Journal of Universal Computer Science, vol. 9, no. 8 (2003), 935-955
submitted: 24/2/03, accepted: 30/5/03, appeared: 28/8/03 U J.UCS

Developing Adaptive J2ME Applications Using AspectJ

Ayla Dantas
(Federal University of Pernambuco, Brazil
add@cin.ufpe.br)

Paulo Borba
(Federal University of Pernambuco, Brazil
phmb@cin.ufpe.br)

Abstract: This paper evaluates the use of AspectJ, a general-purpose aspect-oriented
extension to Java, to provide adaptive behavior for J2ME applications in a modularized
way. Our evaluation is based on the development of a simple but non-trivial dictionary
application where new adaptive behavior was incrementally implemented using As-
pectJ. Our main contribution is to show that the AspectJ language can be used to
implement several adaptive concerns, which allow the application to have different be-
haviors according to changes in its environment. We also compare our implementation
with corresponding pure Java alternatives, identify disadvantages of using AspectJ and
propose some possible patterns.

Key Words: Aspect-Oriented Programming, Separation of Concerns, AOP Applica-
tions, Software Architecture, Adaptability

Category: D. 3, D. 2, D.2.11

1 Introduction

In this paper we evaluate the AspectJ [Kiczales et al. 2001] language, a general-
purpose aspect-oriented extension to Java [Gosling et al. 2000], as a tool to de-
velop adaptive Java applications, especially the Java 2 Micro Edition (J2ME)
[Piroumian 2002 ones. Although we focused on this application domain, many
of our results can be applied to other Java platforms. We use J2ME because it
is targeted to applications domains that have adaptability as a common require-
ment.

Adaptive applications behave differently, according to changes on the envi-
ronment. Implementing this kind of application involves complex issues, so it
is important to provide adaptive behavior following quality and productivity
factors. We have made an experiment on which new adaptive behavior was in-
crementally added using AspectJ and where those constraints were considered.
During our experiment, we analyzed the advantages and drawbacks of using
AspectJ to implement several adaptive concerns, which is our main contribu-
tion. We also observed some good practices and possible patterns during the
development and compared our implementation with pure Java alternatives us-
ing some design patterns, considering aspects such as modularization, code size,
and maintainability.

936 Dantas A., Borba P.: Developing Adaptive J2ME Applications ...

In order to evaluate the applicability of AspectJ for the development of mod-
ularized adaptive applications, we have developed a simple but non trivial J2ME
dictionary, which was at first designed without adaptiveness. Then, we imple-
mented some new concerns using AspectJ, making the application adaptive, that
is, capable of modifying its own behavior in response to changes in its operating
environment [Oreizy et al. 1999]. For example, an implemented adaptive behav-
ior is the inclusion of more options in the application main menu according to
a server response. But our dictionary is classified as a closed-adaptive one, be-
cause it is self-contained and not able to support the addition of new behaviors
during runtime. This means that the adaptive behavior should be programmed
before deployment, but only activated or deactivated in response to environ-
ment changes. This happens because loading code at runtime is not currently
supported by J2ME. Some more details about this technology are described
throughout the paper.

Using AspectJ, we have introduced some adaptive concerns to the initial dic-
tionary application: Customization, Screens, and Internationalization concerns.
We have also introduced the Caching concern, which provides support for the
others. The Customization concern is responsible for customizing the applica-
tion by changing some of its parameters. This makes it behave differently when
performing its core functionalities. The Screens concern modifies the application
current screens and also adds new ones to it. The Internationalization concern in-
ternationalizes the strings used on the application, giving their values according
to a defined application language. The Caching concern provides caching of data
obtained remotely, avoiding network accesses every time this data is needed.

We used AspectJ because its constructs are supposed to provide adequate
support for separating concerns and minimizing the efforts necessary when recon-
figuring a system to add, modify, or delete features. However, some refactorings
were sometimes necessary in order to achieve our objectives.

The remainder of this paper is organized as follows. Section 2 describes the
dictionary application and Section 3 gives an overview about the AspectJ lan-
guage. Sections 4, 5, 6 and 7 explain the implemented concerns, describing some
techniques, possible adaptive patterns and our experiment evaluation. Finally,
Section 8 discusses some related work and concludes the paper, presenting some
results and problems found during the development.

2 The Application

In order to evaluate AspectJ for developing J2ME applications, we developed
a dictionary application. It is a simple MIDP-based application (also known
as MIDlet [Mahmoud 2002] [Piroumian 2002]) capable of translating a given
word from English into Portuguese. Although simple, our dictionary has the

Dantas A., Borba P.: Developing Adaptive J2ME Applications ... 037

Di chicnary M D et | Hictionay Snpine l enging .~
- -
statappi} ﬂq E e st

getConbrodlen} -anging
T liSnaContole marh)
"l Dictionary onkrodler
gl el ancs} Dict ComElant
InpulSaarchData | inputhals indiiallz a5 cra ana() . iorary Conslanls
al&E5c man|)
o PESCreEn ()
" | showS creend) "
-~ e ~ ¥ o
.-'-. .l-
’ ; :
Dichioniany S oeen In=t naclions Screen W aini enuS creen FresentabonSoreen

Figure 1: Dictionary application UML model

complexity of a typical J2ME application. It contains four different screens:
presentation screen, main menu (with two options: Query and Instructions),
dictionary screen (where the search is requested and the results are shown), and
instructions screen. None is colorized. The dictionary searches the requested
English word on memory and displays its Portuguese translation on the screen.

The application structure follows the Model View Controller architectural
pattern [Gamma et al. 1994]. The main classes are DictionaryMIDlet and
DictionaryController, which refers to a DictionaryEngine object that is re-
sponsible for the search (see Figure 1).

The DictionaryMIDlet class inherits from
javax.microedition.midlet.MIDlet class and must be specified on the
application descriptor file (JAD). The DictionaryController class is the
controller and manages the application screens, its main operations, and
properties. The screens, or the wview element of the MVC, are represented
by four classes, which implement the javax.microedition.Displayable
interface: DictionaryScreen, InstructionsScreen, MainMenuScreen, and
PresentationScreen. All of them refer to the single controller instance in order
to notify it when their commands are selected by the user. The model element of
the MVC is represented by the DictionaryEngine class and InputSearchData,
which is a class representing some application properties, such as the source and
destination languages used for the translation, and the word to be translated.

From this simple application, we developed an adaptive one. This new dictio-

938 Dantas A., Borba P.: Developing Adaptive J2ME Applications ...

nary can, for example, change its source and destination translation languages,
its search mechanism (for searching on a server, local storage, or memory), its
screens, and its current language. These changes are performed according to con-
text changes. In the current version of our application, the information about the
context is requested from a server or from the user. Nevertheless, depending on
the device and on the APIs provided by it, we could have other ways of providing
the mentioned adaptations. For example, the languages used for translation and
the current application language could be automatically changed according to
the device location, obtained by a connected GPS. Other possible change would
be to select the search mechanism according to some collected information (such
as the time spent for each kind of search, the number of successful answers, and
SO on).

3 AspectJ Overview

Aspect-oriented programming is a programming technique that provides explicit
language support for modularizing design decisions that crosscut a decomposed
program. Instead of spreading the code related to a design decision throughout
source code, a developer is able to express the decision within a separate, coher-
ent piece of code [Walker et al. 1999]. For these characteristics, AOP has been
considered to support separation of concerns.

AspectJ is a general-purpose aspect-oriented extension to Java
[Kiczales et al. 2001] that supports the concept of join points, which are
well-defined points in the execution flow of the program [Team 2002]. It also
has a way of identifying particular join points (pointcuts) and change the
application behavior at join points (advice).

Pointcut designators identify particular join points by filtering out a subset of
all the join points in the program flow [Kiczales et al. 2001]. A pointcut example
is shown in the following;:

pointcut showingScreen():
execution (public void showScreen(byte)) ;

This pointcut captures the execution of any public method called showScreen
that has a byte parameter and has void as its return type. This is just one
example of the several kinds of pointcuts AspectJ provides.

Advice declarations are used to define code that runs when a pointcut is
reached. For example, we can define code to run before a pointcut, as the fol-
lowing example shows:

before(): showingScreen(){
System.out.println("A screen will be shown");

Dantas A., Borba P.: Developing Adaptive J2ME Applications ... 939

With this advice, a message is displayed on the standard output before the
execution of the showScreen method. Besides the before advice, AspectJ also
provides after and around advice. The first runs after the computation under
the join point finishes. The second runs when the join point is reached, and has
explicit control over whether the computation under the join point is allowed to
run at all [Team 2002].

AspectJ also has a way of affecting a program statically. With Introductions
a program static structure can be changed. For example, we can change the
members of a class and the relationship between classes. The following code
illustrates how we can insert a new constant into the DictionaryController
class:

public static final byte
DictionaryController .REGISTRATION_SCREEN=-3;

In AspectJ, we also have the concept of an aspect, which is a modular unit
of crosscutting implementation. It is defined very much like a class, and can
have methods, fields, constructors, initializers, named pointcuts, and advice. For
instance, we could have the following aspect definition:

public aspect Screens { }

Aspects are defined by grouping pointcuts, advice, and introductions. The
aspect code is combined with the primary program code by an aspect weaver
[Walker et al. 1999]. In AspectJ current stable version, this can only be done at
compile time, and the source code is required for this process.

4 Customization Concern

This concern is useful to support behavior changes in the application core
functionalities, such as changing the source and destination languages used
for translation and the mechanism used to search a word. This is achieved
by changing some of the application parameters, which yield changes to the
InputSearchData instance used by the controller, and the EngineObject in-
stance used by DictionaryEngine, respectively (see Section 2). In order to
be reusable, the Customization Concern was implemented using three aspects
(Customization, DictionaryCustomization, and UpdateObjectConfig) and
some auxiliary classes. They are illustrated by Figure 2, which is an adapted
UML class diagram, where the aspect stereotype represents an aspect. This
figure also shows their relation to auxiliary classes and some of the classes
(DictionaryController and DictionaryMIDlet) they affect.

The Customization aspect was designed to change the behavior of the
MIDlet startup, capturing the MIDlet instance, and invoking methods before

940 Dantas A., Borba P.: Developing Adaptive J2ME Applications ...

c<ampeds>
Dm‘ﬂmunm-l Cusdomiz alion
artAgp] ==] el ipiabed bpe)
= } adapiEetora ()
getConimllen) Bt)
"o dclonayConroler |[YdaetArundAndPossibyProcesd)
DhtisnaryControber A
= e
lgelinstarce() DHell DnanyC ustomization
Jinitia ke e Se reens () =
laddScmen() g
et Screeni) I
alhowSomesan|) Vi M
= -~ |
L~ Aun <RSP
< UpdaleDbyeciConl

ggé%ﬁ:ug [makeLipdateObsscti)
&

i

ApeAnput SiesrohD
+ gelSearc anism)

geiDickondryEntries) ™,
Va changelgirkenul) N

ServerUpdate | | SimpleUpdaleObjedt || RMSUpdate

Figure 2: Customization concern implementation in AspectJ

and after the startup. Those methods allow the application to easily change the
behavior of the core functionalities at startup. It was designed in a way that it
can be reused by any MIDP application, so it is an abstract aspect having the
following pointcut:

pointcut MIDletStart(MIDlet midlet):
execution(void startApp()) && target(midlet);

Note that this pointcut has a parameter, which is a MIDlet object. This
parameter might be present in the advice definition too, and can be used in
their bodies to allow them to change the core application functionalities, since
the MID1let instance controls the application lifecycle and has access to its com-
ponents. The startApp execution occurs when the application name is selected
on the Java applications list of the device, and is invoked on a MIDlet object,

Dantas A., Borba P.: Developing Adaptive J2ME Applications ... 941

which is called the target of the execution.
The Customization aspect also defines three general advice:

before(MIDlet midlet): MIDletStart(midlet){
adaptBefore(midlet) ;
}

void around (MIDlet midlet) : MIDletStart(midlet) {
boolean shouldProceed =
adaptAroundAndPossiblyProceed(midlet);
if (shouldProceed)
proceed(midlet);

after (MIDlet midlet): MIDletStart(midlet){
adaptAfter(midlet);
}

These advice can change the application behavior by invoking three meth-
ods that are called before (adaptBefore), after (adaptAfter), and instead of
(adaptAroundAndPossiblyProceed) the MIDletStart pointcut. These methods
are abstract and should be implemented by another aspect, specific for a given
application. In fact, the Customization aspect is very general and can be used
by any MIDP application because all of them have a MIDlet and, therefore, a
startApp method is executed when the application starts up. The specific as-
pect does not need any AspectJ construction, making the developer work easier,
since this aspect will look like a class defining three methods.

In the dictionary application, the DictionaryCustomization aspect ex-
tends the Customization aspect, defining the specific methods, which actually
change the dictionary application using the UpdateObject interface operations
(see Figure 2). With these operations, we can obtain the data that specifies
changes such as a new InputSearchData object or a new EngineObject in-
stance (see Figure 1). An UpdateObject instance can be obtained by invoking
the getUpdateObject method, which is defined in DictionaryCustomization
The following piece of code extracted from this aspect illustrates the use of
UpdateObject for getting data that specifies how the behavior of a core func-
tionality should be changed:

1: protected void adaptBefore(MIDlet mid) {

2 if (mid instanceof DictionaryMIDlet){

3: DictionaryMIDlet midlet =(DictionaryMIDlet) mid;
4 InputSearchData data =

5 getUpdateObject () .getInputSearchData();

942 Dantas A., Borba P.: Developing Adaptive J2ME Applications ...

6: InputSearchData current =

7: midlet.getController().getInputData() ;
8: if (data!=null) {

9: current.setDestinationLanguage (

10: data.getDestinationLanguage()) ;

11: current.setSourcelLanguage (

12: data.getSourcelLanguage()) ;

13: }

14: }

15: }

This method casts the MID1let object passed as a parameter to the applica-
tion specific MID1let class (line 3). This object is used to change the source and
destination languages of the dictionary specified by the InputSearchData object
returned by getInputSearchData (line 5). If this method returns null, no adap-
tation is performed. With the MIDlet object obtained at line 3, we access the
controller and its current InputSearchData object (line 7) and change its source
and destination languages attributes (lines 9, 10, 11 and 12). We could also have
separately obtained each application property from updateObject. We used the
InputSearchData object in order to make the application easily evolvable, but
not necessarily adaptive. However, grouping the main application properties in a
single object makes this task easier. This means that these configuration changes
were anticipated, but the fact of making these changes in a dynamic adaptive
way not.

4.1 Configuring the Adaptation

The UpdateObjectConfig aspect configures the adaptation, resolving the type
of UpdateObject to be used by DictionaryCustomization aspect to provide the
adaptive behavior. It can be a SimpleUpdate, a RMSUpdate or a ServerUpdate,
among others. It defines the gettingAdaptationObject pointcut:

pointcut gettingAdaptationObject(
DictionaryCustomization adap): target (adap) &&
execution(public UpdateObject getUpdateObject());

This pointcut captures the execution of the getUpdateObject method,
whereas an around advice substitutes the normal execution of this method
by returning an UpdateObject instance, which is created by invoking
makeUpdateObject method. The UpdateObject type is defined by a code read
from a local file and it indicates how the data used for adaptation will be re-
trieved.

Dantas A., Borba P.: Developing Adaptive J2ME Applications ... 943

UpdateObject around(DictionaryCustomization adap):
gettingAdaptationObject (adap){
return this.makeUpdateObject();

4.2 Comparing with Design Patterns

We notice that the UpdateObjectConfig aspect works as the Abstract Factory
design pattern [Gamma et al. 1994] in the sense that it helps the Bridge pattern
composed by the DictionaryCustomizationaspect, UpdateObject, and its pos-
sible implementations in the definition of the specific object to be instantiated
(see Figure 2). In this pattern implementation, the Abstract Factory partici-
pant is represented by an aspect instead of a class. Besides that, we can also
visualize the DictionaryCustomization aspect implementing the State Pat-
tern, as it changes the dictionary application state, partially represented by the
InputSearchData object.

Another design pattern also observed, but not explained before is
the Strategy [Gamma et al. 1994]. The DictionaryCustomization as-
pect also changes DictionaryEngine instances substituting their cur-
rent EngineObject instance. Three different EngineObjects were im-
plemented: LocalPersistenceEngineObject, which searches for the
translation locally, on the MIDP Record Management System (RMS);
ServerSearcherEngineObject, which connects to a URL and requests the
translation; and VolatileEngineObject, which searches on the collection
structure stored on main memory. Therefore, by changing the EngineObject
instance, we have a different search strategy being used.

4.3 Reusability

As observed, the Customization aspect was designed to be reused by other
J2ME applications, because all of them have a MIDlet with a startApp method.

The DictionaryCustomization and UpdateObjectConfig aspects cannot
be reused because they are application specific, but the aspects of different J2ME
applications might follow the same pattern. The former defines three methods
that specify what should be done before, after, or instead of the MID1et startup.
It also has a method called getUpdateObject, which is usually called by the
other three methods and returns an object that provides application specific
adaptability data. The second aspect configures the UpdateObject instance re-
turned by that method.

Although we have focused on a J2ME example, the technique explained for
customization can be used on other kinds of applications, replacing the MIDlet

944 Dantas A., Borba P.: Developing Adaptive J2ME Applications ...

DiiclionanyMiDH aladaphar
Seatanup()
adaptBafare]
Thagapladen
adapbeoundAndFossibiProceed])
SgeilipdaieDbpecy])
CichinnanhiDiel DectionanyEngng | gnoing. . !
E :] #
S y L
Sstariupi) saarch(j -.
L — | Gngee & EngmeDbjec
i)
gt SeachDala | DictionaryController | BRAICHL} J;
| : % /
'
-inpuData
-§instance
g . ly
CeclananConinallstAdapler
1
e
SampleLipdaiObjed | UpdaldObied | pusupdae |
Sgmverilpdate 1
b 13 [-4
3
DictinnareUpdateCtjacF acory ot e i

- '_ Speilipdatedbject()

Figure 3: Customization concern purely OO implementation

object by another one that enables application properties (and consequently
behavior) changes.

4.4 Comparing with a pure Java implementation

In a purely OO implementation, this concern could be implemented using some
design patterns, as Figure 3 illustrates.

One of these patterns is the Adapter [Gamma et al. 1994], which al-
lows us to use delegation in some method executions and to invoke some
actions before or after this delegation. In the dictionary application, we
would need two Adapters, one for the DictionaryMIDlet and another for the
DictionaryController. If this aspect intercepted more joinpoints, many other
adapters would be necessary. The DictionaryMIDletAdapter would have to

Dantas A., Borba P.: Developing Adaptive J2ME Applications ... 945

extend the MIDlet class defining its methods and the methods shown on Fig-
ure 3 to make adaptation actions before, after and around the MIDlet startup.
The DictionaryControllerAdapter would use a DictionaryController in-
stance and change the application parameters, represented in the diagram by
InputSearchData and EngineObject classes. UpdateObjectFactory would fac-
tor the UpdateObject used by DictionaryMIDletAdapter to change the appli-
cation.

As we can see by comparing Figure 2 and Figure 3, the AspectJ implemen-
tation is simpler and has a smaller source code. Besides that, it does not require
us to change the application descriptor file (JAD) because the MIDlet class will
be the same for the original and the adaptive dictionary. This does not happen
on the purely OO implementation, where an adapter class is necessary and it,
instead of the DictionaryMIDlet, should be mentioned on the JAD file. On the
other hand, with AspectJ, we need to introduce another step before application
deployment: we must preprocess the code, generating a weaved source code, and
then compile and package the bytecodes files using J2ME tools. However, this
is just a limitation of the current stable version of AspectJ that can be easily
solved.

It is important to notice that the implementation shown before provides
adaptability by customizing the application when it is starting. Nevertheless,
in order to provide other adaptability points, we must simply define a point-
cut exposing the application specific MIDlet instance and advice that invoke
ApplicationCustomizationAspect methods (where Application is the applica-
tion name). An example related to the Dictionary application is shown below:

pointcut otherAdaptationPoints(DictionaryMIDlet
midlet): execution (public DictionaryController
getController()) && this(midlet);

before (DictionaryMIDlet midlet):
otherAdaptationPoints(midlet){
DictionaryCustomizationAspect.
aspectO0f () .adaptBefore(midlet);
}

This way we can reuse the methods defined on the application specific
customization aspect in other pointcuts. This is done by using the aspect0f
method, which returns an aspect instance.

An alternative implementation would be to redefine the pointcut from
Customization aspect defining every point where the customization adaptation
should be performed.

946 Dantas A., Borba P.: Developing Adaptive J2ME Applications ...

DictionanyConbrolier
Dn:tl-unarg,'ll lant
gefinstance() L 1 Mslc:pucl‘n
:;.;;r:ﬁ.;nnsu : *q-elﬂmng'-.'aluzll a IS
ged Sereani) - add:Ztring ' akse}
shimSeeen() R "
¥ i s T i
’ - Updalelbjecd
Ganarallist | RegistrationSoresn ManfderE nhansar - | FroseniationScreen
U
CormandAcinon)

Figure 4: Screens Concern implementation using AspectJ

5 Screens Concern

The Screens concern is related to changes on the application screens. It was im-
plemented by a single aspect, called Screens, and additional auxiliary classes.
This aspect is responsible for the colorization of the presentation screen, the
addition of a new screen after presentation, called Registration screen, the inclu-
sion of new options on the application main menu, and the creation of the new
screens related to the new menu options. These changes are good examples of de-
sired adaptive behaviors in J2ME applications. They are introduced or removed
when data provided by UpdateObject instance indicates that screens updates
should be made. The Screens aspect, its auxiliary classes, and the application
affected classes are shown in Figure 4. This use of aspects as a glue between
the application core functionality and auxiliary classes has also been considered
good practice elsewhere [Murphy et al. 2001].

5.1 Using AspectJ introduction for the Screens Concern

As the introduction or modification of screens usually requires new strings to
be used in the application, and all dictionary application strings are described
in the DictionaryConstants class, we introduce the new strings there using
AspectJ introduction as shown below:

public static final String
DictionaryConstants.SOURCE_LANGUAGE
= "Source Language";

Once the Screens aspect is used, these introductions are always done, because
this is a static change.

Dantas A., Borba P.: Developing Adaptive J2ME Applications ... 947

The DictionaryConstants getStringValue method yields these constants
values. This method was included after the refactoring made while introducing
the Internationalization concern, as will be explained in Section 7, and is invoked
every time a String value is used in the application. Therefore, we must add
the values of the strings from the new screens to the hash of String values from
DictionaryConstants class. This is done in a static block:

static { ...
DictionaryConstants.addStringValue(
DictionaryConstants.SOURCE_LANGUAGE,
"Source Language");

.

When new screens are introduced, we need constants to identify them. We
thus included new screens constants as the following example shows:

public static final byte
DictionaryControler.
SOURCE_LANGUAGE_SELECTION_SCREEN = -4;

The Controller needs these constants because every screen change is made
by it, using this constant to identity each Displayable instance (screen) to be
shown.

5.2 Changing the application screens

We now explain how the screens of the dictionary application could be changed.
To colorize the presentation screen we defined the following pointcut:

pointcut changingPresentation(Graphics g,
PresentationScreen p): args(g)
&& execution(public void paint (Graphics))
&& target(p);

This pointcut refers to the execution of the paint method with a Graphics
parameter on a PresentationScreen object. The paint method is internally
invoked when the presentation screen is shown. The pointcut parameters are
necessary because the advice definition needs both the Graphics and the
PresentationScreeninstances to paint the screen in a new way. This is specified
by an around advice, which substitutes the application paint method previously
defined when the data provided by the UpdateObject indicates that this adap-
tation should be carried on.

To introduce some more screens to the application, we defined the following
pointcut:

948 Dantas A., Borba P.: Developing Adaptive J2ME Applications ...

pointcut initializingScreens(DictionaryController con):
this(con) && execution(public void
initializeScreens());

This pointcut refers to the execution of the initializeScreens method
from DictionaryController class. This method is called by the startApp
method. This method is responsible for creating the application screens and
including them on the controller managed screens group. We have also in-
troduced an after advice that affects this pointcut and uses some auxiliary
classes (RegistrationScreen, MainMenuEnhancer and Generallist) to build
and show new screens on the application. Nevertheless, this adaptation is acti-
vated or not, according to this aspect UpdateObject instance.

In order to show the introduced Registration screen, we need to adapt the
application in another point, as described on the following pointcut and advice:

pointcut presentationCommandAction(Command c,
Displayablep): args(c, p)
&& if (p instanceof PresentationScreen)
&& execution(public void
commandAction(Command, Displayable));

void around(Command c, Displayablep):
presentationCommandAction(p,c){
if (c==DictionaryConstants.START_CMD){
this.controller.showScreen(
DictionaryController.REGISTRATION_SCREEN) ;
} else { proceed(c,p);}
}

The pointcut defined above denotes the join points where the execution of
the commandAction method has as argument a PresentationScreen object.
The advice shows the Registration Screen every time the START command is
pressed. For the other commands, the commandAction method proceeds with
its normal execution. This method is invoked every time a command is pressed,
its arguments represent the specific command pressed, and the Displayable
(screen) where it happened.

This aspect cannot be reused; it is specific for the dictionary application.
However, every J2ME application that follows the same model view controller
pattern shown here could have the same pointcuts, and only the advice bodies
would be changed. To make this aspect reusable, we could follow the same idea
described on the Customization concern: we should have an abstract Screens
aspect and then a DictionaryScreens aspect, which declares methods called by

Dantas A., Borba P.: Developing Adaptive J2ME Applications ... 949

each application specific advice and a getUpdateObject method which is called
by the others. We could also have a DictionaryScreensConfig aspect that
would define the kind of UpdateObject to be returned by the getUpdateObject
method. This actually constitutes an Adaptability Pattern which we have applied
in some concerns and think that can be applied in several other contexts.

In a purely OO implementation using design patterns, we would need
adapters to the DictionaryController and also the PresentationScreen
classes. The additional code invoked by the advice would be tangled with the
calls to the methods from the adaptees and we would not achieve a good sepa-
ration of concerns.

6 Caching Concern

The data used for adaptation might change. Therefore, in order to have access to
the corresponding updates, we can obtain this data by server requests. However,
wireless applications that contact remote data servers present problems for the
developers. For example, protocol support in J2ME is much more limited than in
J2SE (Java 2 Platform, Standard Edition), and some devices might require mul-
tiple access methods. In addition, radio communications are much less reliable
than the landline connections most Internet standards assume [Glosh 2002].

In order to solve those problems, our implementation obtains XML data from
the server and stores it on the RMS (Record Management System) in the same
format. Therefore, the server does not need to be accessed often, and the data
obtained by the server and by the RMS is handled in the same way, as explained
in the following. The Caching Concern, which is a support for the adaptability
concern, is responsible for locally storing any information used for adaptation
obtained by a server. This is done by the Caching aspect, which affects the
execution of the ServerUpdate methods, as illustrated by Figure 5.

The Caching aspect has four pointcuts. Each of them corresponds to a differ-
ent ServerUpdate method. Four after advice are responsible for writing on the
RMS the server response returned by each method. They do that by invoking
the writeServerContentsOnXML method, which is implemented in the Caching
aspect. This method uses auxiliary classes specially designed to deal with XML
and the RMS in a reusable way.

We notice that the Caching aspect affects other aspects, as they use
UpdateObjects as well. In fact, this happens only when the UpdateObject in-
stance being used is a ServerUpdate one. This relation between the aspects has
advantages and disadvantages, as explained in the following. At some moments,
it can make more difficult the understandability of the code if the developer
does not have much experience with AspectJ or does not use any tools to help
in the identification of join points affected by many advice. An advantage of

950 Dantas A., Borba P.: Developing Adaptive J2ME Applications ...

<<aspect=>
DictionaryCustomization

getlUpdateObject()
)
<=aspect>>
ServerUpdate e UpdateObjectConfig
A UpdateDbject makeUpdateObject()
e =
Ca:fr:? getinputSearchData() <=aspect>>
g getSearchMechanism() Screens

getDictionaryEntries()
changeMainMenu()

writeSenverContents QnxML{)

Figure 5: Caching aspect relation with other aspects

this implementation is that it avoids duplication of code, providing reuse, and
modularizing the caching concern. Another important thing to observe is that
the caching concern does not need to be implemented after the other aspects
whose executions are changed by it, because this interference is indirect, via
the UpdateObject instance. This relation between some dictionary application
aspects is illustrated on Figure 5.

With the implementation of the caching concern, the adaptation data can
be stored and an UpdateObject instance, of type RMSUpdate, may be used by
other classes or aspects to retrieve this data, avoiding communication with the
server.

A purely OO modularized implementation would be similar to the one ex-
plained on the end of Section 5, using Adapters.

7 Internationalization Concern

This concerns intent is to internationalize the application by providing a specific
value for a given string used on the application according to the application lan-
guage. It was easy to implement because the application was refactored to obtain
its string values in a single way: by invoking the getStringValue static method
from DictionaryConstants class. In fact, when using AspectJ sometimes we
need to refactor the code in order to expose some join points or to provide bet-
ter pointcut definitions, which are easier to understand. Instead of refactoring

Dantas A., Borba P.: Developing Adaptive J2ME Applications ... o51

the application, we have thought about capturing every access to a String con-
stant from DictionaryConstants class that we wanted to internationalize, but
the access to final fields cannot be captured by AspectJ.

After the refactoring, the Internationalization concern was imple-
mented by a single aspect, named InternationalizationAspect, and the
Internationalization auxiliary class. The aspect stores an instance of this
auxiliary class and delegates the task of obtaining string values to it, replacing
the execution of the method getStringValue from DictionaryConstants:

pointcut internationalizing(Object key):
execution(public static String
DictionaryConstants.getStringValue(Object))
&&args (key) ;

String around(Object key): internationalizing(key){
return internationalization.getStringValue (key);

}

The Internationalization class stores a hash table with the string values
related to a specific language. However, the strings inserted by other concerns
are not being considered, and, therefore, are not internationalized. For exam-
ple, the new strings used on the Screens aspect will not be found. We solved
this problem by preserving modularization, with the creation of another as-
pect that was called InternationalizedScreens aspect. This aspect affects
the Internationalization class initialization and introduces the values for the
new strings used by the Screens concern. The pointcut used is shown below:

pointcut internationalizingNewScreens(
Internationalization in):
initialization(public Internationalization.new())
&& target(in);

An OO implementation of the Internationalization concern could again use
the Adapter pattern, redefining the getStringValue method and delegating its
calls to DictionaryConstants class sometimes. Nevertheless, this would require
many invasive changes throughout the application, with the substitution in this
case of every DictionaryConstants instance by its adapter.

On the other hand, we had a similar problem during the refactoring process
in order to implement the concern with AspectJ. It was necessary to refactor the
code to call the getStringValue method. But we have not created additional
classes (adapters) as it would be necessary in a pure OO implementation.

We preferred the use of AspectJ to implement this concern because it is part
of an adaptability issue. The application language might change occasionally,

052 Dantas A., Borba P.: Developing Adaptive J2ME Applications ...

according to user inputs or by accessing proprietary libraries that could give
information about the user localization. We have made alternative AspectJ so-
lutions for the Internationalization concern in the dictionary application, but we
have decided to show this one because it presents one of the problems we have
while programming in AspectJ, the dependency between aspects, and how we
may be able to solve it.

8 Conclusions

We have concluded that AspectJ is useful to implement several adaptive concerns
in a modularized and simple way. Corresponding purely object-oriented solutions
using design patterns provide modularization, but usually require more changes
to the application source code and to its general structure, when this adaptive
behavior is incrementally inserted, as in our experiment. Our J2ME experiments
showed that it was possible to provide modularization without significant per-
formance impacts in relation to an OO tangled version. As our focus was on
the adaptability concern, this Java platform was chosen. However, many of our
results can be also applied to other platforms as well.

Using J2ME, we have identified some special execution points (join points)
that simplify changes to the application behavior in order to make it adaptive.
Some of these points are present in every J2ME application, and others appear
when we use the model view controller architecture or when some refactoring is
done.

A good practice observed during the experiment is the use of auxiliary classes
by the aspects. Those classes encapsulate complex services which are invoked by
the advice. In this way, those classes could be reused and their maintainability
is improved, since the aspects code becomes much simpler. We actually consider
that our implementation consists of three clear parts: the base code, the aspects,
and the auxiliary classes. The aspects part acts as a glue between the other two,
what has been already observed elsewhere [Murphy et al. 2001]. Also, every
change to the aspects should be done with care since AspectJ is a powerful
language: a simple change to an aspect can affect several parts of the application
[Soares et al. 2002].

We have noticed that better quality and productivity can be obtained by
restructuring the base code [Murphy et al. 2001]. Sometimes, just with refac-
toring, some necessary join points are exposed and the code from auxiliary classes
can be used in many places. An example is the development of auxiliary classes
to handle server connections, XML data and RMS manipulations that should
improve the reuse, which are used in many of the concerns related to adaptation.
We have also concluded that being able to dynamically supply new behaviors
after the implementation activity using aspect-oriented programming does not

Dantas A., Borba P.: Developing Adaptive J2ME Applications ... 053

diminish the importance of the design activities to obtain applications prepared
for adaptation. But its important to notice that some application changes should
be anticipated, that is, the application sometimes must be prepared for change.

Some of the problems identified in other experiments
[Kienzle and Guerraoui 2002][Soares et al. 2002] refer to the interferences
between aspects. We have also faced this problem but could solve it by creating
aspects that should be included when conflicting aspects have to be used to-
gether. This was explained when we discussed the Internationalization concern
and the creation of the InternationalizedScreens aspect (see Section 7).
This justifies again the importance of design activities when using AOP.

In relation to reuse, we could observe that every concern discussed here could
be implemented using reusable aspects, following the Customization concern idea
(see Section 4). Each reusable aspect contains the definition of pointcuts, advice
and abstract methods to be implemented by other aspects specific for the ap-
plication being developed. Following such structure, the developer of the adap-
tive behaviors does not have to know AspectJ, but simply to implement some
methods that will be executed at special points. Nevertheless, with such imple-
mentation, we would have a negative performance impact due to the number of
classes that must be loaded.

AspectJ source code showed to be around 20% smaller than other corre-
sponding object-oriented alternatives where modularization is considered too. A
similar result has also been obtained in another experiment [Soares et al. 2002].
But with the used AspectJ version (1.0.6), the generated bytecodes were bigger,
up to 15%, than similar pure OO solutions. This difference reduces to 10% us-
ing obfuscators. However, as a future work, we will develop several versions of
the same application(s) using or not aspects and using or not patterns and will
observe with more details, besides code/bytecode size, aspects such as adaptive
capability, modularization, load time, new adaptations inclusion impact, used
memory, and code quality.

Another problem detected during our experiment was the lack of J2SE (Java
2 Standard Edition) classes in J2ME. Some classes that can provide dynamic
adaptability, such as ClassLoader and those from the reflection package, are
not required by the J2ME specification. In the future, this is likely not to be
a problem and the proposals presented here will be able to be applied for dy-
namically adaptable software systems too. We could also obtain more adapt-
ability avoiding the use of the ClassLoader by using Adaptive Object Models
[Yoder et al. 2001], by which we can represent the application structure and be-
havior using metamodels that can be described as an XML file, for example.

The lack of some J2SE classes was also a problem in the definition of the
aspects, because some AspectJ constructions, such as cflow, required other non
available classes, and were consequently avoided. Nevertheless, such construc-

o54 Dantas A., Borba P.: Developing Adaptive J2ME Applications ...

tions, if allowed, would increase the application size considerably, since their
required classes would have to be included in the JAR file too.

Despite the pointed drawbacks, AspectJ seems to be useful for providing
adaptive behavior, represented by several concerns, for J2ME applications. This
fact could also be true for other Java platforms. However, more experiments,
involving several different developers and application domains, are necessary to
better observe the accuracy of our evaluation and the usefulness of our patterns.

Acknowledgements

We would like to thank the anonymous referees for making several sug-
gestions. Special thanks go to Rodrigo Rebouas, Franklin Ramalho, Sérgio
Soares, Rohit Gheyi and Vander Alves for their important comments. This work
was supported by CNPq, a brazilian research agency.

References

[Gamma et al. 1994] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. “Design
Patterns: Elements of Reusable Object-Oriented Software”; Addison-Wesley (1994).

[Glosh 2002] Glosh, S. “J2me record management store: Add data storage capacities
to your midlet apps”. (2002). http://www-106.ibm.com/developerworks/java/
library/wi-rms/?dwzone=java

[Gosling et al. 2000] Gosling, J., Joy, B., Steele, G., and Bracha, G. “The Java Lan-
guage Specification”; Addison-Wesley, second edition (2000).

[Kiczales et al. 2001] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J.,
and Griswold, W. “Getting started with AspectJ”; Communications of the ACM,
44, 10 (2001), 59-65.

[Kienzle and Guerraoui 2002] Kienzle, J. and Guerraoui, R. (2002). “AOP: Does it
Make Sense? The Case of Concurrency and Failures”; European Conference on
Object—Oriented programming, ECOOP’02, LNCS 2374, M4élaga, Spain, Springer—
Verlag (June 2002), 37-61.

[Mahmoud 2002] Mahmoud, Q. “J2ME MIDP and WAP complementary technolo-
gies”.(2002). http://wireless.java.sun.com/midp/articles/midpwap

[Murphy et al. 2001] Murphy, G. C., Walker, R. J., Baniassad, E. L. A., Robillard,
M. P., Lai, A., and Kersten, M. A. K. “Does aspect-oriented programming work?”;
Communications of the ACM, 44, 10 (2001), 75-77.

[Oreizy et al. 1999] Oreizy, P., Gorlick, M. M., Taylor, R. N., Heimbigner, D., Jonhson,
G., Medvidovic, N., Quilici, A., Rosenblum, D. S., and Wolf, A. L. “An architecture-
based approach to self- adaptive software”; IEEFE Intelligent Systems. 14, 3 (1999),
54-62.

[Piroumian 2002] Piroumian, V. “Wireless J2ME Platform Programming”; Sun Mi-
crosystems Press (2002).

[Soares et al. 2002] Soares, S., Laureano, E., and Borba, P. “Implementing distribu-
tion and persistence aspects with AspectJ”; Proceedings of the 17th ACM confer-
ence on Object-oriented programming, systems, languages, and applications. ACM
Press, (2002) 174-190.

[Team 2002] Team, A. “The AspectJ Programming Guide” (2002) http://aspectj.
org

Dantas A., Borba P.: Developing Adaptive J2ME Applications ... o55

[Walker et al. 1999] Walker, R. J., Baniassad, E. L. A., and Murphy, G. C. “An initial
assessment of aspect-oriented programming”; Proceedings of the 21st international
conference on Software engineering. IEEE Computer Society Press, (1999) 120-130

[Yoder et al. 2001] Yoder, J. W., Balaguer, F., and Johnson, R. “Architecture and
design of Adaptive Object-Models”; ACM SIGPLAN Notices. 36, 12 (2001), 50-60.

