
first field of any tuple, called tag, is used as an index in the storage and retrieval
process, and thus must be a non-empty string. A special field with index n is
used to indicate the total number of fields. A tuple field can hold any serializable
object, which in Lua comprises strings, numbers, tables and the nil value. Al-
though functions are non-serializable Lua types, tuple fields can contain strings
with function code (in Lua it is possible to define a new function using this string
at runtime).

Tuples are searched and retrieved through an association process that em-
ploys objects called templates. A template is modeled exactly like tuples, but it
may contain, in addition to ordinary objects, a special value that represents a
wildcard. If a template matches a particular tuple in the tuple space, the search
is considered successful.

In LuaTS a template can also hold a special function called a search function,
that is invoked by the server during the tuple retrieval process. The search
function receives a tuple as its argument and tests whether the tuple matches a
specific structure. If it does, the search is considered successful.

As an illustration of this process, consider an example where we want to
retrieve a tuple that have two fields that bear a specific relation. The following
code accomplishes this goal with the use of a search function:

f = [[function(t)
-- test if fields are numbers
if (type(t[2]) == "number") and (type(t[3]) == "number") then
-- test the specific relation
return (t[2] == 2*t[3])

end
end]]

t = ts.searchFunction("key", f) -- create the template
ts.read(t, callback)

Search functions enhance the expressive power of templates and optimize
the retrieval process, eventually reducing the number of calls necessary to sat-
isfy more complex specifications and allowing searches that are impossible with
traditional templates (as shown in the example above).

In ordinary tuple space implementations, tuple elements are typed objects
and can be matched against special wildcard values that represent any object of
a particular type. Although we could provide this feature in LuaTS, we chose not
to, due to the dynamic nature of Lua and its common programming practice. In
spite of that, it is easy to replicate this search semantics using the Lua function
type.

735Leal M.A., Rodriguez N., Ierusalimschy R.: LuaTS - A Reactive Event-Driven Tuple ...

4.3 The Kernel

The server kernel is composed of two main Lua tables, one responsible for storing
tuples and active calls and another responsible for storing reactions. The latter
table will be described in section 4.4. The former is a hash table indexed by
the tag field of both tuples and templates. In each bucket there are two double
linked lists with nodes that store tuples and active calls (figure 2).

slot i

hash table

tuple

template,

client,

callback,

call

... ...

nil

nil

tuples

active calls

Figure 2: Kernel: main table

The tuple list stores only tuples. Each node in the active call list stores a
template, a client address, the id of the callback that will be executed within
the client context indicating the request fulfillment, and the original call (read
or take) that was not fulfilled.

The association between tuples and templates is executed on a field by field
basis. A template matches a tuple only if all its non-null fields match the tu-
ple’s respective fields and both objects have the same number of fields. Null
template fields are therefore considered wildcards, and match any value in the
corresponding tuple field.

When the LuaTS server receives a request with a template, it looks for a
search function definition. If it finds one, it pre-compiles it and assigns the re-
sulting function to a variable. During the search process this function will be
repeatedly invoked until a valid association occurs.

A write request is implemented in the kernel as a very simple routine:

736 Leal M.A., Rodriguez N., Ierusalimschy R.: LuaTS - A Reactive Event-Driven Tuple ...

1. Access the bucket that has the index tag.

2. Access the active call list and walk through its nodes searching for a template
that matches the inserted tuple.

3. If there is a match, send a copy of the tuple to the client that posted the
corresponding request. If the active call is a read, continue to walk through
the list looking for matches; otherwise finish processing.

4. If the end of the active call list is reached, then insert the tuple in the bucket’s
tuple list.

read and take perform a similar routine. First the tuple list is checked for a
possible match. If there is a match, a copy of the tuple is sent to the client (the
tuple is removed if, and only if, the request is a take). If there are no matches,
then the request is stored in the active call list. In order to maximize the number
of active calls served, read calls are always inserted in the front of the list, while
take calls are inserted in the end. With this discipline when a tuple is inserted,
before being tested against any take, it is tested against all the active read calls
in a particular bucket.

4.4 The Communication Layers

The communication layers are implemented using a set of ALua functions that
allow the management of traditional TCP/IP sockets. An application may asso-
ciate event handlers with a socket. When the socket state changes (e.g., a message
arrives or the connection is closed) the corresponding handler is executed.

In LuaTS each client has two independent connections with the server: one
for sending requests and another for receiving the results. The client requests
are buffered until the connection with the server becomes writable. After the
messages are sent, the connection is kept open, basically due to optimization
reasons, but the event handler associated with the “connection ready to trans-
mit” event is switched to null. When a new request is made, the event handler
is switched back to its original value.

Finally, when the client receives a result message, the socket event handler
retrieves the callback registered to handle that specific request and calls it with
the tuple (or list of tuples in the case of readAll) as its argument.

4.5 The Reactivity Layer

In the current version of LuaTS, mainly due to the lack of a robust security
infra-structure, we allow the registration of reactions through the server inter-
face only. Reactions are registered using a dedicated API call (regReaction)
and are represented by a meta-tuple in the form (call, client, template,

reaction, delay). Each argument has the following meaning:

737Leal M.A., Rodriguez N., Ierusalimschy R.: LuaTS - A Reactive Event-Driven Tuple ...

call — is the kind of call that will trigger the reaction (one of write, take,
read, readAll);

client — is a table with the IP and port numbers of the client that made the
call;

template — is a template to match the tuple inserted or retrieved by the call;

reaction — is a string with the code representing the reaction;

delay — is a flag that indicates when the reaction should be executed (we will
explain this later on).

The client and template fields may contain a null value, which play the role of a
wildcard. The other arguments must be non-null values.

Reactions are retrieved according to a routine similar to those used for re-
trieving tuples and active calls. A reaction meta-tuple is stored in the reaction
table, indexed by the call. For each call, we use another table that is indexed by
the template tag field. Calls with null templates are assigned to a special entry.

The reaction layer searches for reactions immediately before a request is
executed by the kernel, and immediately after a result is produced. The delay
field in the reaction meta-tuple allows the programmer to specify in which of
those moments a particular reaction should be executed (if delay is a non-null
value, the reaction will be executed after a result is produced).

More than one reaction may be associated with each request. In this case
all reactions will be executed in sequence. However the side effects generated by
one reaction cannot directly trigger a new reaction, avoiding chain reactions and
minimizing the risk of cycles.

It is important to discuss how much flexibility a reactive tuple space layer
should provide. Early reactive tuple space implementations, like Law-Governed
Linda [Minsky and Leichter, 1995], introduced the reaction mechanism as
a way to overcome security and performance shortcomings of the original
Linda model. Their semantics remained similar to that of traditional models.
However, more recent implementations [Cabri et al., 1998, Cabri et al., 2000b,
Denti et al., 1997, Denti and Omicini, 1999, Omicini and Zambonelli, 1998,
Omicini and Denti, 2001, Silva and Lucena, 2001] support almost unlimited
reactions’ side effects, enabling applications to completely redefine the tuple
space semantics in very unorthodox ways. [Omicini and Zambonelli, 1998] for
example discuss an application in which a reaction to a read request executes
a database query that has no relation whatsoever with the tuple space, and
encapsulates the result in a dynamically created tuple that is never stored.

Although the tuple space API is very simple and powerful, the tuple space
model is more than just an attractive API. Of course this API can be imple-
mented with different semantics. In some cases, we get a tuple space; in others

738 Leal M.A., Rodriguez N., Ierusalimschy R.: LuaTS - A Reactive Event-Driven Tuple ...

what we really have is a framework for implementing applications that use “tuple
space like” APIs.

In LuaTS, despite any possible reaction side effect, we enforce a basic seman-
tics that cannot be changed. A writewill always insert a tuple in the tuple space.
A reaction may even modify the content of the original tuple, but nonetheless a
tuple will be inserted by that request. And to modify a tuple, the programmer
has to specify this explicitly. There are no shortcuts or implicit ways to change
the basic tuple-space semantics.

5 Examples

In this section we illustrate the use of LuaTS with a few simple examples. Note
that an event-driven tuple space can simplify the solutions to many classic prob-
lems of concurrent and distributed programming.

5.1 Marketplace

Tuple spaces have been commonly employed in the development of elec-
tronic auctions and other e-commerce applications [Freeman et al., 1999,
Cabri et al., 2000a]. An online classifieds service is an interesting case that
could benefit from the search-function mechanism of LuaTS. In this example
we use a tuple to represent each ad. The tuples have a standard structure with
information about the offered product or service. For instance,

tuple("auto","id=2345","Ford Focus",2001,"blue",

{"air-conditioning","CD-player"},14000)

describes a sale offer of a Ford Focus, model 2001, blue color, with air
conditioning, a CD player, and a sale price of $14.000.

Suppose we are interested in a Ford Focus and would like to retrieve some
offers. We are willing to pay $15.000 for a 2001 model, or $12.500 for a 2000
model. To implement this query we can use the following code:

function printOffers (t)
if getn(t) == 0 then

print("No sale offer found!!!")
return

end
for i,v in t do

print("Offer "..i..": "..ts.tostring(v))
end

end

search = [[function (t)

739Leal M.A., Rodriguez N., Ierusalimschy R.: LuaTS - A Reactive Event-Driven Tuple ...

if t[3] == "Ford Focus" and
((t[4] == 2000 and t[7] <= 12500) or
(t[4] == 2001 and t[7] <= 1500)) then
return 1

end
end]]

ts.readAll(ts.searchFunction("auto",search),"printOffers")

The search function defines the query criteria and is passed to a template
through the searchFunction constructor. The printOffers function is regis-
tered as a callback. It will be called as soon as the readAll request is fulfilled,
printing all offers retrieved.

5.2 Readers and Writers

Controlling exclusive access to shared resources can be easily accomplished using
a tuple to represent the access right. Any process interested in a resource has to
acquire the respective tuple with a take call. To free the resource, the process
simply inserts back the tuple with a write call.

The problem of “readers and writers” is more complex. In this problem
any writer process needs mutually exclusive access to a resource, but reader
processes, as a group, can access the resource concurrently. We can implement
a solution to this problem using shared locks, represented by tuples with the
following format:

ts.tuple("lock ID", numberOfWriters, numberOfReaders)

Readers try to acquire a tuple using the template:

ts.tuple("lock ID", 0, nil)

While writers try to acquire the tuple using the template:

ts.tuple("lock ID", 0, 0)

When the tuple is acquired, access right is immediately granted. Each
process is responsible for incrementing and decrementing the corresponding
numberOfWriters or numberOfReaders fields.

In the solution above, any writer will be indefinitely blocked while there is
one or more readers interested in the resource. A fairer solution extends the
former tuples with just one extra field:

ts.tuple("lock ID", numberOfWriters, numberOfReaders, delayedWriter)

740 Leal M.A., Rodriguez N., Ierusalimschy R.: LuaTS - A Reactive Event-Driven Tuple ...

where the delayedWriter field is a binary flag.
Now all readers and writers try to acquire a tuple with the template:

ts.tuple("lock ID", 0, nil, 0)

When a reader acquires the tuple, it gets immediate access to the resource. A
writer, on the other hand, faces to possibilities:

– numberofReaders is zero — in this case the access is granted immediately.

– numberofReaders is not zero — in this case only a priority is granted, not
the access. The access right will be acquired only when all previous readers
release the resource. The writer has to set the delayedWriter field and
wait for the tuple

ts.tuple("lock ID", 0, 0, 1)

5.3 Reactivity

An interesting application of the reactivity mechanism is tuple-space access con-
trol. For several reasons a system administrator may want to restrict user access
rights. Some users may not be allowed to remove tuples, for example. This kind
of control can be implemented as illustrated by the code below:

function log (client, tuple, callback)
if notAuthorized(client) then -- checks if the client has

-- rights to execute a take
local file = appendto("log.txt")
if file then
write(file, format("At %s client %s:%s tried to remove %s \n",

date(), client.ip, client.port,
ts.tostring(tuple)))

closefile(file)
end
ts.write(tuple) -- reinserts the tuple in the tuple space

end
end

ts.regReaction(ts.take,nil,nil,log,1) -- registers the reaction

In this example all non-authorized attempts to remove tuples are recorded
in a log file. A reaction is executed immediately after the kernel extracts a tuple
requested by a non-authorized user. The extraction attempt is recorded in a log
file and the tuple is reinserted in the tuple space. Notice that, in spite of the
reaction, the original take call is executed normally, i.e. the requested tuple is
removed (even though it is reinserted later) and sent to the client.

741Leal M.A., Rodriguez N., Ierusalimschy R.: LuaTS - A Reactive Event-Driven Tuple ...

6 Conclusion

Our programming experience with LuaTS shows that the uncoupling promoted
by the tuple space model added to an event-driven dynamics facilitate pro-
cess synchronization and yield a much simpler execution thread. The program-
ming task becomes easier when compared to traditional client/server and multi-
threaded architectures and is less error-prone.

LuaTS follows an explicit event-driven dynamics and supports asynchronous
calls only. JavaSpaces and TSpaces, on the other hand, provide mainly syn-
chronous calls. As already mentioned, they also support the concept of an event,
but just through a notification service that has a fairly complex semantics. Simple
tasks, such as removing a tuple that triggered an event, are not easily imple-
mented. The programmer has to explicitly handle thread synchronization and
worry about deadlocks, exactly the kind of problems that we wish to avoid with
event-driven programming.

Another interesting aspect of LuaTS is its search semantics. Although a few
implementations support more flexible mechanisms than the traditional template
association process, as far as we know, none of those reach an expressiveness sim-
ilar to that of search functions. This facility allows queries that are not possible
with traditional templates, and can improve the retrieval process by reducing
the number of requests necessary to satisfy complex specifications.

Many of LuaTS’s capabilities depend on its code mobility support, something
directly inherited from ALua and the Lua language itself. Code mobility can be
informally defined as the capability to reconfigure, during runtime, the bindings
between the software components of the applications and their physical loca-
tion within a computer network [Carzaniga et al., 1997]. Code mobility support
is generally classified as strong or weak [Fuggetta et al., 1998]. Strong mobility
support the migration of code and its execution environment, i.e. its stack, global
variables, registers, etc. Weak mobility, on the other hand, support only code
migration. We could also define a third class of mobility support called semi-
strong, that implicitly support code migration and program data, like global
variables and object attributes. Java for example does not support strong mo-
bility, but its serialization mechanism is much more powerful than those found
in languages with only weak mobility support, and in our opinion belong to a
different class. ALua, and therefore LuaTS, support only weak mobility. Never-
theless both systems provide functionalities that allow the programmer to define
protocols for transferring methods and attributes, achieving results similar to
Java serialization.

Finally, an issue that deserves special attention in future versions of LuaTS is
security. The code chunks that are exchanged between hosts are not “controlled”
and could be tampered with little effort. Search functions should be handled in
a sandbox that supports only a subset of the Lua language, blocking access to

742 Leal M.A., Rodriguez N., Ierusalimschy R.: LuaTS - A Reactive Event-Driven Tuple ...

the server’s data structures and restricting I/O. Moreover, a message signature
infra-structure would allow code authentication, which could enable dynamic
installation of reactions by authorized clients.

References

[Cabri et al., 1998] Cabri, G., Leonardi, L., and Zambonelli, F. (1998). Reactive tuple
spaces for mobile agent coordination. In Rothermel, K. and Hohl, F., editors, Pro-
ceedings of the 2nd International Workshop on Mobile Agents, volume 1477, pages
237–248. Springer-Verlag: Heidelberg, Germany.

[Cabri et al., 2000a] Cabri, G., Leonardi, L., and Zambonelli, F. (2000a). Auction-
based agent negotiation via programmable tuple spaces. In 4th International Work-
shop on Cooperative Information Agents (CIA 2000).

[Cabri et al., 2000b] Cabri, G., Leonardi, L., and Zambonelli, F. (2000b). MARS: A
Programmable Coordination Architecture for Mobile Agents. IEEE Internet Com-
puting, 4(4):26–35.

[Carriero and Gelernter, 1989] Carriero, N. and Gelernter, D. (1989). Linda in context.
Communications of the ACM, 32(4):444–458.

[Carzaniga et al., 1998] Carzaniga, A., Nitto, E. D., Rosenblum, D. S., and Wolf, A. L.
(1998). Issues in supporting event-based architectural styles. In Proceedings Third
International Software Architecture Workshop, pages 17–20, Orlando, Florida. IEEE.

[Carzaniga et al., 1997] Carzaniga, A., Picco, G. P., and Vigna, G. (1997). Designing
distributed applications with a mobile code paradigm. In Proceedings of the 19th
International Conference on Software Engineering, Boston, MA, USA.

[Denti et al., 1997] Denti, E., Natali, A., and Omicini, A. (1997). Programmable coor-
dination medium. In Garlan, D. and Métayer, D. L., editors, Proceedings of COOR-
DINATION’97 (Coordination Languages and Models, volume 1282 of LNCS, pages
274–288. Springer-Verlag.

[Denti and Omicini, 1999] Denti, E. and Omicini, A. (1999). An architecture for
tuple-based coordination of multi-agent systems. Software Practice and Experience,
29(12):1103–1121.

[Freeman et al., 1999] Freeman, E., Hupfer, S., and Arnold, K. (1999). JavaS-
paces(TM) Principles, Patterns, and Practice. Addison-Wesley, 1 edition.

[Fuggetta et al., 1998] Fuggetta, A., Picco, G. P., and Vigna, G. (1998). Understand-
ing Code Mobility. IEEE Transactions on Software Engineering, 24(5):342–361.

[Gelernter, 1985] Gelernter, D. (1985). Generative communications in Linda. ACM
Transactions on Programming Languages and Systems, 7(1):80–112.

[Ierusalimschy et al., 1996] Ierusalimschy, R., de Figueiredo, L. H., and Filho, W. C.
(1996). Lua — an extensible extension language. Software Practice and Experience,
26(6):635–652.

[Minsky and Leichter, 1995] Minsky, N. H. and Leichter, J. (1995). Law-governed
Linda as a coordination model. Lecture Notes in Computer Science, 924:125–146.

[Omicini and Denti, 2001] Omicini, A. and Denti, E. (2001). From tuple spaces to
tuple centres. Science of Computer Programming, 41(3):277–294.

[Omicini and Zambonelli, 1998] Omicini, A. and Zambonelli, F. (1998). Tucson: a co-
ordination model for mobile information agents. In Schwartz, David G. AND Divitini,
Monica AND Brasethvik, T., editor, 1st International Workshop on Innovative In-
ternet Information Sytems (IIIS’98), pages 177–187. Department of Computer and
Information Science (IDI), NTNU.

[Ousterhout, 1996] Ousterhout, J. K. (1996). Why threads are A bad idea (for most
purposes). Invited Talk at the 1996 USENIX Technical Conference.

[Pfeifer et al., 2002] Pfeifer, A. L., Ururahy, C., Rodriguez, N., and Ierusalimschy, R.
(2002). Event-driven programming for distributed multimedia applications. In
20o.Simpsio Brasileiro de Redes de Computadores.

743Leal M.A., Rodriguez N., Ierusalimschy R.: LuaTS - A Reactive Event-Driven Tuple ...

[Silva and Lucena, 2001] Silva, O. and Lucena, C. (2001). T-rex: A reflective tuple
space environment for dependable mobile agent systems. In Proceedings of the III
WCSF at IEEE MWCN 2001.

[Ururahy and Rodriguez, 1999] Ururahy, C. and Rodriguez, N. (1999). Alua: An
event-driven communication mechanism for parallel and distributed programming.
In Proceedings of the 12th International Conference on Parallel and Dist. Comp.
Practices.

[Ururahy et al., 2002] Ururahy, C., Rodriguez, N., and Ierusalimschy, R. (2002). Alua:
Flexibility for parallel programming. Computer Languages, 28(2):155–180.

[Wyckoff et al., 1998] Wyckoff, P., McLaughry, S., Lehman, T., and Ford, D. (1998).
Tspaces. IBM Systems Journal, 37(3):454–474.

744 Leal M.A., Rodriguez N., Ierusalimschy R.: LuaTS - A Reactive Event-Driven Tuple ...

