
���������	��
�������������	���

Rafael Dueire Lins
Universidade Federal de Pernambuco, Recife, PE, Brazil

rdl@ee.ufpe.br

Abstract: Reference counting is a widely employed memory management technique, in which
garbage collection operations are interleaved with computation. Standard reference counting
has the major drawback of being unable to handle cyclic structures. This paper presents an
important optimisation to a recently published algorithm for cyclic reference counting. Proofs
of the correctness of the original and lazy algorithms are provided, together with performance
figures.

Keywords: Garbage Collection, Reference Counting, Cycles, Memory Management
Categories: D.4.2, D.4.3, F.2.2

�� ��������	���

Reference counting performs memory management in small steps interleaved with
computation. It is the memory management technique of most widespread use today
[Bacon 01]. Reference counting has shown to be efficient in concurrent strongly
coupled architectures [Bacon 01a, Jones 96, Lins 03], and has also great potential for
application in distributed environments [Lins 02a]. In reference counting each data
structure keeps the number of external references (or pointers) to it. It was developed
by Collins [Collins 60] to avoid user process suspension provoked by the mark-scan
algorithm in LISP [McCarthy 60]. In 1963, J.H.McBeth [McBeth 63] noticed that
reference counting was unable to reclaim cyclic structures, because the counter of
cells on a cycle never drops to zero, causing a space-leak.

Reference [Martinez 90] describes the first widely acknowledged general solution
for cyclic reference counting. The Martinez-Wachenchauzer-Lins algorithm performs
a local mark-scan whenever a pointer to a shared data structure is deleted. In a recent
paper [Lins 02], the constant of linearity of the algorithm in [Martinez 90] was
reduced from 3 �������� ��), where � is the size of the sub-graph below the deleted
(shared) pointer. This gain in performance was made possible by introducing a data
structure, called the �������	
�, which stores a reference to the “critical points” in
the graph while performing the local marking (after the deletion of a pointer to a
shared cell). These nodes are revisited directly, saving a whole scanning phase in
[Lins 92, Martinez 90]. The work reported in reference [Salzano 02] makes the use of
the Jump_stack more efficient.

Previous work [Lins 92] has shown that delaying the mark-scan by storing a
reference to a shared deleted pointer for later analysis largely increases the
performance of the algorithm as a whole. A convenient control strategy may even
reduce the number of calls to the mark-scan to only collect cycles in the case of an
empty free-list [Lins 92, Lins]. This paper makes lazy the algorithm presented in

Journal of Universal Computer Science, vol. 9, no. 8 (2003), 813-828
submitted: 24/2/03, accepted: 30/5/03, appeared: 28/8/03 J.UCS

reference [Salzano 02], yielding a more efficient cyclic reference counting algorithm
than its predecessors. The eager and the lazy efficient cyclic reference counting
algorithms are also proved correct in this paper. Some performance figures show the
gains obtained in performance with the lazy algorithm with respect to the eager one.
Reference [Lins 93] presents an optimisation to the lazy algorithm described in [Lins
92], in which the local mark-scan is made more efficient by associating with each cell
a creation-time stamp. The convenience of using a similar strategy in the new lazy
mark-scan is also analysed herein.

�� ��������
�������������	��

For a matter of simplicity and completeness of presentation this section revises the
classical algorithm of Collins for standard reference counting [Collins 60]. In
reference counting each data structure or
� has a count that stores the number of
external references to it. Free cells are linked together in a structure called ��������. A
cell � is
����
��� to a cell � (�→�), if and only if there is a pointer <����>. A cell �
is ��	���������
����
��� to a cell � (��∗ →�), if and only if there is a chain of pointers

from �� to��. The initial point of the graph to which all cells in use are transitively
connected is called ����.
There are three operations on the graph:

New(R) gets a cell U from the free-list and links it to the graph:
New (R) = select U from free-list
 make_pointer <R, U>

Copy(R, <S,T>) gets a cell R and a pointer <S, T> to create a pointer <R,
T>, incrementing the counter of the target cell:
 Copy(R, <S,T>) = make_pointer <R, T>
 Increment RC(T)
Delete performs pointer removal:

 Delete (R,S) = Remove <R,S>
 If (RC(S) == 1) then
 for T in Sons(S) do
 Delete(S, T);
 Link_to_free_list(S);
 else Decrement_RC(S);

A cell T belongs to the bag Sons(S) iff there is a pointer <S,T>.

In 1963, J.H.McBeth [McBeth, 63] observed that the algorithm above is unable to
collect cyclic structures, as the deletion of the last external pointer to them does not
drop counters causing a space-leak.

�� ����	��
�������������	����	���������	�	�������� ����!

The general idea of the algorithm presented in reference [Lins 02] is to perform a
local mark-scan whenever a pointer to a shared structure is deleted. New and Copy
remain unchanged while Delete encompasses a local mark-scan whenever a pointer to
a shared structure is removed. The algorithm works in two steps. In the first step, the
sub-graph below the deleted pointer is scanned, rearranging counts due to internal

814 Lins R. D.: Lazy Cyclic Reference Counting

references, marking nodes as possible garbage and also storing potential links to root.
In step two, the cells pointed at by the links stored are visited directly. If the cell has
reference count greater than one, the whole sub-graph below that point is in use and
its cells should have their counts updated. In the final part of the second step, the
algorithm collects garbage cells.

In addition to the information of number of references to a cell, an extra field is
used to store the colour of cells. Two colours are used: green and red. Green is the
stable colour of cells. All cells are in the free-list and are green to start with. The
algorithm is detailed below.
The code for Delete becomes:

Delete (R,S) = Remove <R,S>
 If (RC(S) == 1) then
 for T in Sons(S) do
 Delete(S, T);
 Link_to_free_list(S);
 else Decrement_RC(S);
 Mark_red(S);

 Scan(S);
One can observe that the only difference to standard reference counting in

the algorithm above rests in the last two lines of Delete, which are explained
below. The algorithm makes use of a stack, called �������	
�, to store
references to nodes which can potentially link the sub-graph to root. The code
above for mark_red shows that it is the manager of the insertion of elements in
the Jump_stack. The key optimisation proposed in [Salzano 02] is to postpone
inserting cells into the Jump_stack for as long as possible. Anticipating calling
mark_red recursively and only testing for multiple references to insert onto the
Jump_stack afterwards yields the chance of removing a much larger number of
references internal to the subgraph under analysis. This drastically reduces the
number of candidates to the Jump_stack. The optimised code for mark_red is
then:
 Mark_red(S) = If (Colour(S) == green) then

 Colour(S) = red;
 for T in Sons(S) do
 Decrement_RC(T);
 for T in Sons(S) do
 if (Colour(T) == green)
 then Mark_red(T);
 if (RC(S)>0)
 then Jump_stack: = S;

Notice that the testing for insertion in the Jump_stack is performed in the parent
cell. This largely reduces the space and time needed for the management of the
Jump_stack with strong impact to the performance of the application. Scan(S) verifies
whether the Jump_stack is empty. If so, the algorithm sends cells hanging from S to
the free-list. If the Jump_stack is not empty there are nodes in the graph to be
analysed. If they are red and their reference count is greater than one, there are
external pointers linking the cell under observation to root and counts should be
restored from that point on, by calling the ancillary function Scan_green.

815Lins R. D.: Lazy Cyclic Reference Counting

 Scan(S) = If RC(S)>0 then Scan_green(S); Empty_JS
 else
 While (Jump_stack ≠ empty) do
 T = top_of_Jump_stack;

 Pop_Jump_stack;
 If (Colour(T) == red && RC(T)>0)
 then Scan_green(T);
 Collect(S);
Procedure Scan_green restores counts and paints cells green in a sub-graph in use, as
follows,
 Scan_green(S) = Colour(S) = green

 for T in Sons(S) do
 increment_RC(T);
 if colour(T) is not green
 then Scan_green(T);

Collect is the procedure in charge of returning garbage cells to the free-list, painting
them green and setting their reference count to one, as follows:
 Collect(S) = If (Colour(S) == red) then

 for T in Sons(S) do
 Remove(<S, T>);
 RC(S) = 1;
 Colour(S) = green;
 free_list = S;
 if (Colour(T) == red) then

 Collect(T);
The example below, makes clearer the dynamics of the algorithm.

�"�� �#$������

Attention is focused on the case of Delete, as operations New and Copy remain
unchanged from the standard reference counting algorithm and only Delete manages
the Jump_stack. The graph presented on the lefthand side of the figure below is
exactly the minimal structure for which Salkild [Salkild 87] discovered the error in
Brownbridge’s algorithm [Brownbridge 85]. In this example, the deletion of a pointer
will not cause the recycling of any cell, because of sharing. Consider the deletion of
pointer <a,b>.

Delete(a,b) is invoked to Remove <a,b>, Decrement_RC(b), and Mark_red(b) starts yielding
the graph below:

816 Lins R. D.: Lazy Cyclic Reference Counting

The graph above has pointer <a,b> deleted causing mark_red to be called on b,
leaving the graph as,

While in the original algorithm [Lins 02] a reference to d would already
have been placed in the Jump_stack, in the optimised algorithm [Salzano 02] the
Jump_stack remains empty so far.

Mark_red is invoked on d and c leaving the graph in the lay-out presented below,

Finished the recursive calls to mark_red the testing of the condition is made

and only then a reference is placed onto the Jump_stack as pictured below:

817Lins R. D.: Lazy Cyclic Reference Counting

Finally, during scan, scan_green is invoked yielding the graph below, ending
the local mark-scan.

%� &������������	����

The new lazy algorithm presented herein postpones the local mark-scan either for as
long as possible or following a pre-determined strategy, by storing a pointer to the
shared cell in a control data structure �, which for simplicity is assumed to be a
queue. In most applications, graph rewritings happen in “regions”, thus chances are
that if a pointer to a shared cell is deleted there is a large probability that the
remaining pointers may also be deleted. It is likely that the fate of cells is decided
without needing to call the local mark-scan at all. Ideally, only pointers to cycles
would remain in Q, as their count never drop to zero. In this case, mark-red is used to
reclaim those cells.

In addition to the information of number of references to a cell, an extra field is
used to store the colour of cells. Three colours are used: �����, ��� and �	
�. Green
is the stable colour of cells. All cells are in the free-list and are green to start with.
Red is a colour used to control the marking of cells. Black is used to indicate that a
cell is already in Q and will have its status defined at a later stage.

The dynamics of the algorithm is detailed below:

818 Lins R. D.: Lazy Cyclic Reference Counting

New(R) either gets a cell U from the free-list and links it to the graph or if the
free-list is empty forces a local mark-scan to take place by calling scan_Q:

New (R) = if free-list not empty then
 select U from free-list
 make_pointer <R, U>
 else
 if Q not empty then
 scan_Q;
 New (R)
 else
 write_out “No cells available”

Copy(R, <S,T>) gets a cell R and a pointer <S, T> to create a pointer <R, T>,
incrementing the counter of the target cell. If a cell is the target of a Copy it is
painted green, as one becomes sure it is in use, avoiding later calls to the
local mark-scan.
 Copy(R, <S,T>) = make_pointer <R, T>
 Increment RC(T);
 Colour(T) :=green

Pointer removal is performed by Delete, which is here far simpler than in the
eager algorithm [Lins 02], since mark-scan to multiple referenced cells is
performed lazily. The colour of cells is tested black to avoid multiple
references on Q.

 Delete (R,S) = Remove <R,S>
 If (RC(S) == 1) then
 for T in Sons(S) do
 Delete(S, T);
 Link_to_free_list(S);
 else Decrement_RC(S);
 if colour(S) not black then
 colour(S):= black;
 Q:= Q ++ S

The local mark-scan is performed by scan_Q, by electing a cell and testing its
colour. If it remains black its status is still to be analysed by invoking the
local mark-scan, otherwise it is simply removed from Q (either Delete sent it
directly to the free-list or Copy assured its use).

 scan_Q = S :=head(Q);
 Q := tail(Q);
 if colour(S) is black then
 Mark_red(S);

 Scan(S);
 else
 if Q not empty then
 scan_Q

Mark_red(S) is modifyied to allow for black cells also, thus.
Mark_red(S) = If (Colour(S) ≠ red) then
 Colour(S) : = red;
 for T in Sons(S) do
 Decrement_RC(T);
 for T in Sons(S) do
 if (Colour(T) ≠ red)
 then Mark_red(T);
 if (RC(T)>0 && T not in Jump_stack)
 then Jump_stack: = T;

819Lins R. D.: Lazy Cyclic Reference Counting

Routines Scan, Scan_green and Collect are the same as in the eager algorithm [Lins 02],
presented in section 3 above.

%"�� #$������

The dynamics of the algorithm is illustrated by an example, where one can observe its
advantage in relation to the eager algorithm [Lins 02, Salzano 02]. Assume a
Control_queue of size 3, which behaves as a stack of references onto the graph. The
graph of the figure below suffers the deletion of pointer <root, a>.

Cell a is a shared data structure within a cycle. While in the eager algorithm a

local mark-scan would be automatically started, in the lazy algorithm a reference to a
is placed on the Control_queue with no further action, yielding the graph as shown:

The deletion of pointer <d, e> takes place and cell e is automatically placed by
Delete onto the free-list, leaving the graph as,

820 Lins R. D.: Lazy Cyclic Reference Counting

Now, the cycle abc is broken by the deletion of pointer <c, a>. Recursive calls to
Delete are made, yielding the graph as depictured in the graph below.

Notice that at the end of this deletion process cells are placed onto the free-list,

but a reference to a remains on the Control_queue. Only calls to scan_Q will remove
that reference with no further ado as it became green (it either remains on the free-list
or is back to the graph in use). It is most important to stress that no call to the mark-
scan process was ever made.

'� (���������������������

The invariant conditions for reference counting are:

1. The number of external references to a cell is equal to the value of the
reference count.

2. Every cell is either transitively connected to root or is on the free-list, but not
on both.

The conditions above are analysed in standard reference counting, for each of the
graph operations:

• New gets a cell from the free-list (with RC=1, observing condition 1) and
(transitively) links it to root, satisfying condition 2.

821Lins R. D.: Lazy Cyclic Reference Counting

• Copy makes a new link to a cell already transitively connected to root (thus
preserving condition 2) and increments the count of the target cell (keeping
condition 1 valid).

• Delete removes a pointer to a cell and analyses its count.

• If its count is 1 and there are no active calls to Delete, the last link
to root was deleted and the cell is placed directly onto the free-list
satisfying both conditions above.

• If its count is greater than one, the reference count of the target cell
is decremented (keeping condition 1 valid), but in regard to
condition 2, two cases unfold:

i. shared subgraph – condition 2 remains valid.

ii. cyclic subgraph – if the link removed was the last
connecting to root, there is a space leak and condition 2
does not hold.

'"�� &������������	����

The eager cyclic algorithm restores the validity of conditions 1 and 2, provided that
there are no active function calls, by invoking Mark_red and Scan at the target cell of
the deleted pointer.

• Mark_red simulates the deletion of the last link to root, placing onto the
Jump_stack possible candidates (cells with RC>1) that may still keep the
subgraph transitively linked to root. Notice that while Mark_red is active,
condition 1 is not valid and condition 2 may not be valid (in the case of
cyclic subgraph with space leak).

• Scan checks the members of the Jump_stack:

• If any of them have reference count greater than one, there is an
external link to root. Condition 2 always hold and Scan_green is
invoked to restore counters within the subgraph, making
condition 1 valid.

• Cells pointed at from the Jump_stack have reference count 0
and are thus detached from root. Collect is invoked to send cells
to the free-list (restoring the validity of condition 2) and setting
their reference counts one (making condition 1 hold).

Notice that no other function was considered as they remain unchanged with
relation to the standard reference counting algorithm and that colours are simply
marks for termination detection of recursive calls to functions.

822 Lins R. D.: Lazy Cyclic Reference Counting

'"�� &������������	����

The lazy cyclic reference counting algorithm postpones the local mark-scan for as
long as possible, in the hope of not performing it at all (in the case of a shared data
structure) or to perform it only to reclaim an island of cells detached from root. Cells
referred by the Control_queue are thus of uncertain status and will either be left in the
graph (they are in use and linked to root) or reclaimed and sent to the free-list. The
invariant conditions to the lazy algorithm may be stated as:

3. The number of external references to a cell is equal to the value of the
reference count, provided there is no outstanding function call to the
routines of the lazy/local mark-scan.

4. Every cell is either transitively connected to root, transitively connected to
the control structure or is on the free-list. No cell is both in the free-list and
transitively connected to root.

The conditions above are analysed in lazy cyclic reference counting, for each of
the graph operations:

• New works now with two possibilities:

• If the free-list is non-empty, it gets a cell from the free-list (with
RC=1, observing condition 3) and (transitively) links it to root.
Condition 4 is also met.

• If the free-list is empty and Q is non-empty, Q is scanned using a
chosen control-strategy, by function scan_Q, whose behaviour is
analysed further below.

• Copy makes a new link to a cell already transitively connected to root (thus
preserving condition 4) and increments the count of the target cell (keeping
condition 3 valid). Painting the target cell green only stresses that the cell is
connected to root, saving unnecessary calls to scan_Q.

• Delete removes a pointer to a cell and analyses its count.

• If RC=1, Delete is invoked in the Sons of the cell and the original
cell is sent to the free-list, keeping invariants 3 and 4 valid.

• If RC>1 (the cell is either shared or in a cycle), it has its count
decremented (condition 3 holds) and a reference to it is sent to Q
(condition 4 valid).

• Scan_Q analyses the colour of the cells in the control structure:

• if green this means that the cell is

i. in use (linked to root) and was the target either of a Copy

operation or a previous call to the mark-scan (conditions 3
and 4 hold).

823Lins R. D.: Lazy Cyclic Reference Counting

ii. in the free-list (conditions 3 and 4 are valid).

• if black this means that it remains as when inserted in the control
structure, with conditions 3 and 4 being observed. Its status is
uncertain and will be analysed by Mark_red and Scan.

• Mark_red was modified only to allow for black cells, as it does not change the
connectivity of the graph condition 4 holds. As in the eager version of the
algorithm, it simulates internal pointer deletion, thus weakening the invariant
in standard reference counting that the count stores the number of external
references to it, while active.

• Scan, Scan_green and Collect work as in the eager algorithm and strengthens
the validity of conditions 3 and 4 to the more restrictive versions 1 and 2.

Thus one may see that the dynamics of the lazy algorithm keep the basic
conditions above, working properly.

)� (���������*�����	��

Some experimental data compares the performance of the eager and lazy algorithms
herein. For that purpose, a Turner combinator graph reduction machine was built
[Turner 79] to execute a simple functional language. Cycles arise from “knot-tying”
the combinator “Y”, responsible for compiling recursion. The Recfat benchmark that
make intensive use of sharing and graph transformation was used to produce the data
presented below. Recfat generates a somatory of applications of the factorial
creating 18 cycles to be reclaimed. The initial size of the graph is 394 cells and the
minimal heapsize required is 413. Its execution creates 383 cells and 776 are
reclaimed (included the 18 cycles). The total number of evaluations is 911.

Table 01 presents the result of execution of Recfat using the eager optimised
algorithm [Salzano 02] and the lazy algorithm as presented in sections 3 and 4 of this
paper, respectively. The lazy algorithm adopted a queue of fixed size as control
structure � (whose size is shown in parenthesis). Column �
	� stands for the total
number of function calls to the mark-scan, being equal to the sum of the columns of
������ (mark_red), �
	�, ������� (Scan_green) and ��
�. �
�� stands for the
number of scans in �, while In(Q) and Out(Q) stand for the number of insertions and
removals from Q, respectively.

 M_red Scan S_green Collect #calls Sc_Q In(Q) Out(Q)
Eager 2,924 418 2.630 294 6,266 --- ---- ----
JlazyF(1) 2.384 334 2.070 314 5.102 399 400 399
JlazyF(2) 2.168 287 1.872 296 4.623 191 384 382
JlazyF(3) 2.011 246 1.709 302 4.268 121 366 363
JlazyF(4) 1.955 220 1.651 304 4.130 85 344 340
JlazyF(5) 1.972 230 1.668 304 4.174 71 359 355
JlazyF(10) 1.554 162 1.248 306 3.270 33 333 330
JlazyF(20) 879 72 591 288 1.870 11 238 220
JlazyF(50) 678 47 408 270 1.403 4 226 200

824 Lins R. D.: Lazy Cyclic Reference Counting

 Sc_JStck In(JS) Out(JS) EmptyJS
Eager 18 1.434 121 1,313
JlazyF(1) 18 1168 102 1066
JlazyF(2) 17 1065 99 966
JlazyF(3) 17 960 94 866
JlazyF(4) 17 921 92 829
JlazyF(5) 17 949 92 857
JlazyF(10) 17 721 90 631
JlazyF(20) 16 359 92 272
JlazyF(50) 15 245 84 161

Table 1: Performance of Recfat

One can also observe that the algorithm introduced herein drastically reduces the
management of the Jump_stack. Allocating a control structure of size 20 (less then
5% of the minimum heap for the execution of the benchmark) yielded an economy of
more than two-thirds of the total number of function calls.

Reference [Lins] analyses the behaviour of Recfat and other benchmarks, with
different control strategies. In all of them the lazy algorithm performed much better
than the eager one not only in terms of number of function calls but brought
substantial gains also to wall-clock (total) time performance.

+� ,�	�-�� �	�������������������

The algorithm as presented above suggests that the control structure Q is implemented
outside the heap as a separate data structure. Cells in the free-list may be used to
implement Q, allowing a completely dynamic allocation of resources. Instead of
placing a cell � in Q, one can get a cell ! from the free-list, append ! to Q, and store
in ! a pointer to �, thus

 Delete (R,S) = Remove <R,S>
 If (RC(S) == 1) then
 for T in Sons(S) do
 Delete(S, T);
 Link_to_free_list(S);
 else Decrement_RC(S);
 if colour(S) ≠ black then
 colour(S):= black;
 (U = New(last_of_Q)):=S
 last_of_Q := U

If the free-list is empty New will de_queue cells from Q. Reference [Lins] reports
that the adoption of the variable-size control structure for a simple benchmark, with
heap of minimum size for its execution, reduced the number of function calls to 25%
of the local mark-scan algorithm [Martinez 90], which is equivalent to the
performance obtained by a Q of (fixed) size seven.

One may adopt a similar strategy to implement the Jump_stack by using spare
cells from the free-list. Observe that in the algorithm presented above the Jump_stack
only appears during Mark_red, thus provided there are enough cells in the free-list, the
Jump_stack may the implemented with no cost in space.

825Lins R. D.: Lazy Cyclic Reference Counting

.� *�����	�����������	�� �	������������

Reference [Lins 93] optimises the performance of the lazy mark-scan algorithm
described in [Lins 92], by recording in each cell an age counter, called �". For that
purpose, a global time counter is needed. The time counter is initialised with zero and
is incremented every time a cell is claimed from the free-list by New. If
�"#$%&�"#!), this means that cell $ is older than cell !. In order to spell out the
possibility of cycles, Mark_red checks for the condition that all parent cells are older
than their sons. If this condition is true the subgraph under analysis is acyclic. This
information is stored in a new global variable called no_cycles.The certain absence of
cycles allows Scan to either send garbage cells directly to the free-list or restore their
original status by invoking Scan_green. The age counter may save a pass through the
subgraph at the cost of having to store a large counter in each cell for the creation-
time stamp. Notice that rewritings may weaken the “well-ordering” of age counters
forcing no_cycles to hold a value �	�� even in the absence of cycles. Thus forcing a
mark-scan wi��� ��	
������ � � ��� �����
������������ � � ��� ���� ����� ��� ���� ������
��
below the deleted pointer.

The algorithm presented herein dismisses the need of age counters to obtain a
more general solution with no need for extra space in cells to store a creation-time
stamp. The Jump_stack visits the critical points of the graph directly, keeping in all
cases the complexity of the local mark-����� ��� � �� ������ � � ��� ���� ����� ��� ����
subgraph under analysis.

/� �������	����

The lazy algorithm presented herein largely optimises the algorithm for cyclic
reference counting [Lins 02, Salzano 02], by avoiding calls to the local mark-scan.
The introduction of the Jump_stack and control structure have drastic impact in the
performance of cyclic reference counting acting in almost orthogonal ways. The
control structure Q avoids, as much as possible, executing the local mark-scan
algorithm. On the other hand, the Jump_stack allows visiting the critical points of the
subgraph under observation directly, avoiding an extra pass performed by the
algorithms presented in references [Martinez 90, Lins 92]. Thus, one can see that the
new algorithm reduces the constant of linear complexity from 3O(�) to 2O(�), where �
is the size of the sub-graph below the deleted (shared) pointer. This is obtained
without the need for creation-time stamps and this lower complexity bound is
obtained for all subgraphs, being more general and lower cost in time and space than
the solution presented in the Generational cyclic reference counting algorithm [Lins
93].

The space complexity is increased in relation to the algorithm presented in [Lins
02], as two bits are needed to store the three colours for algorithm markings and a
global data structure is needed for postponing the sub-graph analysis.

Different control strategies may be adopted according to the nature of the
application allowing to reduce the number of calls to the local mark-scan. Several of
them are proposed and benchmarked in reference [Lins], widening and updating the
data reported herein. Recent work developed at IBM T.J.Watson by Bacon and Rajan
[Bacon 01] in the context of the Jalapeño JAVA virtual machine [Bacon 01a]

826 Lins R. D.: Lazy Cyclic Reference Counting

implements Lins’ lazy cyclic algorithm using a strategy of running each phase of the
mark-scan of each element of the control structure (similarly to the synchronisation
barriers introduced for multi-processors in [Lins 03]). Reference [Bacon 01] reports
that using a set of eleven benchmark programs including the full SPEC benchmark
suite, the Jalapeño garbage collector achieves maximum measured application pause
times about two orders of magnitude shorter than the best previously published results
and performance similar to a highly tuned non-concurrent but parallel mark-and-
sweep garbage collector. It is reasonable to suppose that the implementation of the
garbage collection algorithm presented herein in the Jalapeño machine may provide
even better performance figures.

*�!��������������

The author is indebted to J.A.Salzano Filho for his comments.
This work was sponsored by CNPq and Recope-Finep, to whom the author is greatful.

���������
[Bacon 01] D.F.Bacon and V.T.Rajan. Concurrent Cycle Collection in Reference Counted
Systems, Proceedings of European Conference on Object-Oriented Programming, June, 2001,
Springer Verlag, LNCS vol 2072.

[Bacon 01a]D.F.Bacon, C.R.Attanasio, H.B.Lee, R.T.Rajan and S.Smith. Java without the
Coffee Breaks: A Nonintrusive Multiprocessor Garbage Collector, Proceedings of the
SIGPLAN Conference on Programming Language Design and Implementation, June, 2001
(SIGPLAN Not. 36,5).

[Brownbridge 85] D.R.Brownbridge. Cyclic reference counting for combinator machines,
FP&CA’85, LNCS 201, pp. 273-288, Springer Verlag, 1985.

[Collins 60] G.E. Collins, A method for overlapping and erasure of lists, Comm. of the ACM,
3(12):655—657, Dec.1960.

[Jones 96] R.E. Jones and R.D. Lins, Garbage Collection Algorithms for Dynamic Memory
Management, John Wiley & Sons, 1996. (Revised edition in 1999.)

[Lins 92] R.D.Lins, Cyclic Reference counting with lazy mark-scan, IPL 44(1992) 215—220,
Dec. 1992.

[Lins 93] R.D.Lins, Generational cyclic reference counting, IPL 46(1993) 19—20, 1993.

[Lins 02] R.D.Lins. An Efficient Algorithm for Cyclic Reference Counting, Information
Processing Letters, vol 83 (3):145—150, August 2002.

[Lins 02a] R.D.Lins. Efficient Cyclic Weighted Reference Counting, in Proc. of 14th Symp. on
Computer Architecture and High Performance Computing, IEEE Press, October 2002.

[Lins 03] R.D.Lins. An Efficient Multi-processor Architecture for Parallel Cyclic Reference
Counting, Proceedings of VECPAR’2002, pp. 650—663, LNCS 2565, Springer Verlag, 2003.

[Lins] R.D.Lins, Analysing the Performance of Cyclic Reference Counting Algorithms, in
preparation.

[Salzano 02] J.A.Salzano Fo & R.D.Lins, Optimising the Jump_Stack, in Proceedings of
SBLP’2002, pp 233—242, June 2002.

827Lins R. D.: Lazy Cyclic Reference Counting

[McBeth 63] J.H. McBeth, On the reference counter method, Comm. of the ACM, 6(9):575,
Sep. 1963.

[Martinez 90] A.D. Martinez, R. Wachenchauzer and R.D. Lins, Cyclic reference counting with
local mark-scan, IPL 34(1990) 31—35, North Holland, 1990.

[Salkild 87] J.D.Salkild. Implementation and Analysis of two Reference Counting Algorithms.
Master thesis, University College, London, 1987.

[Turner 79] D.A.Turner. A new implementation technique for applicative languages. Software
Practice and Experience, Vol 9, pp 31-49, 1979.

828 Lins R. D.: Lazy Cyclic Reference Counting

