Journal of Universal Computer Science, vol. 9, no. 8 (2003), 970-983
submitted: 24/2/03, accepted: 30/5/03, appeared: 28/8/03 LI J.UCS

Aspect Weaving Strategies

Eduardo Kessler Piveta
(CEULP/ULBRA, Brazil
piveta@ulbra-to.br)

Luiz Carlos Zancanella
(Federal University of Santa Catarina - UFSC, Brazil
zancanella@inf.ufsc.br)

Abstract: We propose a model to support aspect-oriented programming in
object-oriented languages, expressing general purpose aspects. To apply this model,
the developer should implement the abstraction and composition mechanisms as well
as one or more strategies defined in it. It could be applied to regular OO languages.

Key Words: aspect-oriented programming, object-oriented programming
Category: D.3.0, D.3.4

1 Introduction

Software engineering and programming languages exist in a mutual relationship
support. The most used design processes break a system down into a set of small
units. To implement these units, programming languages provide mechanisms to
define abstractions to represent them and composition mechanisms in order to
implement the desired behavior [Becker and Geihs, 1998].

A programming language coordinates well with a software design when
the provided abstraction and composition mechanisms enable the developer
to clearly express the design units. The most used abstraction mechanisms
of languages (such as procedures, functions, objects, classes) are derived from
the system functional decomposition and could be grouped into a generalized
procedure model [Kiczales et al., 1997].

However, there are many properties that do not fit well into generalized
procedures, such as: exception handling, real-time constraints, distribution and
concurrency control. They are usually spread over into several system modules,
affecting performance and/or semantics systematically.

When these properties are implemented using an object-oriented or a
procedural language, their code is often tangled with the basic system
functionality. It is hard to separate one concern from another, see or analyze
them as single units of abstraction.

This code tangling is responsible by part of the complexity found in computer
systems today. It increases the dependencies among the functional modules,

Piveta E.K., Zancanella L.C.: Aspect Weaving Strategies 971

deviating them from their original purposes, making them less reusable and
error-prone.

Aspect-oriented programming allows separation of these crosscutting
concerns, in a natural and clean way, using abstraction and composition
mechanisms to produce executable code.

This paper defines abstractions to represent aspects and aspect-weaving
strategies, helping in the task of weaving classes and aspects together. This
work is related to AspectJ [Kiczales et al., 2001] and D [Lopes, 1997] in the
requirements and theoretical foundation concerns. AspectJ offers mechanisms
to define general purpose aspects and D provides implementation insights.

The Aurelia weaver [Piveta and Zancanella, 2001] implements the meta-class
strategy described here, being influenced by JST [Seinturier, 1999] (that
uses OpenJava’s metaclasses to create aspects in the system), and by
[Pryor and Bastan, 1999] (that implements a reflective architecture in SmallTalk
to support aspect-oriented programming).

2 Aspect-Oriented Programming

Usual programming techniques are not expressive enough to implement in a
satisfactory way the application requirements needed today. There are some
characteristics that affect the system behavior, modifying the semantics and
performance criteria in several points, both in systems static and dynamic
structure [Lopes, 1997].

When these characteristics should be implemented, they are usually inserted
into the system using arbitrary methods, distracting from what the original
software component was supposed to do, making reuse and readability harder.
This increases the complexity regarding to functional modules implementation,
which become more confuse that they should be.

Having an important concern expressed in a localized manner (i.e. in an
unique unit or code section) promotes an easier understandment of how the
system is affected (because you do not have to look at several places neither
separate it from others). Moreover, it is easier to analyze, modify, extend and
reuse that concern [Czarnecki and Eisenecker, 2000].

This separation of concerns is a fundamental issue in software engineering and
it is used in analysis, design and implementation of computer systems. However,
the most used programming techniques do not always present themselves in a
satisfactory way regarding to this separation.

This is mainly due to the fact that the most used approaches focus in
finding and composing functional units, while other important concerns are
not well addressed in the functional design [Becker and Geihs, 1998]. When two
properties must be composed in different ways and still getting coordinated we
say that one crosscut the other.

972 Piveta E.K., Zancanella L.C.: Aspect Weaving Strategies

In [Kiczales et al., 1997] is defined that a system property that should be
implemented could be seen as an aspect or as a component:

— the property could be seen as a component if it could be encapsulated in a
generalized procedure (class, method or procedure) . Components tend to
be units derived from the system functional decomposition. Examples: bank
accounts, users, messages etc.

— aspects are not usually units derived from functional decomposition, they
affect classes in a systematic way. Examples of aspects: concurrency control
in bank account operations, account transactions recording, access security
policy applied to systems users, real time constraints associated with
messages delivery.

The aspect-oriented programming main goal is to help the developer
in the task of clearly separate crosscutting concerns, using mechanisms
to abstract and compose them to produce the desired system. The
aspect-oriented programming extends other programming techniques (object
oriented, structured, functional etc) that do not offer abstractions to deal with
crosscutting [Kiczales et al., 1997).

An implementation based on the aspect oriented programming paradigm is
usually composed of:

— a component language to program components (i.e. classes);
— one or more aspect languages to program aspects;

— an aspect weaver to compose the programs written in these languages;

programs written in the components language;

— one ore more programs written in the aspect language.

2.1 Components

Components (in AOP) are abstractions provided by a language to implement
systems basic functionality. Procedures, function, classes and objects are
components in aspect-oriented programming. They are originated from
functional decomposition. The language used to express componnents
could be, for instance, an object-oriented, an imperative or a functional
one[Tekinerdogan and Aksit, 1998].

In this paper we are going to use class instead of component to avoid
terminology mismatches between the concept in aspect-oriented programming
and in component-based software development.

Piveta E.K., Zancanella L.C.: Aspect Weaving Strategies 973

2.2 Aspects

Properties affecting several classes could not be well expressed using current
notations and languages. They are usually expressed through code fragments
that spread over the system classes [Czarnecki and Eisenecker, 2000].

Some concerns that are frequently aspects: concurrent objects
synchronization — [Dempsey and Cahill, 1997], distribution [Lopes, 1997],
exception handling [Ossher and Tarr, 1998], coordination of multiple objects
[Harrison and Ossher, 1993], persistence, serialization, replication, security,
visualization, logging, tracing, load balance, fault tolerance amongst others.

2.3 Component language

The component language should provide developers with mechanisms to
write programs implementing the basic requirements and also do not predict
what is implemented in the aspects, (this property is called obliviousness
[Kiczales et al., 1997], [Filman and Friedman, 2000]). Aspect-oriented
programming is not limited to object orientation, although, the most used
component languages are object oriented ones, such as: Java, SmallTalk or C#.

2.4 Aspect language

The aspect language defines mechanisms to implement crosscutting in a clear
way, providing constructions describe the aspects semantics and behavior
[Kiczales et al., 1997].

Some guidelines should be observed in the specification of an AO language:
syntax should be related to the component language syntax (making easier the
tools acceptance), the language should be designed to specify the aspect in a
concise and compact way and the language grammar should have elements to
allow composition of classes and aspects [Bollert, 1999].

2.5 Aspect Weaver

The aspect weaver main responsibility is to process aspect and component
languages, in order to produce the desired operation. To do that, it is essential
the join-point concept. A join-point is a well defined point in the execution or
structure of a program. For instance, in object-oriented programs join-points
could be method calling, constructor calling, field read/write operations etc.

The representation of those points could be generated in runtime using a
reflective environment. In this case, the aspect language is implemented through
meta-objects, activated at method invocations, using join-points and aspects
information to weave the arguments [Mendhekar et al., 1997].

974 Piveta E.K., Zancanella L.C.: Aspect Weaving Strategies

An aspect-oriented system design requires knowledge about what should be
in classes and in aspects, as well as characteristics shared in both. Although
aspect-oriented and object-oriented languages have different abstraction and
composition mechanisms, they should use some common terms, allowing the
weaver to compose the different programs.

The weaver parses aspect programs and collects information about the (join)
points referenced by the program. Afterwards, it locates coordination points
between the languages, weaving the code to implement what is specified in them
[Bollert, 1998].

An example of a weaver implementation is a pre-processor that traverse the
classes parsing tree, looking for joint-points and inserting sentences declared in
the aspects. This weaving process could be of two types: static (compile time)
or dynamic (load and runtime).

2.6 Implementation Technologies to Aspect-Oriented Programming

Two activides should be performed to support aspects: definition and
implementation of abstractions to express aspects and implementation of a
weaver to compose the languages.

2.6.1 Abstraction to Represent Aspects

There are two commonly used alternatives to define abstractions to
express aspects, according to [Czarnecki and Eisenecker, 2000]: use conventional
libraries, design a domain specific aspect language. The advantages on using
domain specific languages are: declarative and explicit representation regarding
to the implemented aspect, utilization of domain terms and that they could
capture the developers intention in a more appropriate way. Using a specific
domain language allows optimizations and error checking regarding to the
language domain.

However, they are not always the best choice, due to the fact that users
acceptance is harder that on using general purpose languages. When the aspects
are not regarding to one domain, the advantages of using a specialized language
are not so clear as in the cases that aspects are domain specific, such as in D
[Lopes, 1997].

2.6.2 Aspect Weaver Implementation

Weaving aspects and classes involves program transformation techniques. This
can be done using many technologies, but the most common approaches are:
source code transformation and dynamic reflection.

Piveta E.K., Zancanella L.C.: Aspect Weaving Strategies 975

The first could be implemented using a compiler or a pre-processor, that
usually provide an interface to add and edit nodes generated in the parsing tree.
Usually the woven code is reorganized in compile time, statically, efficiently.

Runtime reflection needs the explicit existence of mechanisms to
interfering into running computations in the base level. The use of these
meta-representations enable developers to modify the entities behavior in
runtime [Czarnecki and Eisenecker, 2000].

3 A model to aspect-oriented programming

Here, we describe a model to support aspect-oriented programming by defining
abstraction and composition mechanisms to offer support to express crosscutting
concerns in a general purpose way: aspects according to the model are not domain
specific.

This model focus on features derived from AspectJ and D. The first
implements general purpose aspects and is the de facto standard for AOP in
Java, and the second was choosen because of the theoretical foundation about
weaving mechanisms.

3.1 Abstractions to represent aspects

The model is comprised by a set of class describing mechanisms to represent
aspects in an application. Objects of these classes are referenced and used in the
same way that others objects in the system, with the particularity that there
are no explicit method calls to these objects. An aspect could be applied into
different classes, acting in many systems events. When an aspect is inserted in
the application, the developer associates it with the classes.

Each aspect has several pointcuts defining a set of situations when aspects
are activated and advices that are executed in the occurrence of each situation.
The join-points are defined using information about the classes and affected
methods. In figure 1, we could see a class diagram of the model.

Each aspect is defined as an instance of a class called Aspect or one of its
subclasses. In this context, there is the possibility to add an instance of the
Aspect class to each property that the aspect crosscut. As each aspect could have
different actions associated to it, it is divided into a set of pointcuts. A pointcut
has information about the points affected by the aspect and the methods that
should be invocated every time the join-points in the pointcut are reached.

A pointcut is an instance of the PointCut class, where the property
JoinPoints is a list of classes and methods affected by the pointcut. In this
model we could express join-points to execution of methods, constructors and
destructors.

976 Piveta E.K., Zancanella L.C.: Aspect Weaving Strategies

| dapert
T:'.-'j—-t- ;lllli-l_ 1 FonEub I
G d IR FoniCuts fi
LA REL we |
JmnPairnt |
SlargaiCiass - Sming
S Tarpeidenog | Siming L H
|
T | e
I PoimiCut
@Acive | Anciean = Jue
S SURENE | MEFOETInE]
@ireaemiomal . el oimar
||'|.,|_'-.-"-|;, | v AP alnlpfors HehopPhnler
I — SUinEal O WAl CaeiirTei
ot |
WS TR RO |
SEGEe |
Sfaepion

Figure 1: Class diagram of the model

Sentences expressed in aspects could be inserted in the following situations:
before the joint-point occurence, after the join-point (in a normal method
return), after a join-point (no matter the success of the method execution) and
in an exception occurrence.

According to these characteristics, an aspect could have several pointcuts.
Each join-point specify the TargetClass and TargetMethod fields, that are
respectively the name of the class and the signature of the method affected by
the aspect. Actions that should be executed every time a join-point is reached
are specified together with pointcuts.

4 Weaving Strategies

The aspect weaver works adding new classes, new methods or modifying existing
program abstractions. This work proposes four alternatives to map the structures
defined as aspects in the system to a classes only structure.

4.1 Weaving through inheritance

The inheritance mechanism could be used to implement the behavior described
in the aspects. If an aspect affects a class in one or more points, a subclass of
the affected class should be generated to accomplish the modified behavior. The
source code of the affected classes is not modified and the aspect code is inserted
in the generated sub-classes.

Piveta E.K., Zancanella L.C.: Aspect Weaving Strategies o977

In figure 2, there is a class called Person, being affected by the aspects Trace
and Synchronize. The affected methods are overriden by the woven method,
as stated in figure 3. The woven method encapsulates the inherited behavior,
executing the sentences related to the aspects (figure 4).

F eErson

]

lraced Brson

S
[l

| SynchronizedTraceFerson |

Figure 2: Class Person being affected by the Trace e Synchronize aspects

TTracePerson = class(TPerson)
GetAge:integer; override;
SetAge: (x:integer) ; override;

End;

Figure 3: Class created by the weaver

In order to the generated methods work properly, is necessary that the
instances of Person be replaced by objects of the modified class (or explicit
casts specified), in this case, TTracePerson class. If the aspects affect also the
Person subclasses, the weaver should modify the subclasses referenced by the
aspect. A similar approach is used by the AOP /ST weaver [Bollert, 1999]

4.1.1 Advantages

The weaving process is done in a non-invasive way. The original class is preserved,
creating a subclass for each class affected by an aspect. However, the programs
that use the affected classes should be modified in order to point to the right
classes.

978 Piveta E.K., Zancanella L.C.: Aspect Weaving Strategies

P i

R — — z
‘-’"l' — nE fxepizndr

Figure 4: Method with the behavior modified by the Trace aspect

4.1.2 Related Problems

A problem related with this alternative is inheritance anomalies (the class is
modified, but its subclasses still use the original class). Depending on the number
of affected classes, as well as the number of aspects that affect the same class,
the class hierarchy could become large. The classes created are not directly used
but could consume an extra time due to searching time into the methods table.

If more than one aspect or more than a join-point of a single aspect act
upon a class, there is the need to weave the system by steps, where a subclass is
generated to the first aspect, another one to the second and so on. The problem
is the definition of the weaving order. This order could by explicitly defined in
the aspect.

4.2 Weaving through association

Association could be used to implement the behavior described in the aspects.
For each affected class, a property (which type is Aspect) is created (figure
5). The affected methods are modified through calls to methods defined in the
aspects (Figure 6)

4.2.1 Advantages

One of the advantages is that new classes are not created, neither objects of
these classes are modified (just the affected classes are).

4.2.2 Related Problems

A problem with this approach is the modification of affected class, getting hard
to find where aspects affect the class in the resulting code and making harder to
get back to the original code.

Piveta E.K., Zancanella L.C.: Aspect Weaving Strategies 979

TPerson = class
Aspect: TAspect;
GetAge:integer
SetAge: (x:integer)

End;

Figure 5: Class modified by the weaver

Ty
Trace Poinioud 0] DoBete=ithis |
Ty

I Forson Pl bpgl s fimk
|®Trace Trace [" :Ti-.- Feartruf]) Doudted orm sljthia]
arERL el Al B R | i -
e L i on E Esrepiion do
L =TT f i) | Trace Foinm | Dol e monihis, £
! 1 Erdd
Finby

Trace Poirutid] DoFinatykis §
E el
I. -

Figure 6: Modified class

4.3 Weaving through the Decorator Design Pattern

Another implementation alternative is using the Decorator design pattern. In
this case, a subclass of the affected class is created together with a reference to
the original class (figure 7). Using this subclass, called Decorator in the pattern,
it is possible to create concrete decorators that implement the functionalities
described in aspects. Use of this pattern is a flexible alternative to inheritance.

As an example we could see the Person class being affected by two aspects:
Trace and Synchronize. A Decorator called PersonDecorator is created as a
wrapper to the decorated object. Two more classes are created to implement the
aspects functionality (figure 7).

Decorated objects must replace the Person instances. These objects
are decorated by the TraceDecorator and SynchronizeDecorator. When
implementing this strategy, aspect-ordering mechanisms should be defined to
ensure that the behaviour is modified as desired.

4.3.1 Advantages

The advantage is mainly the flexibility inherent to the pattern: the order of
decorators could be modified in runtime. It is also distinguished that changes
are done in a non-invasive way.

980 Piveta E.K., Zancanella L.C.: Aspect Weaving Strategies

P prsnn

ol)

[oo Coesmtong L

| *omerstion] | s
'
"
| E N ;_ Bedgre - Syraberodi b Prand o]] Badvess) |
| Syt ozl .
__ T alew riir N T
I B pforeiii
| i) Tre
| ®agei el T oot v e o oy,
Erkra) sl erhimmaThisy,
W e anial g Fepapl

ar e LH b el i
el Pogonb i
Eng
i
Ll e
£l

Figure 7: Person class being affected by the Trace and Synchronize aspects

4.3.2 Related Problems

One difficulty of this approach is that the identity of decorators is not the same
as decorated objects.

The use of decorators to classes that are affected by more than one aspect,
or in the cases that aspects could be removed/inserted dynamically is better
than using the inheritance approach. However, there is not many advantages use
decoration for classes affected by only one aspect.

4.4 Weaving through reflection

In this approach, a metaclass is created by the weaver for each class referenced
by an aspect, providing message interception mechanisms, allowing the addition
of sentences related to aspects in the parsing tree, using information about the
base level (affected classes).

As an example, a class called Person that is affected by an aspect (Figure
8). For each affected class, a metaclass is generated, implementing the specified
aspect semantics.

In [Lunau, 1998] a proposal to implement aspects as meta-objects is described
through a mechanism of messages interception. The architecture originally

Piveta E.K., Zancanella L.C.: Aspect Weaving Strategies 081
MetaPerson metaclass of Person

Method MetaPerson.InterceptMessages{
try{
Trace.Pointcut [0] .DoBefore(this);
try
// Execute the base level code
ExecuteBaseMethod (ParseTreeNode) ;
Trace.Pointcut [0] .DoAfterNormal (this) ;
except
On E:Exception do
Trace.Pointcut [0] .DoException(this,E);
}
finally{
Trace.Pointcut [0] .DoFinally(this);
}
}

Figure 8: Metaclass with method interception

described was developed to allow computational reflection in control processes
applications and allows to change meta-objects in runtime.

A reflective architecture is defined in [Pryor and Bastén, 1999] to support
aspect-oriented programming in SmallTalk, using a metaclass aspects semantics
representation. It’s possible to add sentences before or after the original code.
The weaver, in this strategy, is represented by the AspectManager class,
responsible to intercept messages in the base level.

4.4.1 Advantages

One main advantages in this approach is the non-invasive addition/modification
of classes. Another advantage is that using a meta-object protocol this approach
is easier to implement than the others. Using interception and introspection
mechanisms, part of the weaver responsibilities goes to the meta-object protocol.

4.4.2 Related Problems

One difficulty is the lack of commercial implementations using computational
reflection concepts into object-oriented languages. Another question is that the
addition of another abstraction level could affect performance.

082 Piveta E.K., Zancanella L.C.: Aspect Weaving Strategies

5 Considerations

This work presents a representation to crosscutting concerns and a collection of
strategies to the weaving process. Amongst these strategies, the better ones are
the message interception and the decorator based strategy.

However, in simple contexts the inheritance and the association strategy
could be used to implement aspects into object-oriented languages. To validate
the message interception strategy, a tool called Aurelia was developed, using the
Borland Delphi environment [Piveta and Zancanella, 2001] and a meta-object
protocol.

The use of a reflective architecture as a basis to implement Aurelia
contributed to the project result. The facilities provided by the meta-object
protocol used, mainly due to the message interception mechanism, shorted the
time to the systems implementation, as well as the system responsibility.

This model can be implemented in other programming environments,
adapting the code generation module and the parser. Moreover, it’s interesting
to have mechanisms to perform structural or behavioral reflection, making easier
to implement the strategies defined here.

6 Future Work

There are some proposals to continue this work, such as:

Implementation in other programming languages and using other
meta-object protocols.

— Definition and implementation of meta-object protocols to object-oriented
languages;

— Implementation of all the strategies defined in the model and

— Development of a language to define aspects.

References

[Becker and Geihs, 1998] Becker, C. and Geihs, K. (1998). Quality of service - aspects
of distributed programs. In Int’l Workshop on Aspect Oriented Programming (ICSE
1998).

[Bollert, 1998] Bollert, K. (1998). Aspect-oriented programming case study: System
management application. In Workshop on Aspect Oriented Programming (ECOOP
1998).

[Bollert, 1999] Bollert, K. (1999). On weaving aspects. In Workshop on Aspect
Oriented Programming (ECOOP 1999)

[Czarnecki and Eisenecker, 2000] Czarnecki, K. and Eisenecker, U. W. (2000).
Generative Programming: Methods, Tools, and Applications. Addison-Wesley,
Boston.

Piveta E.K., Zancanella L.C.: Aspect Weaving Strategies 083

[Dempsey and Cahill, 1997] Dempsey, J. and Cahill, V. (1997). Aspects of system
support for distributed computing. In Workshop on Aspect Oriented Programming
(ECOOP 1997).

[Filman and Friedman, 2000] Filman, R.E. and Friedman, D.P. (2000).
Aspect-oriented programming is quantification and obliviousness. In Workshop on
Advanced Separation of Concerns (OOPSLA 2000).

[Harrison and Ossher, 1993] Harrison, W. and Ossher, H. (1993). Subject-oriented
programming—a critique of pure objects. In Proc. 1998 Conf. Object-Oriented
Programming Systems, Languages, and Applications, pages 411-428.

[Kiczales et al., 2001] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J.,
and Griswold, W. G. (2001). An overview of AspectJ. In Knudsen, J. L., editor,
Proc. ECOOP 2001, LNCS 2072, pages 327353, Berlin. Springer-Verlag.

[Kiczales et al., 1997] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes,
C., Loingtier, J.-M., and Irwin, J. (1997). Aspect-oriented programming. In Aksit,
M. and Matsuoka, S., editors, 11th Furopeen Conf. Object-Oriented Programming,
volume 1241 of LNCS, pages 220-242. Springer Verlag.

[Lopes, 1997] Lopes, C.V. (1997). D: A Language Framework for Distributed
Programming. PhD thesis, College of Computer Science, Northeastern University.
[Lunau, 1998] Lunau, C. (1998). Is composition of metaobjects = aspect oriented

programming. In [?].

[Mendhekar et al., 1997] Mendhekar, A., Kiczales, G., and Lamping, J. (1997). RG:
A case-study for aspect-oriented programming. Technical Report SPL-97-009, Palo
Alto Research Center.

[Ossher and Tarr, 1998] Ossher, H. and Tarr, P. (1998). Operation-level composition:
A case in (join) point. In Workshop on Aspect Oriented Programming (ECOOP
1998).

[Piveta and Zancanella, 2001] Piveta, E. K. and Zancanella, L. C. (2001). Aurélia:
Aspect oriented programming using a reflective approach. In Workshop on Advanced
Separation of Concerns (ECOOP 2001).

[Pryor and Bastan, 1999] Pryor, J. and Bastdn, N. (1999). A reflective architecture for
the support of aspect-oriented programming in Smalltalk. In Workshop on Aspect
Oriented Programming (ECOOP 1999).

[Seinturier, 1999] Seinturier, L. (1999). JST: An object synchronization aspect for
Java. In Workshop on Aspect Oriented Programming (ECOOP 1999).

[Tekinerdogan and Aksit, 1998] Tekinerdogan, B. and Aksit, M. (1998). Deriving
design aspects from canonical models. In Workshop on Aspect Oriented Programming
(ECOOP 1998).

