
Implementation of an Embedded Hardware Description

Language Using Haskell

Nélio Muniz Mendes Alves
(Universidade Federal de Uberlândia, Brazil

nelio@comp.ufu.br)

Sérgio de Mello Schneider
(Universidade Federal de Uberlândia, Brazil

sergio.schneider@facom.ufu.br)

Abstract: This paper describes an ongoing implementation of an embedded hardware
description language (HDL) using Haskell as a host language. Traditionally, “func-
tional” HDL’s are made using lazy lists to model signals, so circuits are functions from
lists of input values to lists of output values. We use another known approach for em-
bedded languages, in which circuits are data structures rather than functions. This
style of implementation permits one to inspect the structure of the circuit, allowing
one to perform different interpretations for the same description. The approach we
present can also be applied to other domain-specific embedded languages. We provide
an elegant implementation of memories and a set of new signal types.

Key Words: domain-specific languages, embedded languages, hardware description

Category: B.5.2 B.6.3 D.3.2 I.6.2

1 Introduction

Building a domain-specific language from scratch can be a long task because
it consists of dealing with many issues like designing syntax, scoping, type and
module systems, and developing tools like parsers, compilers or interpreters.
The embedded approach is, indubitably, a good way to describe and to imple-
ment domain-specific languages. Building a domain-specific “library” on top of
a convenient general-purpose language, one can get rid of many design decisions,
because the infrastructure of the host language is inherited, avoiding most of the
issues above. Some performance is lost, but often it is not so important. Benefits
and drawbacks of the embedded approach are found in [Hudak, 1998].

Functional languages have some advantages that make them well-suited for
the design of domain-specific languages: strong typing, pattern matching, higher-
order programming (first class functions), laziness and parametric polymorphism
are key features that make the design very elegant and modular.

We focus on the domain of hardware description, which is the area we are
working on at the present time. We consider this area an excellent case study
because it explores many features concerning the embedded approach and also

Journal of Universal Computer Science, vol. 9, no. 8 (2003), 795-812
submitted: 24/2/03, accepted: 30/5/03, appeared: 28/8/03 J.UCS

because descriptions can be “interpreted” in several ways (e.g. they can be sim-
ulated, translated to other HDLs or input to verification tools).

We have chosen Haskell to develop our work because it encompasses several
desired features as mentioned above. For instance, we highlight its strong type
system that catches as many errors as possible at compile time, and type classes
that provide concise and generic circuit descriptions. There are some publications
that show a more detailed discussion about choosing Haskell as a host language.
Some examples are [Elliott, 1999, Launchbury et al., 1999]. Haskell has been also
used to embed several other domain-specific languages, including other hardware
description languages.

Although we focus in Haskell and in the hardware description domain, this
paper gives a general idea on how to embed languages into a lazy, strongly typed
functional language.

A simplified version of the language that is being developed is presented. The
reader is supposed to be familiar with the functional programming paradigm and
with the Haskell framework. If it is not the case, see [Thompson, 1999] for an
introduction to Haskell and [Hudak et al., 1992] for details.

1.1 Overview of the paper

First, we present some background in “functional” hardware description and mo-
tivation. Then, we show the difference between representing circuits as functions
over lists and as data structures and explain why we have chosen the second
option. Further, we show the implementation of the language and discuss about
important subtles and why we prefer some decisions. Then, we cite related work
and, finally, we present conclusions and future work.

2 Background and Motivation

Before we start showing the implementation of our hardware description lan-
guage, let us outline a brief background in “functional” hardware description.

2.1 A simple sequential circuit

Consider the simple circuit in figure 1, where (a) shows the circuit as a black
box and (b) shows it from the inside. This is a “high-level” diagram of a simple
counter circuit with an input bit and a vector of bits as output, representing an
integer number. It is controlled by a clock signal that is not represented in the
diagram. Its meaning is: in the ith clock tick, if the input bit x is False, the
output number is the same as the output number in the clock tick i-1. If x is
True the output is increased by one. Thus, if the circuit receives the sequence

796 Alves N.M.M., de Mello Schneider S.: Implementation of an Embedded Hardware ...

Figure 1: A simple counter example

[False, False, T rue, False, T rue, True] as input, it outputs the sequence of val-
ues [0, 0, 1, 1, 2, 3]. The MUX component is the same as an if-else-then function,
+ is the plus operation, and DELAY is an inherent sequential component that
outputs its input value in the i-1th clock tick and, in case of the first clock tick,
it outputs a given initial value as we shall see.

In the “functional” style of hardware description, the circuit in figure 1 would
be described as a code like that of figure 2. Every circuit is represented by a

countWhen :: Signal Bool -> Signal Word8
countWhen x = out
 where
 out = mux x aux1 aux2
 aux1 = delay 0 out
 aux2 = plus (constant 1) aux1

Figure 2: Description of circuit in figure 1

function. A Signal models a wire in a circuit (or vector of wires – that is why
the syntax of signal types is Signal XXX, where XXX says what kind of signal it
is). As we are using Haskell, the first line is the function interface, which means
that the circuit has a boolean signal as input and a word signal of eight bits as
output. The next lines are the definition of the function (we like the clarity of the
where construction). In the definition, we have to describe what each signal is. As
the reader can see, if the designer has the diagram of the circuit, the description
is straightforward. Note that delay receives an initial value 0 and an input value
out. We are assuming that the definitions of mux, delay and plus are already
provided by the basic library of the language. If there are some sub-circuits that
are not provided by the basic library, they simply must be implemented as other
functions.

797Alves N.M.M., de Mello Schneider S.: Implementation of an Embedded Hardware ...

2.2 Implementing a very simple language

A possible implementation of a very simple embedded language that permits
describing the above counter is the library in figure 3 (note: we have already
described the xor2 combinator because we will use it soon). Typically, such a

import Word

type Signal a = [a]

constant :: a -> Signal a
constant = repeat

plus :: Num a => Signal a ->
 Signal a -> Signal a
plus xs ys = zipWith (+) xs ys

mux :: Signal Bool -> Signal a ->
 Signal a -> Signal a
mux xs as bs = zipWith3 f xs as bs
 where f x a b = if x then b else a

delay :: a -> Signal a -> Signal a
delay x ys = x:ys

xor2 :: Signal Bool -> Signal Bool ->
 Signal Bool
xor2 xs ys = zipWith (/=) xs ys

Figure 3: Library for description in figure 2

library is composed by an abstract datatype (Signal a in this case), and combi-
nators (plus, constant, mux, etc.) to produce larger sentences of the language. If
we load this code together with the countWhen definition in a Haskell interpreter
and run the command

Main> countWhen [False,False,True,False,True,True]

it will produce the result

[0,0,1,1,2,3]

798 Alves N.M.M., de Mello Schneider S.: Implementation of an Embedded Hardware ...

as we expected. Often tools are implemented for interpreting the sentences, but
in this example it is not the case, because circuits are Haskell functions. As we
shall see, when implementing circuits as data structures, it will be necessary
to implement interpretation functions because data structures are not naturally
executable.

Another example is the circuit toggle in figure 4, composed by a xor2 com-
ponent (the xor operation) and a delay. Its meaning is: For the ith clock tick
(i > 1), if the ith input value is high, then the ith output value is the i − 1th
output value inverted, else the ith output value is the same i − 1th value. The
first output value is equal to the first input value.

toggle :: Signal Bool ->
 Signal Bool
toggle input = out
 where
 out = xor2 input aux
 aux = delay False out

Figure 4: Diagram and description of the toggle circuit

Note that the definitions of the signals out and aux are mutually dependent.
It is not a problem because of the lazy execution of Haskell and the initial value
provided by the delay component. A mutually dependent definition without any
delay would lead to an error (and smoke in a real circuit).

As we have mentioned, there is not explicit clock representation. It is a par-
ticular subtle in the “functional” style of hardware description: the notion of
clock is implicitly carried by the position in the sequence of values (usually
represented as ordinary lists). Thus, low-level details about timing are not con-
sidered: the simulation tools assume that the clock period is long enough to
update all the internal component outputs. The careful reader probably has re-
alized that “functional” HDL’s fits well for signal processing, microarchitectures
and the like.

2.3 Functions on lists vs. Data structures

In the previous subsection, we outlined an implementation of a simple embedded
hardware description language as a library in which signals are modeled as lists
and circuits are Haskell functions from lists to lists. With this implementation
we can not do much more than simulate the circuits. We can not access the
internal structure of the function to see how it was built. Therefore, we want to

799Alves N.M.M., de Mello Schneider S.: Implementation of an Embedded Hardware ...

implement the circuits in such a way that we can inspect its internal structure
and perform different interpretations like simulation, verification, translating to
other languages and so on.

In figure 5 we sketch a simple implementation in which circuits are repre-
sented by a data structure (in this case, a tree). We are considering only boolean
signals for now. Now the basic combinators are signal expression builders and the

data Signal
 = Bool Bool
 | Var String
 | Inv Signal
 | Xor Signal Signal
 | And Signal Signal
 | Or Signal Signal
 | Delay Bool Signal
 deriving Show

low = Bool False
high = Bool True
var x = Var x

inv x = Inv x
xor2 x y = Xor x y
and2 x y = And x y
or2 x y = Or x y
delay x y = Delay x y

Figure 5: Representing signals as data structures

circuits are nothing more than bigger expressions. With this basic library, the
style of descriptions remains the same, as we can see in the arbitrary example in
figure 6. The functions low and high are primitive combinators to build “boolean

circ1 a b c = out
 where
 out = xor2 aux1 c
 aux1 = and2 (inv a) b

Figure 6: Arbitrary circuit example

leaves” in the tree. The var combinator takes a string and builds a symbolic leaf
in the tree (symbolic values are useful for performing interpretations like ver-
ification and translation to other languages). Figure 7 shows two examples of
trees built from the circuit definition in figure 6. The first tree represents the
circuit in some given boolean signals and the second represents the circuit in
symbolic values. These expression trees now must be interpreted. Evaluating (or
simulating) the expression represented by the tree in figure 7 (a) does not seem
to be a complex task – a simple recursive traversing algorithm could do it. Also,

800 Alves N.M.M., de Mello Schneider S.: Implementation of an Embedded Hardware ...

(a) Main> circ1 high low low
 Xor (And (Inv (Bool True)) (Bool False)) (Bool False)

(b) Main> circ1 (var "a") (var "b") (var "c")
 Xor (And (Inv (Var "a")) (Var "b")) (Var "c")

outout

Figure 7: Data structures generated for real values and symbolic values respec-
tively

suppose we want to traverse the tree in figure 7 (b) and generate code for the
VHDL language. It would be carried out in a similar way.

However, the language presented is very poor because it cannot deal with
primordial issues that must be treated. In the rest of the paper we show this
issues and the solutions to solve them.

3 Implementation

3.1 Back to the parametric signal type

For performance and resource issues, we would like to abstract not only a single
wire as a signal. We would like to represent a vector of eight bits as a signal of
type Word8, a vector of sixteen bits as a signal of type Word16 and so on. Thus,
we would like to come back to the parametric signal type Signal a.

To do this, we use the approach shown in [Leijen and Meijer, 2000]: we define
an expression type Node encompassing all types and basic gates. Then, to prevent
building incorrect sentences (e.g. Xor (Bool False) (Word8 27)) we define a
layer of type safety (a phantom type) and build basic combinators respecting
the signals types, as shown in figure 8 (data type) and figure 9 (some basic
functions).

It is vital to provide function signatures in order to obtain type safety. As
an example, if there was not a signature in the xor2 function, its type would be

801Alves N.M.M., de Mello Schneider S.: Implementation of an Embedded Hardware ...

data Node
 = Var String
 | Bool Bool
 | Word8 Word8
 | Word16 Word16
 | Inv Node
 | Xor Node Node
 | And Node Node
 | Or Node Node
 | Plus Node Node
 | Mux Node Node Node
 | DelayB Bool Node
 | DelayW8 Word8 Node
 | DelayW16 Word16 Node

newtype Signal a
 = Signal Node

Figure 8: Implementing parametric signal type (data type)

Signal a → Signal b → Signal c.
To save space, only a few combinators are shown in figure 9. Further we will

implement some polymorphic combinators, like mux, var and plus. For now, we
are assuming there is only a specific function for each type of signal: muxB is a
multiplexor on single bits, muxW8 is a multiplexor on vectors of eight bits and so
on. The same occurs for var, plus and delay.

3.2 Detecting sharing

Let us consider the circuit in figure 10. As one can see, the result signal from the
and gate is shared by the xor and the or gates. With the present implementation
of the language, there is no way of building a traversing function that can detect
such sharing. If one runs any traversing function for circ2 (varB "a") (varB

"b") (varB "c"), such function would “understand” this sentence as a tree
with redundant branches, as in Figure 11 (a). It would be worse if we call it for
the toggle circuit in figure 4 because it would lead to an infinite tree! What we
would like to get is a graph as in figure 11 (b).

To avoid performing redundant computations or incurring in an infinite loop,
it would be necessary to give a unique tag to each node and also perform a con-
venient traversal algorithm on the new structure. In functional programming, it
is very difficult to represent graphs with sharing without adding impure features.
In [Claessen and Sands, 1999], Claessen and Sands show some previous solutions

802 Alves N.M.M., de Mello Schneider S.: Implementation of an Embedded Hardware ...

low :: Signal Bool
low = Signal (Bool False)

w8 :: Word8 -> Signal Word8
w8 x = Signal (Word8 x)

xor2 :: Signal Bool -> Signal Bool -> Signal Bool
xor2 (Signal x) (Signal y) = Signal (Xor x y)

muxW8 :: Signal Bool -> Signal Word8 ->
 Signal Word8 -> Signal Word8
muxW8 (Signal c) (Signal x) (Signal y)
 = Signal (Mux c x y)

delayB :: Bool -> Signal Bool -> Signal Bool
delayB x (Signal y) = Signal (DelayB x y)

Figure 9: Implementing parametric signal type (some basic functions)

circ2 a b c = out
 where
 out = or2 aux1 aux2
 aux1 = xor2 a aux2
 aux2 = and2 (inv b) c

Figure 10: A circuit with a shared signal

and propose to solve this problem extending Haskell with reference types. The
big advantage is that this technique keeps the clear and sweet style of descrip-
tion, without explicit naming or any other changes for the designer point of view.
The major disadvantage of this technique is that it uses an impure mechanism
to give unique names to the nodes, which loses referential transparency.

A referenced object of type Ref a is an object of type a “packed” together
with an implicit unique tag. To build a reference type, there exists the function
ref :: a → Ref a. To “unpack” a reference type, there exists the function
deref :: Ref a → a. To compare if two references are the same, there exists the
infix operator (<=>) :: Ref a → Ref a → Bool.

The final implementation of the signal type and some basic combinators are
given in figure 12 (the data type) and figure 13 (some basic functions). The
implementation of the Ref module can be found in [Claessen, 2001].

A new type Graph was created to not clutter up the definition of the Node

type. The Node type defines all basic gates and end values that can appear in a

803Alves N.M.M., de Mello Schneider S.: Implementation of an Embedded Hardware ...

Figure 11: Tree with redundant information and graph with sharing

circuit description and the Graph type adds recursion and references.

3.3 The BitVect class

We have implemented a BitVect type class to provide polymorphic combina-
tors over different signal types (figure 14). We have implemented instances for
Signal Bool, Signal Word8, etc. With this class, for example, any kind of multi-
plexor (on single bits, on vectors of eight bits, etc.), are represented by a function
called mux. The same occurs for other combinators belonging to the class. The
dff combinator is a circuit equivalent to a delay initialized with zero. We could
not include delay in this class because of the fact that its initial value would
have to be different for each instance.

With this class one can declare polymorphic circuits. Consider the above
counter again. Now we can describe the same counter for any signal type as shown
in figure 15. The type of the counter is now BitV ect a ⇒ Signal Bool → a. The
Haskell type inference system is responsible for matching the correct instance
class, depending on where the counter is inserted.

3.4 Overloading tuples and lists of signals

Often, a circuit output contains more than one signal. In this case, they must
be grouped in a tuple or list or a combination of them (because functions re-
turn only one value). Also, for overloading issues, we do the same (grouping
in tuples and lists) for input values, as we have already done in figure 13. As
a example, a halfAdd circuit that receives two bits and returns their sum and
carry bit would have the signature halfAdd :: (Signal Bool, Signal Bool) →

804 Alves N.M.M., de Mello Schneider S.: Implementation of an Embedded Hardware ...

import Word
import Ref

data Node a
 = Bool Bool
 | Word8 Word8
 | Word16 Word16
 | Var String
 | Inv a
 | Xor a a
 | And a a
 | Or a a
 | Plus a a
 | Mux a a a
 | DelayB Bool a
 | DelayW8 Word8 a
 | DelayW16 Word16 a

newtype Graph
 = G (Ref (Node Graph))

newtype Signal a
 = Signal Graph

Figure 12: Adding references to the nodes (data type)

(Signal Bool, Signal Bool). Why have we grouped inputs and outputs together?
Because we want to provide generic interpretation functions for the descriptions.

To help overloading tuples and lists of signals, we have implemented a Struct

type and a Generic type class the same way in [Claessen, 2001] (figure 16). We
created Gen instances for (), Signal a, Gen a ⇒ [a], (Gen a, Gen b) ⇒ (a, b)
and so on. Thus, every time we have to deal with a Generic type, we convert it
to an object of type Struct Graph (using to), traverse it for every single value,
then convert it again to the Generic type (using from).

Thus, a simulating function that receives a circuit and a list of inputs and
returns a list of outputs would have the signature: sim :: (Gen a, Gen b) ⇒ (a →
b) → [a] → [b].

3.5 Memories

We have implemented memories in a similar way we have implemented delay:
defining the initial value and input values. Suppose our language provides a read-
only memory with 8-bit address and 16-bit values (figure 17 (a)), and a register

805Alves N.M.M., de Mello Schneider S.: Implementation of an Embedded Hardware ...

low :: Signal Bool
low = Signal (G (ref (Bool False)))

varB :: String -> Signal Bool
varB x = Signal (G (ref (Var x)))

xor2 :: (Signal Bool, Signal Bool) -> Signal Bool
xor2 (Signal x, Signal y) = Signal (G (ref (Xor x y)))

muxW8 :: (Signal Bool, (Signal Word8, Signal Word8))
 -> Signal Word8
muxW8 (Signal c, (Signal x, Signal y))
 = Signal (G (ref (Mux c x y)))

delayW8 :: Word8 -> Signal Word8 -> Signal Word8
delayW8 x (Signal b)
 = Signal (G (ref (DelayW8 x b)))

Figure 13: Adding references to the nodes (some basic functions)

file (note: we give a example of a simple register file, which writes a word and
reads a word per cycle) with an 8-bit address, 16-bit values (figure 17 (b)). We
put a new option in the Node type for each kind of memory the language will
support and create basic combinators to build them (see figure 18. Although it
seems quite simple to implement memories, the real work is in their simulation,
where we use mutable arrays for better performance and to save resources.

3.6 Interpretation tools

Suppose we have defined some circuit and want to simulate it. We have to
implement a function that receives the circuit, a list of input values and then
examines the graph corresponding to the circuit, evaluating it for each input
value. We use the ST monad [Launchbury and Jones, 1995] because we want to
perform destructive updates in the simulation.

As we have already mentioned, the simulation function has the signature:
sim :: (Gen a, Gen b) ⇒ (a → b) → [a] → [b].

First, we traverse the circuit structure, converting reference types to “real”
pointer references (mutable variables), using the function toSTRefs, which type
is Struct Graph → ST s (Struct (STS s)), where the STS s type is described
in figure 19. This function traverses the circuit data structure keeping track of
the sharing information and builds another data structure on top of the STS s

type.

806 Alves N.M.M., de Mello Schneider S.: Implementation of an Embedded Hardware ...

class BitVect a where
 zero :: a
 one :: a
 var :: String -> a
 plus :: (a,a) -> a
 dff :: a -> a
 mux :: (Signal Bool,(a,a)) -> a

instance BitVect (Signal Word8) where
 zero = w8 0
 one = w8 1
 var = varW8
 plus = plusW8
 dff = delayW8 0
 mux = muxW8

Figure 14: The BitVect class and an instance example

countWhen x = out
 where
 out = mux (x, (aux1, aux2))
 aux1 = dff out
 aux2 = plus (one, aux1)

Figure 15: Polymorphic counter

The STS s type defines all possible kinds of pointer references that might
appear. The first kind (with the STT constructor) belongs to trivial gates (with-
out internal state), the following three types belongs to delay components and
the last to memories. Note that all types are ST references to tuples. In all cases,
the first element is a recursive Node – that is exactly what we want to do because
we are building another graph with ST references instead of Ref references. The
second element is the present value of the Node in the simulation. For stateful
components, there is a third element of the type of their internal state, that will
be updated whenever necessary.

Further, we run a stateful algorithm to simulate the circuit, updating inter-
nal states and calculating output values. For performing other interpretations,
a similar approach must be taken. For generating VHDL code, for example, its
necessary to give a symbolic input to the circuit and perform a traversal al-

807Alves N.M.M., de Mello Schneider S.: Implementation of an Embedded Hardware ...

data Struct a
 = Single a
 | Compound [Struct a]

class Gen a where
 to :: a -> Struct Graph
 from :: Struct Graph -> a

Figure 16: The Struct type and Gen class

16 bit data output

Figure 17: A read-only memory and a simple register file

gorithm that generates the corresponding string code depending on what each
node is. We have not done it yet because we are still studying VHDL subset
needed to represent our circuit elements.

4 Related Work

Embedding a domain-specific language into Haskell has been an interesting topic
of research nowadays. Haskell has been successfully used to embed several appli-
cations such as 2D and 3D animation [Elliott, 1999], music [Hudak et al., 1996],
SQL queries [Leijen and Meijer, 2000] and others.

Johnson’s work “Synthesis of Digital Designs from Recursion Equations”
[Johnson, 1984] and Sheeran’s [Sheeran, 1983] “µFP, an algebraic VLSI design
language” have inspired many efforts in representing circuits by the functional-
like style of description. Below, we cite the main works that have influenced our
research:

The Hydra system [O’Donnell, 1996], developed by O’Donnell, consists of a
set of methods and software tools for circuit design. It was previously built on
top of the functional languages Daisy, Scheme and LML. Hydra provides some
high-order combining forms and circuits are implemented as functions on stream

808 Alves N.M.M., de Mello Schneider S.: Implementation of an Embedded Hardware ...

data Node a
 = Bool Bool
 | Word8 Word8
 | Word16 Word16
 | Var String
 | Inv a
 | Xor a a

 ...

 | RomW8xW16 [Word16] a
 | RegFileW8xW16 [Word16] a a a

rom8x16 :: [Word16] -> Signal Word8
 -> Signal Word16
rom8x16 ws (Signal x)
 = Signal (G (ref (RomW8xW16 ws x)))

regFile :: [Word16]
 -> ((Signal Word8, Signal Word16),
 Signal Word8)
 -> Signal Word16
regFile ws ((Signal a,Signal w),Signal r)
 = Signal (G (ref (RegFileW8xW16 ws a w r)))

Figure 18: Implementing memories

values. One of Hydra’s strengths is simulation, and it has been used to teach
computer architecture at undergraduate level at University of Glasgow.

Hawk [Matthews et al., 1998] is an embedded language for describing mod-
ern microarchitectures. The aim of Hawk is to provide clear and concise micro-
processors specification (to achieve this, Hawk has a rich library of superscalar
microprocessor elements and provides behavioral descriptions using lifting and
concepts like transactions). Hawk permits one to perform simulation, verifica-
tion and algebraic simplification. As far as we know, Hawk doesn’t make VLSI
synthesis or netlist generation.

Lava [Bjesse et al., 1998, Claessen, 2001], created by Bjesse, Claessen, Sheeran
and Singh, provides a set of tools, which can perform interesting circuit interpre-
tations, like simulation, verification and VHDL code generation for FPGA im-
plementation. Like Hydra, Lava provides high-order combining forms. We have

809Alves N.M.M., de Mello Schneider S.: Implementation of an Embedded Hardware ...

data STS s
 = STT (STRef s (Node (STS s),
 Node Graph))
 | STDB (STRef s (Node (STS s),
 Node Graph, STRef s Bool))
 | STDW8 (STRef s (Node (STS s),
 Node Graph, STRef s Word8))
 | STDW16 (STRef s (Node (STS s),
 Node Graph, STRef s Word16))
 | STMW8xW16 (STRef s (Node (STS s),
 Node Graph, STArray s Word8 Word16))

Figure 19: The STS s type

been highly inspired by the Lava system, mainly by its signal representation
and overloading tuples and lists [Claessen, 2001]. This work differs from Lava
because (a) we provide other high-level gates for the descriptions (memories for
example), (b) we are implementing our own interpretations for the descriptions
and (c) we are making our own implementation for some aspects of the core of
the language like (c.1) implementing delay differently (in Lava, the initial value
of delay is a generic signal, but we implement it as a specific constant) and (c.2)
providing several types of word signals (as far as we know, Lava provides only
Signal Bool and Signal Int) and overloads them on some operations.

5 Conclusions and future work

We have embedded a domain-specific language for synchronous circuit design.
We show that this implementation leads to a clear and concise style of description
to the language user, and also to a reduced number of function names because of
the type polymorphism. Much of the Haskell infrastructure like module system,
reporting errors, syntax and scoping are inherited to the embedded language,
which makes the language design time very much reduced. In few hours one can
declare initial definitions and see the circuits running. It certainly could take
a long time if designing the language from scratch. Our first contribution was
to summarize in one paper all the crucial aspects of an implementation of an
embedded language for hardware description.

We also contribute with a gentle way of representing memories, where the
initial values of a ROM or a RAM are represented by a Haskell list and further
executed as a lazy state array. This representation put together the facility of
just declaring a list in a Haskell module, and the desirable destructive update
(in the case, of course) execution by demand.

810 Alves N.M.M., de Mello Schneider S.: Implementation of an Embedded Hardware ...

We are currently working on the interpretations of the descriptions. We tra-
verse the data structure of the circuit calculating result values or reporting errors.
We are studying the subset of VHDL and Verilog languages (the most widely
used HDL’s) for translating our descriptions into them. As we have mentioned,
we already know the technique of translation, but we must know all the syntax
needed to represent our circuit elements.

Also, we are exploring ways of implementing new computer architecture ele-
ments like shared buses. We have encountered some problems in our first imple-
mentation of shared buses, but we believe that it is not a big problem because we
have implemented them in an alternative way (with circuits as functions on lazy
lists) and they worked perfectly. They must be treated differently from other
components because of the special semantics of the three state buffers.

We expect to apply optimizations on the descriptions using some techniques
presented in [Elliott et al., 2000]. We also could think about increasing the per-
formance using the strict state monad, but we would lose many desired features,
specially working with infinite lists. If we used strict monad, it could not be
performed:

Main> sim countWhen (repeat high)

Another future direction is to apply our descriptions to formal methods. The
data structure of our descriptions is well suited and ready to apply verifica-
tion algorithms. Lava and Hawk have already been used as verification tools,
performing operations like testing properties, algebraic reasoning and theorem
proving. We hope to apply operations like those in our circuit elements too.

References

[Bjesse et al., 1998] Bjesse, P., Claessen, K., Sheeran, M., and Singh, S. (1998). Lava -
hardware design in Haskell. In International Conference on Functional Programming.
ACM SigPlan.

[Claessen, 2001] Claessen, K. (2001). Embedded Languages for Describing and Verify-
ing Hardware. PhD thesis, Chalmers University of Technology and Göteborg Uni-
versity, Göteborg, Sweden.

[Claessen and Sands, 1999] Claessen, K. and Sands, D. (1999). Observable sharing for
functional circuit description. In Thiagarajan, P. S. and Yap, R., editors, Advances
in Computing Science ASIAN’99; 5th Asian Computing Science Conference, volume
1742 of Lecture Notes in Computer Science. Springer Verlag.

[Elliott, 1999] Elliott, C. (1999). An embedded modeling language approach to inter-
active 3D and multimedia animation. IEEE Transactions on Software Engineering,
25(3).

[Elliott et al., 2000] Elliott, C., Finne, S., and de Moor, O. (2000). Compiling em-
bedded languages. In Workshop on Semantics, Applications and Implementation of
Program Generation.

[Hudak, 1998] Hudak, P. (1998). Modular domain specific languages and tools. In
Devanbu, P. and Poulin, J., editors, Proceedings: Fifth International Conference on
Software Reuse. IEEE Computer Society Press.

811Alves N.M.M., de Mello Schneider S.: Implementation of an Embedded Hardware ...

[Hudak et al., 1996] Hudak, P., Makucevich, T., Gadde, S., and Whong, B. (1996).
Haskore music notation - an algebra of music. Journal of Functional Programming,
6(3).

[Hudak et al., 1992] Hudak et al., P. (1992). Report on the programming language
Haskell, a non-strict, purely functional language, version 1.2. ACM SIGPLAN No-
tices, 27(5). See http://www.haskell.org/definition for latest version.

[Johnson, 1984] Johnson, S. (1984). Synthesis of Digital Designs from Recursion Equa-
tions. The ACM Distinguished Dissertations Series, The MIT Press.

[Launchbury and Jones, 1995] Launchbury, J. and Jones, S. P. (1995). State in haskell.
Lisp and Symbolic Computation, 8(4).

[Launchbury et al., 1999] Launchbury, J., Lewis, J. R., and Cook, B. (1999). On em-
bedding a microarchitectural design language within Haskell. In Proceedings of the
fourth ACM SIGPLAN International Conference on Functional Programming. ACM
Press.

[Leijen and Meijer, 2000] Leijen, D. and Meijer, E. (2000). Domain specific embedded
compilers. In 2nd USENIX Conference on Domain-Specific Languages, volume 35 of
ACM SIGPLAN Notices. ACM Press.

[Matthews et al., 1998] Matthews, J., Cook, B., and Launchbury, J. (1998). Micropro-
cessor specication in Hawk. In IEEE International Conference on Computer Lan-
guages, Chicago, Illinois. IEEE Computer Society Press.

[O’Donnell, 1996] O’Donnell, J. (1996). From transistors to computer architecture:
Teaching functional circuit specification in Hydra. In Functional Programming Lan-
guages in Education, volume 1125 of Lecture Notes in Computer Science. Springer
Verlag.

[Sheeran, 1983] Sheeran, M. (1983). µFP, an algebraic VLSI design language. PhD
thesis, Programming Research Group, Oxford University.

[Thompson, 1999] Thompson, S. (1999). The Craft of Functional Programming. Ad-
dison Wesley, 2nd edition.

812 Alves N.M.M., de Mello Schneider S.: Implementation of an Embedded Hardware ...

