
On the Role of the Librarian Agent in Ontology-based
Knowledge Management Systems

Nenad Stojanovic
(Institute AIFB, University of Karlsruhe, Germany

nst@aifb.uni-karlsruhe.de)

Abstract: In this paper, we present an ontology-based approach for the improvement of
searching in an information portal. The approach is based on incremental refinement of user’s
queries, according to the ambiguity of a query’s interpretation. The so-called Librarian Agent
plays the role of the human librarian in the traditional library – it uses information, about the
domain vocabulary, the capacity of the knowledge repository and the behaviour of previous
users in order to help users find the resources they are interested in. Moreover, the agent
analyses the users’ requests off-line and compares the users’ interests with the capacity of the
information repository, in order to find which new topics should be introduced or which topics
users are no more interested in. We partially implemented the approach in the Web Portal of
our Institute and some initial evaluation results are shown.

Key Words: Information Retrieval, Ontology, Query Refinement
Categories: H.3 Information Storage and Retrieval H.3.3 Information Search and Retrieval

1 Introduction

The efficiency of the searching for information in an information portal highly
depends on the knowledge of a user about the content of that portal (i.e. which topics
are covered by the documents) as well as on the familiarity of a user with the
vocabulary used in underlying documents (i.e. which terms are used for describing a
topic). By using this information a user can express his information need in a query
that filters only highly relevant documents. For example, the users can avoid forming
queries that, according to the underlying vocabulary, describe their information needs
too generally and therefore result in lot of irrelevant documents. Furthermore, in the
case that there is no result for a user’s query, the user can detect which term from the
query to relax (delete) in order to get some results. However, most of the portals do
not explicate the underlying content and vocabulary, leaving the users to explore them
on their own. Consequently, the searching is performed as a try-and-error process: a
user forms a short initial query, analyses the list of results and tries to refine/change
the query in order to get more relevant results. Moreover, by considering lists of
results for such “trial” queries, a user can change slightly his initial information need
as well, as a consequence that his initial assumption about what can be found in the
portal has been changed. This leads to the further refinements of the user’s query.

Therefore, it is clear that the efficiency of the searching for information in a portal
depends on the possibility to support users in such a “slightly” changing of their
initial queries in order to tailor them to the underlying repository and vocabulary.
Such queries express user’s information need more clearly and retrieve more relevant
documents (information resources). Since the users are reluctant to provide explicit

Journal of Universal Computer Science, vol. 9, no. 7 (2003), 697-718
submitted: 3/2/03, accepted: 21/7/03, appeared: 28/7/03 J.UCS

feedback about the relevance of a document, such a relevance should be determined
according to their usage and the query refinement process should reflect this
phenomenon: the query should be refined such that most frequently used documents
are prioritised. Last, since searching is a user-specific activity, the preferences of
users have to be accounted in the query refinement process

Not surprisingly, the mentioned query refinement process is a basic method that
people use in searching in the brick-and-mortar environment: there is a shop assistant
who helps a customer to find an information (product) by considering the types and
naming of the available products, the stock information, the preferences of previous
users and behaviour of previous users.

However, modern IR systems (information portals) provide very weak support for
the query refinement process. This support is mainly based on displaying most
frequently appearing terms in the documents relevant for the given query (e.g.
www.altavista.com) or, in the systems with the directory structure, on showing the
number of documents found in a directory (e.g. www.yahoo.com). Recently, the user
feedback is used for filtering the most frequently appearing terms only from
frequently used documents [Wen et al. 01]. However, none of these approaches
enables a user to orient himself in a larger context of the searching space, i.e. to
navigate, regarding the vocabulary and the repository, through the query space in
order to find the query that results in more relevant documents.

In this paper we present such an approach for the query navigation, called
Librarian Agent, which simulates the role a human librarian plays in the searching for
information resources in a library. The Agent analyses a user’s query based on: (i) the
structure of the used vocabulary, (ii) the capacity of the information repository and
(iii) the information about the users’ activities in the portal. The agent, through an
interactive dialogue, guides the users in closing the initial query to the original user’s
information need, in the query refinement process. Moreover, the Agent supports
efficient ranking/clustering of retrieved results. The approach assumes the existence
of a common vocabulary that is used for expressing queries, as well as for providing
meta-information about the content of information resources. In order to simulate
background knowledge that a human librarian uses in searching, we extended the
vocabulary to the conceptual model of the given domain, i.e. an ontology. Such a
formalisation enables more extensive inspection of a query’s properties, which leads
to more efficient query refinement. We partially implemented the approach in the
Web Portal of our Institute and some initial evaluation results are shown.

The paper is structured as follows: in [Section 2] we derive requirements for the
efficient searching in a portal, whereas in [Section 3] we present the architecture of a
system which fulfils these requirements. The details about the subsystem for query
refinement are given in [Section 4]. [Section 5] contains more information about the
evaluation study. Related work is presented in [Section 6]. [Section 7] contains
concluding remarks.

698 Stojanovic N.: On the Role of the Librarian Agent ...

2 The Efficient Querying in a KM System – the Need for a Query
Refinement Subsystem

The problem of satisfying a user’s information need in an Information Portal [Baeza-
Yates, Ribeiro-Neto (99)] is the question of whether a relevant information resource
for that need exists in the information repository, and if the answer is positive,
whether that resource(s) can be found by the user. More precisely, the efficient
searching for information in a portal depends on:

1. the “quality” of the information repository,
- if information resources reflect the needs of users, e.g. if the information
repository contains information resources which users are interested in and

2. the “quality” of the retrieval process, i.e. when a relevant information resource
exists in the repository, how easily (if any) the resource can be found. This
problem can be divided into two sub-problems:

a) if a resource which is relevant for the user’s information need can be
found by the querying mechanism and
b) if a user can (easily) find the resource which is highly relevant for his
information need in the list of retrieved results.

The first criterion (1) is the matter of the so-called “collection management
policy”, which manages the deletion of old information resources and entering of new
ones, corresponding to the changes in the user’s interests.

The retrieval of resources which are relevant for the user’s need (2a) depends on
the expressivity of the vocabulary used in the portal. There are two factors which
influence finding a relevant resource:

1) the clarity of expressing user’s information need in the query posted to the
system [Baeza-Yates, Ribeiro-Neto (99)], [Wen et al. 01], since a query is
just an approximation of the, often unarticulated, information need
2) the quality of the annotation (indexing) information resources in the
repository, i.e. the relevance of the metadata assigned to a resource.

The part of this problem, a so-called prediction game between providers and users
of information, can be resolved by using a commonly-agreed, formalized vocabulary,
i.e. an ontology [Guarino and Giaretta 95] as the semantic backbone of the portal. We
assume that such an ontology exists in the given domain, and that the retrieval system,
consequently, benefits from using this conceptual structure in searching for
information [Guarino et al. 99]. For example, the usage of synonym terms in two
queries will be mapped into the same retrieval process. Moreover, a query can be
automatically expanded with new terms, according to the structure of the ontology.

Since users tend to read only few top ranked resources for a query, (easily) finding
an information resource that satisfies user’s information need (2b) depends on the
possibility to calculate precisely the relevance of the resources for the user’s query. In
other words, an average user will not discover the highly relevant resources placed
down in the list of retrieved results.

[Figure 1] summarizes the above-mentioned discussion about the factors which
influence the searching for information in a Portal.

However, a user might be not satisfied with the results of a query. The most
characteristic “unsatisfactory” situations regarding a query arise when: there is no

699Stojanovic N.: On the Role of the Librarian Agent ...

result for that query, there is few relevant results and there are too many results, what
indicates that there might be a lot of irrelevant results.

Each of these situations is caused by some problems in the previously mentioned
factors that influence searching for information. For example:

- a problem in the information repository leads to:

- no relevant resource for the user’s query (gap in the repository)

- too many relevant resources for the user’s query (information overload)

- a problem regarding the model used for describing underlying domain
(vocabulary/ontology) leads to:

- representing a user’s need ambiguously in a query

- representing the content of resources ambiguously

Both of them can result in too much irrelevant/to less relevant results for the
user’s need.

- a problem in the mechanism/model used for calculating relevance leads to:

- placing a highly relevant resource below a low-relevant resource in the list
of results.

Figure 1: The factors which influence the efficiency of the searching for information
in a Portal

For example, due to an ambiguous interpretation of query terms the list of results

can be too long and can contain irrelevant results which are top ranked. Let us assume
that a user, who is searching for professors, makes the query “Researcher”, whereas
the ontology concept Researcher is modelled through three subconcepts: Professor,
PosDoc and PhDStudent (see [Figure 3]). Such a query represents initial user’s need
very ambiguously and results in lots of irrelevant results. Another example can be the

700 Stojanovic N.: On the Role of the Librarian Agent ...

gap in the information repository regarding a user’s query, which results in the empty
resulting list.

In such situations users try to change the initial query regarding the arisen
problems in order to ensure that highly relevant results are top ranked. For the above
example, the user can change the query “Researcher” in the query “Professor”, which
returns fewer number of resources, which are, on the other side, more relevant for the
user’s query. Such a refinement assumes that the user can recognize what is “wrong”
in his query. However, generally, a user does not know explicitly what can be the
problem in his query since he does not have enough knowledge about the portal’s
structure (e.g. the information repository and the vocabulary). For example, in the
case that there is no result for a query, a problem is to determine which term causes
such a constraint. Moreover, the problems in searching can arise from various
reasons. For example, no relevant results for a user need might be caused by a
problem in the information repository (no such a resource) or by a problem in the
domain model (a “wrong” query term is used). Consequently, the different refinement
strategies should be applied in these situations. Leaving a user to gees what can be a
problem in a query and what can be the most suitable refinement, makes this
refinement a very tedious and error-prone process, i.e. a user tries some refinements
by chance and cannot be ever sure that there are any more suitable refinements.

Recently performed large-scale case study about the behaviour of users in
searching Web [Silverstein et al. 98] has shown that in one third of the subsequent
query modifications the users tend to make a frustrating “total change”, where no
word is shared between the two modifications. It can be interpreted as the need of a
user to make a more complex refinement of a query, but without knowing how to do
that efficiently. In a smaller query transformation analysis, Bruza [Bruza and Dennis
97] found that repeating a query is a frequent transformation, which indicates the high
percentage of unsuccessful refinements of the initial query. In such situations, after
several refinements, the user comes back to the initial query.

From the previous discussion it is clear that an efficient system for querying a
portal should support users in doing refinement of their queries. Indeed, the query
refinement can be seen as a way to deal with (to compensate) “problems” in a portal,
we mentioned above. For given example, by changing the query “Researcher” in the
query “Professor”, the user tries to decrease the ambiguity in the interpretation of his
query. Furthermore, by adding a new term with the similar meaning (e.g. a synonym:
Scientist - Researcher), the user compensates some constraints in the vocabulary used
for the annotation of documents, or some problems in the annotation process.

Therefore, the query refinement enables a user to find relevant resources for his
information need in the case that the initial query failed due to some problems in
factors which influence the searching process. It enables a user, who made a query, to
easily inspect the corresponding (i.e. query-related) part of the information repository
and vocabulary, in order to determine what are the sources of the arisen problems (i.e.
to determine the ambiguities of the query). On the basis of these ambiguities and the
user’s preferences, the query is refined, which results in more relevant results for the
user’s information need.

In this paper we present the conceptual architecture of a query refinement system
that fulfils above-mentioned requirements. The system is called Librarian Agent since

701Stojanovic N.: On the Role of the Librarian Agent ...

it simulates the role a human librarian plays in the searching for information resources
in a library.

3 The Librarian Agent – the Usage Scenario

The role of the Librarian Agent is (i) to resolve the disambiguation of the queries
posted by users (query management), (ii) to enable efficient ranking and/or clustering
of retrieved answers (ranking) and (iii) to enable the changes in the knowledge
repository regarding the users’ information needs (collection management).

[Figure 2] sketches the conceptual architecture of the Librarian Agent. In order to
make the ideas behind the architecture more understandable, we describe it through
several examples of querying the Information Portal of an Institute. It is assumed that
the backbone of that Portal is the ResearchInstitute ontology, a part of which is
depicted in the [Figure 3].

Figure 2: The roles of the Librarian Agent in the process of searching for knowledge

A user posts the query (cf. 1 in [Figure 2]), which is processed firstly by the

Librarian Agent. Let us assume that the query is “Researcher and Project and KM”,
e.g. the user is searching for the information resources about “researchers in projects
related to the knowledge management (KM)”. The Agent measures the ambiguity of
the query (cf. 2 in [Figure 2]) by considering the capacity of the knowledge repository
and the domain vocabulary - ontology. The user is provided with an explanation what
is ambiguous in the query and how this ambiguity can influence the result of the
querying.

For the given query, the Agent might find the following ambiguities (more
elaborations on these ambiguities are given in the next section):

1) The sense of the term KM is not clear: KM can be a research area or a lecture, see
[Figure 3];

2) The context of the query is not clear: since there are two relations between the
terms Researcher and Project (i.e. worksIn and manages – see [Figure 3]), the user

702 Stojanovic N.: On the Role of the Librarian Agent ...

should clarify which of these meaning she is interested in. Otherwise, she could get
some irrelevant answers;

3) The clarity of the term Researcher used in the query is not well determined:
since there are three subtypes of Researcher (see [Figure 3]), the user should specify
which type of Researchers she is interested in. Otherwise, she could get some
irrelevant results;

4) By analysing the information repository, it follows that the list of answers for
the given query is the same as for the query “Researcher and Project”, which
means that all existing Projects are about KM.

synonyms(Researcher,
Scientist, Forscher)

isA(PhDStudent,
Researcher)1
isA(PosDoc,
Resaercher),
isA(Professor,
Researcher),
workIn(Researcher,
Project)
manages(Researcher,
Project)
about(ResearchArea,
Project)
researchIn(Researcher,
ResearchArea)

teaches(Researcher,
Lecture)

Researcher(rst)2
Researcher(nst)
Researcher(ysu)
Researcher(jan)
Researcher(meh)
Researcher(sha)

project(LA)

Lecture(KM)

PhDStudent(nst)
PhDStudent(ysu)
PhDStudent(meh)
Professor(rst)
Professor(jan)

workIn(rst, LA)3
workIn(nst, LA)
workIn(ysu, LA)
workIn(jan, LA)
workIn(meh, LA)

ResearchArea(KM)

researchIn(rst, KM)4
researchIn(ysu, KM)
researchIn(nst, KM)
researchIn(meh, KM)
researchIn(rst, CBR)
researchIn(nst, CBR)
researchIn(ysu, CBR)

subtopic(KM, CBR)

Figure 3: A part of the ontology we use for illustrating our approach

Moreover, the Agent recommends the user some changes (refinements) in the

query (cf. 3 in [Figure 2]), considering the underlying vocabulary, the information
repository and the agent’s experience (the past behaviour of the users). For example,
beside the refinements related to the cases 1) - 3), the Agent can “recognise” that in
the underlying repository there are a lot of resources about PhD_Students involved in
projects in KM and it can probably be a suitable refinement of the given query (i.e.
“PhD_Student and project and KM”).

The Agent receives the feedback information about how many (and which)
refinements’ steps the user performed (cf. 4 in [Figure 2]), and it uses this information
to improve its own strategies for creating recommendations.

The Query Management module is responsible for the previous two tasks, i.e.
for the ambiguity measurement and for the recommendations for the refinements of a
query.

Let us assume that the user refined her query into “PhD_Student and Project
and KM”, and the retrieved results are meh, nst, ysu (see [Figure 3]). The retrieved
list of results is ranked according to the relevance for the given query. The Ranking

1 It means that PhDStudent is a subtype of Researcher
2 It means that rst is a Researcher
3 It means that rst works in the project LA
4 It means that rst researches in the KM

703Stojanovic N.: On the Role of the Librarian Agent ...

module analyses the domain ontology, the underlying repository and the searching
process in order to determine the relevance of the retrieved answers (cf. 5 in [Figure
2]) For example, it finds that the answer nst is more relevant than the answer meh,
since nst researches in the areas KM and CBR, whereas meh researches only in KM.
Moreover, the results can be clustered into semantically related groups of results, in
order to enhance searching.

The information about which of the retrieved results were clicked by the users can
be used for the management of the searching process. In order to avoid disturbing the
users by additional questioning, the feedback information is collected implicitly by
analysing the activities of the users that are captured in the log file of the system.

Moreover, the list of queries is further analysed (cf. 6 in [Figure 2]) by the
Librarian Agent, in order to make recommendations for the changes in the collection
(cf. 7 in [Figure 2]) and in the underlying ontology (cf. 8 in [Figure 2]). This is the
task of the Change Management module. This recommendation takes into account
the analysis of the queries posted by users and the used vocabulary, as well. For
example, if a lot of users post the query “Project and Coordination”, which returns
zero answers, then it can be interpreted as an unsatisfied information need of lots of
users. Consequently, the repository should be extended with such an information
resource. Or, if in the underlying ontology the concept Project has no subconcepts, a
lot of queries containing the term “Project” can be an indicator to split (specialise)
the concept Project in several subconcepts (e.g. national project, EU-projects, etc.), in
order to support fine-tuning of users’ queries.

The conceptual model of the given domain – the domain ontology (cf. 8 in [Figure
2]) supports the processing of each step in this approach. Moreover, the searching
mechanism and the information repository are based on the domain ontology.

In the rest of the paper, we present the query management’s capabilities of the
Librarian Agent in details. More information about the Change Management Module
can be found in [Stojanovic and Stojanovic 02].

4 Query Management Module

The goal of this module is to support users in the query refinements process, i.e. to
enable a user to find the results relevant for his information need, even if some
problems appear in the searching process. As we mentioned in the [Section 2], these
problems lead to some ambiguities (e.g. the misinterpretations of the user’s need) in
the query, such that lots of irrelevant results and/or few relevant results are retrieved.
The Query Management module estimates these ambiguities of the initial query (so
called Problem Discovery phase) in order to provide suitable modification of that
query, which will decrease the number of irrelevant results or/and increase the
number of relevant results (so called Query Refinement phase). In the next two
subsections we explain these two phases in more details.

704 Stojanovic N.: On the Role of the Librarian Agent ...

4.1 Problem Discovery

We see two general situations5 in which a user is unsatisfied with the searching
process:

- no results for a query
- too many results for a query, what indicates that there might be a lot of
irrelevant results.

In both cases, the problems are caused by an ambiguity in the user’s query:
 1. - the query does not correspond to the information repository and
 2. - the query cannot be clearly (uniquely) interpreted
, respectively.
In the first case there is an ambiguous constraint in the query, which cannot be

fulfilled in the given repository, since it corrupts domain model (ontology) or it
overfits the content of the repository. In order to resolve this problem, that ambiguous
constraint has to be discovered and relaxed in the most suitable way (i.e. in a way
which introduces the smallest destruction of the initial user’s need – for example it is
possible to relax an ambiguous constraint by replacing it with another unambiguous
constraint). This kind of the ambiguity is out of the scope of the paper.

In the second case there are ambiguous interpretations of the user’s query which
cause lot of irrelevant results. The problem is how to discover and estimate these
ambiguities, in order to enable a user to select the most suitable interpretation of his
query, i.e. his information need. This is the topic of the next subsection.

4.1.2 Estimating the Ambiguity in the Interpretation of a Query

Since users tend to post very short queries (average length of a Boolean query is
between 2 and 3 terms, according to analysis in [Silverstein et al. 98], a query just
represents an approximation of a user’s information need [Saracevic 75] and as such it
can be misinterpreted in the searching process. This misinterpretation is caused by a
problem regarding:

a) the vocabulary (ontology)
e.g. the query “Researcher”, regarding the ontology represented in Fig 3.,
can be (mis)interpreted as the information need for information resources
about (i) Researchers, (ii) PhDStudents, (iii) PosDocs or (iv) Professors.

b) the information repository
e.g. the query “Researcher and Project”, regarding the same ontology, can
be (mis)interpreted as the information need for information resources about
(i) Researchers and Projects or (ii) Researchers, Projects and KM

In the first case, a user’s query can be semantically (based on its meaning
regarding the underlying ontology) mapped into several queries. In the second case
that mapping is syntactic (based on query’s results regarding underlying repository).
It is obvious that these misinterpretations are caused by some ambiguities in the query
regarding the vocabulary and the repository, respectively. By measuring these

5 We assume that a user just see the list of results, not inspecting the relevance of results.
Otherwise, the problems in searching can be analyzed with respect to the relevance of results
(e.g. too few relevant results)

705Stojanovic N.: On the Role of the Librarian Agent ...

ambiguities, the sources of the misinterpretations (problems) can be discovered.
Consequently, they have to be resolved in the refinement process.

Therefore, we define two types of the ambiguity6 in the interpretation of a query:
(i) the semantic ambiguity, as the characteristic of the used vocabulary and (ii) the
content-related ambiguity, as the characteristics of the repository.

4.1.2.1 The Semantic Ambiguity

As we already mentioned in the introduction, we consider that the users make
Boolean queries (a list of terms concatenated with a logical operator7), because
forcing users to make formal logic queries slows and constrains information retrieval
process. However, we assume that these terms are selected from an ontology. Since
an ontology vocabulary allows using synonyms and homonyms, the meaning of some
terms in a query can be ambiguous. Therefore, the very first step in our approach is
the disambiguation of the meaning of the terms in a query, done by measuring
SenseAmbiguity. Next, we measure the clarity of the context (defined by relations
with other terms) in which a term appears – ContextClarity. Finally, we estimate the
generality/speciality of a query term by measuring its Clarity.

In the following, we define these three ambiguity parameters.

SenseAmbiguity
In order to combine formal modelling of a domain and the user-friendly searching, the
abstract model of ontology we use in our research, presented in [3], contains an
additional modelling layer, the so-called lexical layer, which is responsible for
mapping the terms used by the users in searching into the formal entities of an
ontology (i.e. concepts, relations and instances). Due to lack of the space, we omit
here the formal definition of the ontology, which can be found in [3], and give an
informal explanation. For instance, returning to the example shown in the Fig. 2., the
user can use the terms “Researcher”, “Scientist” or “Forscher” in searching for the
resources related to the (domain-specific) concept Researcher from the ontology.
Moreover, a term can be used for encoding several ontology entities, i.e. for
representing several meanings. For example, the term “KM” can be used for encoding a
Lecture or a ResearchArea, and we say that the term “KM” has two senses8.
Consequently, if a query contains the term “KM”, then the Query Management Module
has to clarify the sense of that term, i.e. if the query is about a Lecture or a
ResearchArea. The sense can be clarified by analysing the relations between the
senses of that term with the senses of other terms in the query. For example, in the
query “KM and Projects”, the meaning of the term “KM” should be the ontology
concept ResearchArea, because in the ResearchInstitute ontology there is a relation

6 The users often estimate the ambiguity of a query through the number of results: a lot of
results can be an indicator that there are some irrelevant results, i.e. that some other information
needs are covered by that query. In most of the existing IR system, the user gets only this
information, i.e. the number of results, as the characterisation of the ambiguity. However, the
ambiguity of a query is a more complex category and it requires handling by using a more
formalised approach.
7 Although our approach can be applied to disjunctive queries as well, in order to simplify the
explanation of the approach, in the following examples, we use only conjunctive queries.
8 Similarly to WordNet [Rila 98] synsets

706 Stojanovic N.: On the Role of the Librarian Agent ...

between concepts ResearchArea and Project, but there is no relation between
concepts Lecture and Project. In case more than one sense is possible, ranking of
the senses is needed. It can be done by considering the information repository. For
example, in the query “KM and Researcher”, the meaning of the KM can be a
ResearchArea, as well as a Lecture, since there are relations between both of these
concepts (ResearchArea, Lecture) and the concept Researcher, i.e. researchIn and
teaches, respectively. By considering the number of information resources which are
about “researching in KM area” and “teaching KM course”, the ranking of these two
senses of the query “KM and Researcher” can be done. Such a discussion is out of the
scope of this paper.

In order to estimate this ambiguity, we define SenseAmbiguity factor for the query
Q = “ n21 t,...t,t ” as follows:

)Q(nsesNumberOfSe

)t,t(extnsesInContNumberOfSe

)Q(uitySenseAmbig
Qjt,it

ji∑
∈∀

= , where,

)}i,i(lationRe:)t(Sensei),t(Sensei{)t,t(extnsesInContNumberOfSe kpjkipji ∈∈= ,

∑
∈∀

=
Qit

i)t(Sense)Q(nsesNumberOfSe , |a| denotes the cardinality of the set a.

)t(Sense i is the set of the senses of the term it in the ontology. For example,
}earesearchAr,lecture{)KM(Sense = ;

)i,i(lationRe kp is the function that returns 1 if there is a relation between pi and ki

in the given ontology, for the case that pi and ki are concepts. In case that pi and ki

are instances)i,i(lationRe kp returns 1 if there is the relation between the ontology

concepts which corresponds to the instances pi and ki . Analogy definition holds for

the case that one of pi , ki is an instance and other is a concept.

For example, for the query initialQ = “Researcher and Project and KM”, we get:

211

122
)Q(uitySenseAmbig initial ++

++= , since

}researcher{)researcher(Sense = , }project{)project(Sense = and
}earesearchAr,lecture{)KM(Sense = , i.e. KM is the term which is assigned to the instance of

a Lecture or a ResearchArea,
2)project,researcher(extnsesInContNumberOfSe = , i.e. a Researcher workIn or manages

a Project,
2)KM,researcher(extnsesInContNumberOfSe = , i.e. a Researcher researchIn a

ResearchArea (KM) or teaches a Lecture (KM)and
1)KM,project(extnsesInContNumberOfSe = , i.e. a Project is about a ResearchAarea.

ContextClarity
This parameter models the existence of incomplete information in a query, regarding
the used concepts/relations. It means that the query can be automatically expanded,
in order to clarify the meaning of the query. For the given ontology, the query
“Researcher and Project and KM” is incomplete, because there are two relations

707Stojanovic N.: On the Role of the Librarian Agent ...

between concept Researcher and Project, namely workIn and manages, which can
be used to specify the query more precisely.

For measuring the context clarity of a query, we use the following formulas:

∏
=
==

n,1j
n,1i)Cj,Ci,Q(ityContextual)Q(rityContextCla where QCj,Ci ∈ , where

 ∉∈∀∧≥
+

=

else1

Qx),2C,1C(opertiesPrx1)2C,1C(opertiesPr,
1)2C,1C(opertiesPr

1

)2C,1C,Q(ityContextual

)2C,1C(opertiesPr is the function which returns the set of all properties between C1
and C2, Q is the given query.

For example,
3

1

2

1

3

1
)initialQ(rityContextCla ⋅⋅= , whereas each of multiplicands

corresponds to the number of the senses calculated for the SenseAmbiguity. The values
for NumberOfSensesInContext and Contextuality are similar, because there are no terms
which correspond to a relation in the given query. In the case of the query
“Researcher and Project and KM and workIn ” the context of the Researcher-

Project pair can be treated as “fixed” (i.e. workIn) and
3

1

2

1
1)Q(rityContextCla ⋅⋅= .

Clarity
The clarity factor represents the uncertainty to determine the user’s interest in the
given query. For example, when the user makes a query using the concept
Researcher, which contains two subconcepts Professor and PhDStudent, it could be
a matter of discussion whether she is interested in the concept Researcher, or in one
of its subconcepts. Anyway, she failed to express it in a clear manner. The formula for
the clarity factor depends on the entity type:

)Q(nsesNumberOfSe

)i(yTermClarit

)Q(Clarity
)it(Sensepi,Qit

p∑
∈∈∀

= , where

⋅
+

+
⋅

=

propetryaisE
)E(numDomains

1

1)E(opetiesPrnumSub

1

conceptaisE
1)E(eptsnumSubConc

1

)E(yTermClarit
,

numSubConcepts(E) is the number of subconcepts9 of a concept E,
numSubProperties(E) is the number of subproperties of a property E and
numDomains(E) is the number of domains defined for the property E.

For the given query 4/)
4

1
1

3

1
()Q(Clarity initial ++= , in case that the concept

Researcher has two subconcepts and KM (as a research area) has 4 subtopics.

9 It holds for each transitive relation and not only for the isA relation. For example, subTopic
is a transitive relation.

708 Stojanovic N.: On the Role of the Librarian Agent ...

4.1.2.2 The Content-related Ambiguity

The content-related ambiguity of a query depends on the capacity of the information
repository. Since this capacity determines the list of the results for a query, the
content-related ambiguity of a query can be defined by comparing the results of the
given query with the results of other queries. In the rest of this subsection, we define
several relations between queries, in order to estimate this type of the ambiguity of a
query.

Let)O,M(Q = be the query-answering pair, whereas M is an ontology-based query
and O is the list of results for the query Q. M and O are called query_terms and
query_objects, respectively. Further, we define:

1. Structural equivalence (=) by: 212211 OO)O,M()O,M(=↔=
Two query-answering pairs (queries)10 are structurally equivalent if their result

sets are the same.

2. Structural subsumption (parent-child): (<) by: 212211 OO)O,M()O,M(⊂↔< .

A query)O,M(22 subsumes another query)O,M(11 if the result set of the second
query pair subsumes the results of the first one. For query-answering pairs 1Q , 2Q we
define two subsumption relations:

- direct_parent (dir<): If 2i1i21 QQQ,QQQ <<¬∃∧< , 2Q is direct_parent of the 1Q ;

- direct_child (dir>): If 1i2i12 QQQ,QQQ <<¬∃∧< , 2Q is direct_child of the 1Q .

For a query aQ , we define five properties which characterise its structural

ambiguity: Largest equivalent query, Smallest equivalent query, Uniqueness,
Covering and CoveringTerms.

The Largest equivalent query for the query aQ is its equivalent query with the

maximal query_terms. It is calculated in the following way:)O,M(Q a

aQdiriQ
imaxa �

<
= . It

means that the largest equivalent query contains the union of query_term of all
direct_child.

The Smallest equivalent query for the query aQ is its equivalent query with

minimal query_terms. There can be several such queries. They are calculated in the
following way: }n,..1i,QQ)O),MM({(Q idiraaaimina =<∩×∈

For a query aQ , it is possible to define a subset of objects which are unique for

that query, i.e. they cannot be obtained for any direct_child query. We call that the
Uniqueness of the query, and it is calculated in the following way:

}n..1i,QQ}O/{O{)Q(Uniquness adiriiaa =<∪=

Covering and CoveringTerms are parameters which define the percent of identical
answers and query_terms, respectively, in two queries. More formally, for two queries

aQ and bQ we define:

}O,Omax{/OO)Q,Q(Covering bababa ∩=

}M,Mmax{/MM)Q,Q(rmsCoveringTe bababa ∩=

10 Due to simplicity, in the rest of the text, we will use the term query for referring to a query-
answering pair.

709Stojanovic N.: On the Role of the Librarian Agent ...

It is clear that the calculation of the above-mentioned parameters could be time-
consuming. In order to make this calculation more effective, we use formal concept
analysis (FCA) [Ganter, Wille (99)] for organising data in the so-called concept
lattices which correspond to the multi-inheritance hierarchical clusters. Each of these
clusters can be considered a query posted to the repository and, consequently, the
lattice represents the clustering of the query space. A cluster is called a formal
concept and it contains query terms and resources retrieved for that query. By
analysing such a lattice, many interesting relations between queries can be discovered
and used for measuring the query ambiguity and/or for the query refinement.

Due to the lack of space, we omit here the detailed introduction of the FCA which
can be found in [Ganter, Wille (99)]. We mention only the main concepts needed for
the understanding of our approach. Formal Concept Analysis (FCA) is a technique
derived from the lattice theory that has been successfully used for various analysis
purposes. The organisation of the data is achieved via a mathematical entity called a
formal context. A formal context is a triple (G, L, I) where G is a set of objects, L is a
set of attributes, and I is a binary relation between the objects and the attributes. A
formal concept of a formal context (G, L, I) is a pair (A, B) where A ⊆ G, B ⊆ L, A =
B’= {g ∈ G | ∀ l ∈ B: (g,l) ∈ I} and B= A’ = {l ∈ L | ∀ g ∈ A: (g,l) ∈ I}. For a formal
concept (A, B), A is called the extent, and is the set of all objects that have all the
attributes defined in B. Similarly, B is called the intent, and is the set of all attributes
possessed by all the objects in A. As the number of attributes in B increases, the
concept becomes more specific, i.e. a specialisation ordering is defined over the
concepts of a formal context.

In this representation, more specific concepts have larger intents and are
considered “less than" (<) concepts with smaller intents. The same partial ordering is
achieved by considering extents, in which case more specific concepts have smaller
extents. The partial ordering over concepts is always a lattice.

Attr.

Obj.

Resea
rcher

Pro-
fessor

Proje
ct

workIn -
>>LA

(= LA:
Project)

Resear
ch

Area

researchIn -
>>CBR

(= CBR:
ResearchArea)

ResearchIn->>KM
(=KM:

ResearchArea)

rst x x x x x x x
nst x x x x x x
ysu x x x x x x
jan x x x x x x
meh x x x x x
sha x

Table 1: A part of the ResearchInstitute ontology given in the [Section 3]

Note: Since an ontology uses the three-dimensional space for presenting

information (object-attribute-value), a transformation into the two-dimensional space
(attribute-value) is needed. Due to the lack of the space, we avoid here the discussion
about this transformation. For example, the information rst[worksIn->>LA]is
represented as the pair (rst,worksIn->>LA)in the table. In order to enhance the
readability of the table, we replace the relations with the name of the domain of that
relation (for example - LA:Project is the replacement for the workIn->>LA, because
the relation workIn has for the range the concept Project).

710 Stojanovic N.: On the Role of the Librarian Agent ...

Such a representation enables a very intuitive interpretation of a query: one can
see a formal concept as a representation of a query state, where the intent of the
formal concept represents the query itself, and the extent represents all resources that
match the query. For example, the query “Researcher and Project and KM” will be
mapped into the formal concept described as ({Project, LA:Project,

KM:Research_Area}, {meh}) in the concept lattice. Note that a formal concept
encompasses all objects from its super-concepts – i.e. the (attribute, object) set for
that formal concept is: ({Researcher, Project, LA:Project, KM:Research_Area},
{meh, jan, nst, rst, ysu}).

Figure 4: An example which shows the process of generating a concept lattice from a
set of data given in the table 1. The concepts represented in the lattice should be read
as in the following example: foremost left concept, ({Prof.}, {jan}),
corresponds to the objects (jan, rst) and attributes (Researcher, Prof.,
Project, LA:Project, KM:ResearchArea) – some attributes are
inherited from upper formal concepts.

Such an ordering in the query space enables a very easy interpretation of query

results regarding their ambiguity. Moreover, the values for the content-related
ambiguity parameters can be read directly from the concept lattice. For the given
query “Researcher and Project and KM”, these parameters are as follows:

Largest equivalent query: “Researcher and Project and
KM and LA and ResearchArea”

Smallest equivalent query: “Researcher and Project”
Uniqueness: “meh”
Covering for upper formal concept: 6/5
CoveringTerms for upper formal concept: 1/3

These parameters are very useful for estimating the ambiguity. A user is provided
with this information, in order to determine the position of her query with respect to
other queries. That can enhance the efficiency of the query refinement process. For
the given example, according to the Largest equivalent query, expanding the initial
query with the term ResearchArea will not cause any changes in the set of answers.
Moreover, the Smallest equivalent query, “Researcher and Project”, means that the

711Stojanovic N.: On the Role of the Librarian Agent ...

request KM in the query “Researcher and Project and KM” is redundant, because all
the researchers research in the KM research area. Further, according to the Covering
parameter, almost all results from the query “Researcher” are contained in the results
of the query “Researcher and Project and KM”, which means that the importance
of the terms “Project” and “KM” for the given is not so high. In the next section, we
give more details about using content-related ambiguity for the query refinement.

4.2 Refinement

Our approach for query refinement reflects the refinement model which a human
librarian (or a shop assistant) uses in his daily work. It means that we use three
sources of information in suggesting query refinement: (i) the structure of the
underlying ontology (vocabulary), (ii) the content of the knowledge repository and
(iii) the users’ preferences (what is his task and how users with similar preferences
refine their queries).

Figure 5: Librarian Agent in the action: The neighborhood of a query. A screenshot
from the Portal, which is used in the evaluation. The ambiguity parameters are
calculated using formulas presented in [Section 4.1.1]

Since the first two sources are used for measuring the ambiguity of a query, the

refinements based on them are treated cooperatively as the ambiguity-driven query
refinement. Copying with users’ preferences require modelling a user in the short-,
mid- and long-term. The short-term user model deals with the current task of the user
and can be derived from the current activities of a user. The mid- and long-term
models requires maintaining a user profile with “global” preferences of that user.

712 Stojanovic N.: On the Role of the Librarian Agent ...

They enable the personalization of the refinement process. However, that works only
for non-anonymous users. Such a personalization is out of the scope of the paper.

4.2.1 Ambiguity-driven Query Refinement

The ambiguity parameters presented in the previous section are combined and
presented to the user in case she wants to make a refinement of the initial query.
[Figure 5] presents the visual metaphor to present the information about the
ambiguities of a query to the user. Each of ambiguity parameters has its role in
quantifying ambiguity. [Table 2] presents the most common cases of the ambiguities
and their role in the query refinement process. For each of the parameters, query
term(s) that affect the ambiguity most importantly are determined. In that way, the
user receives the most specific suggestions.

The current version of the Query Management module allows the user to navigate
through the query neighbourhood. By clicking on a neighbour, the focus of the map is
changed, and all parameters are calculated for that query (see [Figure 4]). In that
manner, the user can inspect the queries around the initial query, in order to find the
most suitable refinement. This process is called querying by navigation [Bruza and
Dennis 97]. More details are given in [Section Evaluation].

Value of Ambiguity

Parameters
Meaning Action

High SenseAmbiguity Too many interpretations of
some terms from the query

To specify the meaning of some terms
more precisely – to determine which
sense of a term is valid

Low ContexClarity Too many interpretations of
the relation between (two)
terms

To add a relation in the query in order to
specify one of many possible relations
between terms

Low Clarity Too general query

To replace a term with a more specific
term (from its isA hierarchy)

Big difference between
Smallest equivalent query and
given query

Query contains redundant
terms

To reconsider whether the smallest
equivalent queries correspond to the
initial information need. If this is not the
case, then change the query. Define which
part of the query is missing in the smallest
equivalent query

Big difference between
Largest equivalent query and
given query

Query is too general for the
repository

To reconsider if the largest equivalent
query corresponds to the initial
information need. If this is not the case,
then change the query. Define which part
of the query is irrelevant in the largest
equivalent query

Too low Uniqueness The query shares almost all
results with other queries (it
contains very few of its own
results)

If more results are needed replace the
query with a neighbourhood query

Too high
Covering/CoveringTerms

The query gives similar
results as a query from its
neighbourhood

If more results are needed move the query
in the direction of that “similar” query

Table 2: The suggestions for the query refinement, which are based on the analysis of
the ambiguity parameters presented in the previous section.

713Stojanovic N.: On the Role of the Librarian Agent ...

4.2.2 User-based Refinement

By avoiding logging of users in a portal, the only information about a user’s
preferences is the current searching session, i.e. which resources form the list of
results for a query the user found relevant. Since we avoid explicit feedback about the
relevance of resourfces, we assume that clicking (reading) a resource is an evidence
that the user is interested in that resource. By analysing these “relevant” resources, the
Librarian Agent discovers which properties in resources are of the primary
importance for the user. Furthermore, it tries to find more such “relevant” results, i.e.
the resources which contain these properties.
A useful recommendation how to make a refinement of a query can be obtained by
analysing the refinements made by users whit similar preferences. It requires an
analysis of the users’ activities in an ontology-based application. In [Stojanovic et al.
02], we presented a framework for capturing the user’s activities in a semantic query
log file. This query log is “mined”, in order to discover query patterns (i.e. regularities
in refining the queries). This analysis is out of the scope of this paper.

5 Evaluation

The research presented in this paper is a part of the Librarian Agent, a management
system we have developed for the improvement of searching in an information portal.
The Librarian Agent is developed using the KAON ontology engineering framework
(kaon.semanticweb.org). As a test bed for presented research, we use the VISION
Portal (www.km-vision.org), a semantics-driven portal that allows browsing and
querying of the state-of-the-art information (researcher, projects, software, etc.)
related to the knowledge management. It is developed in the scope of the EU-funded
VISION project, which should provide a strategic roadmap towards the next-
generation organisational knowledge management. The backbone of the system is the
VISION ontology, which includes the ResearchInstitute ontology presented in
[Section 2]. It is used as a common vocabulary for providing and searching for
information. The ontology lexical layer contains about 1000 terms and the
information repository consists of about 500 information resources (the web page of
concrete person, project, etc.). Each of the information resources is related to a
concrete instance in the ontology (e.g. to the person Dietmar Ratz). The query
refinement system is implemented as an additional support in the searching process.
When the refinement support is turned on, after posting a query, the user gets the
query’s neighbourhood, similarly to the situation presented in [Figure 4].

The goal of our experiment was to evaluate how the effectiveness of Boolean
retrieval is changed when the query process is enhanced with the presented
refinement facility. Actually, we evaluated the possibility of our system to help the
user define her information need more precisely. To obtain the basic Boolean retrieval
system with which to compare our system, we simply turned off the query-refinement
support.

For the experiment, we randomly selected 20 queries which cannot be expressed
precisely using the defined vocabulary, but whose answers are contained in the
information repository. For example, a question was: “Find researchers with diverse
experiences about Semantic Web”, which cannot be directly expressed using the
given ontology vocabulary, but it can be answered by considering the information

714 Stojanovic N.: On the Role of the Librarian Agent ...

repository. For example there are two persons who work in five projects related to the
Semantic Web. They can be treated as the broadly experienced experts for the
Semantic Web.

 We tested six subjects in the experiment. The subjects were computer science
students with little knowledge of the ontology domains (or domain) and no prior
knowledge of the system. The six subjects were asked to retrieve the documents
relevant to the 10 queries in one session using the two retrieval methods. For
assigning the queries to the methods, we used a repeated-measures design, in which
each subject searched each query using each method. To minimise sequence effects,
we varied the order of the two methods. The subjects were asked to confirm explicitly
when they found a relevant answer. Otherwise, the searching was treated as
unsuccessful.

For each search, we considered four measures: success, quality, number of
Boolean queries, and search time (i.e. the time needed by the user to perform her
task). The quality (0 – 1) is the subjective judgment of the three domain experts about
the relevance of the results which are proclaimed by the user as a success. The results
are displayed in [Table 3]. The table shows that searching with query refinement
support results in better evaluation scores for all measures. These results are not
surprising, because our approach complements the basic capabilities of a Boolean
retrieval system with additional useful features. In particular, it allows smooth query
refinement/enlargement, which is likely to be the key factor for obtaining the
improvement in the searching time [Carpineto and Romano 98]. Moreover, the
experiment shows that our system can play the role of a query-assistant who,
according to the user’s query, provides more (quantified) information about the
queries “around” the initial query, making the process of expressing/satisfying the
user’s needs more efficient (about 85% of searching was highly relevant).

Method Success

for the
session

��������
	
�����
����
��

Number of
queries pro a

question

Search time
(sec) for session

Boolean 57% 0.6 10.3 2023
Our 85.7% 0.9 5.2 1203

Table 3: Average values of retrieval performance measures

6 Related Work

Query Ambiguity. The determination of an ambiguity in a query, as well as the
sources of such an ambiguity, is the prerequisite for the efficient searching for
information. Word sense disambiguation of the terms in the input query and words in
the documents have shown to be useful for improving both precision and recall of an
IR system [Rila 98]. In [Voorhees 94], the set of experiments using lexical relations
from WordNet for the query expansion is described, but without treating the query
ambiguity. Although some work has recently been done in quantifying the query
ambiguity based on the language model of the knowledge repository [Ponte and Croft
98], [Cronen-Townsend and Croft 02], the IR research community has not explored
the problem of using a rich domain model in modelling the querying. Some very

715Stojanovic N.: On the Role of the Librarian Agent ...

important results in the query analysis can be found in the deductive database
community [Chakravarthy et al. 90], namely semantic query optimisation. That
approach, although revolutionary for using domain knowledge for the optimal
compilation of the queries, does not consider the ambiguity of the query regarding the
user’s information need at all.

Query Refinement. There is a lot of research devoted to the query refinement in the
Web IR community. In general, we see two directions of modifying queries or query
results to the needs of users: query expansion and recommendation systems
respectively. The query expansion is aimed at helping the users make a better query,
i.e. it attempts to improve retrieval effectiveness by replacing or adding extra terms to
an initial query. The interactive query expansion supports such an expansion task by
suggesting candidate expansion terms to users, usually based on hyper-index [Bruza
and Dennis 97] or concept-hierarchies [Joho et al. 02] automatically constructed from
the document repository. In [Wen et al. 01] the model of the query-document space is
used for the interactive query expansion. Recommendation systems [Balabanovic and
Shoham 97] try to recommend items similar to those a given user has liked in the past
(content-based recommendation), or try to identify users whose tastes are similar to
those of the given user, and recommend items they have liked (collaborative
recommendation). Personalised web agents, e.g. WebWatcher [Joachims et al. 97]
track the users browsing, and formulate user profiles which are used in suggesting
which links are worth following from the current web page. However, none of these
approaches uses the rich domain model for the refinement of a query, i.e. the reasons
for doing a refinement are not based on the deep understanding of the structure of a
query, or the deep exploring of the interrelationships in the information repository.
Moreover, none of them tries to determine (measure) the ambiguity in a query, and to
suggest a refinement which will decrease such an ambiguity.

7 Conclusion

In this paper, we presented an approach for the query management in ontology-based
IR systems. The system realises a library scenario in which users search for
information resources in a repository. The so-called Librarian Agent plays the role of
the human librarian in the traditional library – it uses all possible information about
the domain vocabulary, the behaviour of previous users and the capacity of the
knowledge repository, in order to help users find the resources they are interested in.
Based on various analyses, the agent, through an interactive interface, guides the users
in more efficient searching for information. We presented an evaluation study, which
showed that this approach decreases the time, and enhances the precision of the
retrieval process.

We find that our approach represents a very important step in using paradigms
from searching in the brick-and-mortar environment for the improvement of searching
for information in the virtual world. Moreover, this approach leads to the self-
adaptive knowledge portals, which can discover some changes in the user’s
preferences automatically, and evolve the structure of the portal correspondingly.

716 Stojanovic N.: On the Role of the Librarian Agent ...

Acknowledgement

The research presented in this paper would not have been possible without our colleagues and
students in the research group Knowledge Management, at the Institute AIFB, University of
Karlsruhe. Research for this paper was partially financed by BMBF in the project “SemIPort”
(08C5939).

References
[Baeza-Yates, Ribeiro-Neto (99)] Baeza-Yates, R., Ribeiro-Neto, B., Modern Information
Retrieval, Addison-Wesley-Longman Publishing co., 1999.

[Balabanovic and Shoham 97] Balabanovic, M., Shoham, Y: Content-Based, Collaborative
Recommendation. CACM 40 (3): 66-72 (1997)

[Bruza and Dennis 97] Bruza, P.D., Dennis, S.: Query Reformulation on the Internet: Empirical
Data and the Hyperindex Search Engine. RIAO97, Computer-Assisted Information Searching
on Internet, Montreal (1997)

[Carpineto and Romano 98] Carpineto, C., Romano, G.: Effective re formulation of boolean
queries with concept lattices. Flexible Query Answering Systems FQAS'98, Springer-Verlag
(1998) 277-291

[Chakravarthy et al. 90] Chakravarthy, U., Grant, J., Minker, J.: Logic-based approach to
semantic query optimization. ACM Transactions on Database Systems, 15(2) (1990) 162-207

[Cronen-Townsend and Croft 02] Cronen-Townsend, S. and Croft, W.B., Quantifying Query
Ambiguity, HLT 2002 (2002) 94-98.

[Ganter, Wille (99)] Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical
Foundations. Springer (1999)

[Guarino and Giaretta 95] Guarino, N. and Giaretta, P. 1995. Ontologies and Knowledge
Bases: Towards a Terminological Clarification. In N. Mars (ed.) Towards Very Large
Knowledge Bases: Knowledge Building and Knowledge Sharing 1995. IOS Press, Amsterdam:
25-32.

[Guarino et al. 99] N. Guarino, C. Masolo, and G. Vetere, “OntoSeek: Content-Based Access to
the Web”, IEEE Intelligent Systems, 14(3), pp. 70-80, (May 1999).

[Joachims et al. 97] Joachims, T., Freitag, D., Mitchell, T.: Webwatcher: A tour guide for the
World Wide Web. IJCAI-97 (1997)

[Joho et al. 02] Joho, H., Coverson, C., Sanderson, M., Beaulieu, M.: Hierarchical presentation
of expansion terms, ACM SAC, (2002)

[Maedche (02)] Meadche, A.: Ontology Learning for the Semantic Web, Kluwer Academic
Publishers (2002)

[Ponte and Croft 98] Ponte, J., Croft, W.B.: A language modeling approach to information
retrieval, ACM/ SIGIR’98 (1998) 275-28

[Rila 98] Rila, M.: The Use of WordNet in information retrieval. ACL Workshop on the Usage
of WordNet in Natural Language Processing Systems (1998) 31-37.

[Saracevic 75] Saracevic, T. (1975). Relevance: A Review of and a framework for the thinking
on the notion in information science. Journal of the American Society for Information Science,
26, (6), 321-343

[Silverstein et al. 98] Silverstein, C., Henzinger, M., Marais, H., Moricz., M. Analysis
of a Very Large Alta Vista Query Log, SRC Technical Note, 1998-14, 1998.

717Stojanovic N.: On the Role of the Librarian Agent ...

[Stojanovic and Stojanovic 02] Stojanovic, N., Stojanovic, L.: Usage-oriented Evolution of
Ontology-based Knowledge Management Systems, ODBASE 2002, LNCS (2002)

[Stojanovic et al. 02] Stojanovic, N., Stojanovic, L., Gonzalez, J.: More efficient searching in a
knowledge portal – an approach based on the analysis of users’ queries, PAKM 2002, Vienna,
LCNS/LNAI (2002)

[Voorhees 94] Voorhees, E.,: Query expansion using lexical-semantic relations, 17th
ACM/SIGIR, Dublin, (1994)

[Wen et al. 01] Wen, J.-R., Nie, J.-Y. and Zhang, H.-J. Clustering User Queries of a Search
Engine. WWW10, May 1-5, 2001, Hong Kong (2001)

718 Stojanovic N.: On the Role of the Librarian Agent ...

