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Abstract: The study of cellular automata (CA) on tilings of hyperbolic plane was
initiated in [6]. Appropriate tools were developed which allow us to produce linear
algorithms to implement cellular automata on the tiling of the hyperbolic plane with
the regular rectangular pentagons, [8, 10]. In this paper we modify and improve these
tools, generalise the algorithms and develop them for tilings of the hyperbolic plane
with regular rectangular s-gons for s ≥ 5. For this purpose a combinatorial structure
of these tilings is studied.
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1 Introduction

There are some recent developments in a combinatorial approach to the hyper-
bolic geometry. As an example, we can quote [1, 5, 14]. The idea is to grasps
features of the hyperbolic geometry by appropriate algorithms and use them to
perform some constructions or to prove that particular constructions are not
possible.

The present paper belongs to this general trend. It is a generalization and a
simplification of [6, 7, 8, 9, 10].

In [6] a particular cellular automaton (CA) on the pentagrid T5 (the tiling
of the hyperbolic plane by regular rectangular pentagons) was defined. This CA
solved the SAT problem in a polynomial time. The key point in the construction
and the implementation of this CA was the combinatorial structure of the tiling
T5, revealed by a splitting procedure, proposed in [6]. It was described by an
appropriate spanning tree T5 of the adjacency graph of the tiling T5. With the
help of this tree a special coding of the tiles of T5 was introduced, see [10]. The
coding was given by the Fibonacci representation of the numeration labels of
the nodes of the tree T5. It turns out that this coding is appropriate for the
implementation of CA on T5, [2].
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As in [6], we work for simplicity with the tiling T sw
s of the south-west corner

of the hyperbolic plane, induced by the tiling Ts of the hyperbolic plane by
regular rectangular s-gons for s ≥ 5.

First we describe the combinatorial structure of the tiling T sw
s by an ap-

propriate spanning tree Ts of the adjacency graph of the tiling T sw
s . Then we

introduce a Fibonacci type coding of the tiles of T sw
s . In the case s = 5 this

coding is different from the Fibonacci coding, being introduced in [10]. At the
end we present several algorithms, in particular we give an algorithm for the
codes of the tiles adjacent to a given tile. This algorithm uses as input only the
code of the given tile.

The results of this paper were announced in [11].

2 The tiling Ts of the hyperbolic plane

We use the conformal model of the hyperbolic plane H2 in the unit disc B2 (also
called Poincaré disc model), see [15], Ch. I, p. 50. In this model the hyperbolic
plane is the open disc B2 = {(x, y) ∈ R2 : x2 + y2 < 1}. The boundary of
this disc is called the absolute of H2. The straight lines (h-lines) of H2 are
the intersections with B2 of circles or Euclidean straight lines, orthogonal to
the absolute. In particular, all diameters of the unit disc B2 are h-lines. For a
given h-line, the circle or the Euclidean line containing it, is called its support
(or supporting circle/line). The angle between two intersecting h-lines is the
Euclidean angle between their supports.

The group of the isometries of the hyperbolic plane H2 (h-isometries) is
generated by the reflections (h-reflections) in the h-lines. They are defined as
follows. Let k be a h-line supported by the Euclidean straight line k̃. The h-
reflection in k is the Euclidean reflection in k̃, restricted on H2. Let k be a h-line
supported by the circle k̃. The h-reflection in k is the inversion in k̃, restricted
on H2, see [15] , Ch. 3 for details.

For every natural number s ≥ 5 there is a unique (up to h-isometry) tiling
of the type {s, 4} of H2 by regular s-gons with all angles equal to π/2 (rectan-
gular s-gons), see [15], Ch. II, Table 6, p. 217. The Schläfli symbol {s, 4} is self
explanatory: it denotes a tiling of H2 by regular s-gons with four tiles at every
vertex.

We shall consider a particular tiling Ts of the type {s, 4} constructed as
follows. Consider the vertical and the horizontal diameters d1, and d2 of the unit
disc B2. They intersect at the center M0 of the disc and divide the disc in four
quarters. We shall construct the restriction T sw

s of the tiling Ts in the south-west
quarter of B2. Then the whole tiling Ts is generated by the images of T sw

s w.r.t.
the h-reflections in the diameters d1 and d2.

The tiling T sw
s is defined by induction. Consider the regular s-gon P0 in the

south-west quarter of the disc B2 with a vertex M0 and two sides, supported by
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the diameters d1 and d2, respectively. We say that P0 is the tile of the zero-th
generation of T sw

s . The sides of P0, not supported by d1 or d2, are called free
sides of the zero-th generation.

Assume that the tiles of the k-th generation of the tiling T sw
s are constructed

and that their free sides of the k-th generation are defined. The tiles of the
(k +1)-th generation are the images of the tiles of the k-th generation w.r.t. the
h-reflections in the free sides of the k-th generation. The free sides of the (k+1)-
th generations are the sides of the tiles of the (k + 1)-th generation, which are
not sides of tiles of the k-th generation and are not supported by the diameters
d1 or d2. In such a way the tiling T sw

s is constructed. For s = 5 and s = 6 see
Fig. 1.

Let uk be the number of the tiles of the k-th generation of the tiling T sw
s

. The sequence Uk = (uk)k≥0 is not a geometrical progression, since some tiles
of the (k + 1)-th generation are obtained as images of two different tiles of the
k-th generation. This is the reason why there is a combinatorial structure of the
tiling T sw

s . We shall describe it in the next section.
Since the area of the hyperbolic disc of radius r depends exponentially on r,

we expect that uk depends exponentially on k.

3 Combinatorial structure of the tiling T sw
s

The combinatorial structure of the tiling T sw
s is revealed by a splitting procedure.

We shall define first the splitting of special regions of the hyperbolic plane: the s-
corners and the s-strips. Then we apply this construction by induction, starting
with the given s-corner, the south-west quarter of H2: it is split in a sequence of
s-corners and s-strips. The combinatorial description of this sequence of regions
is given by the tree Ts, which is also a spanning tree of the adjacency graph of
the tiling T sw

s . Moreover, the nodes of the k-th generation of Ts correspond to
the tiles of the k-th generation of the tiling T sw

s .
At the end, using the tree Ts, we shall prove that the sequence Us = (uk)k≥0

is a solution of a linear recurrence equation of a second order with constant
coefficients. This gives an explicit formula for the number uk of the tiles of the
k-th generation of T sw

s .

3.1 s-corners and s-strips in the hyperbolic plane

Let l, m be two orthogonal h-arrows (half h-lines) with common point M in the
hyperbolic plane. Assume that the orientation from l to m coincides with the
positive orientation of H2. We call the right angle � (l, m) a corner, and denote
it by C = (l, m, M) (we consider the right angle as a region). An example is
the corner C0 = (l0, ls−1, M0), where ls−1 is the half diameter supported by
the vertical diameter d1, and pointing to the south, and l0 is the half diameter,
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supported by the horizontal diameter d2, and pointing to the west (l0 and ls−1

are hyperbolic arrows (h-arrows) in the hyperbolic plane H2 with common point
M0, see Fig. 2).

For every corner C = (l, m, M) there is a unique h-isometry, preserving the
orientation of the hyperbolic plane, which maps the corner C0 = (l0, ls−1, M0)
on C, in such a way that the images of l0 and of ls−1 are l, and m, respectively.

An s-corner is a pair (C,P), where C = (l, m, M) is a corner, and P is
the regular rectangular s-gon with a vertex M and two sides, supported by the
h-arrows l and m, respectively. The s-gon P is called the leading s-gon of the s-
corner (C,P). The corner C0 = (l0, ls−1, M0) determines the s-corner (C0,P0),
where P0 is the tile of the zero-th generation of the tiling T sw

s , see Fig. 2.
A strip S = (p, PQ, q) is a region in the hyperbolic plane H2, bounded by

the h-arrow p, the segment PQ and the h-arrow q, where

– p is an h-arrow with initial point P . The angle between p and PQ is π/2,
and the orientation from p to PQ coincides with the positive orientation of
the hyperbolic plane;

– q is a h-arrow with initial point Q. The angle between QP and q is π/2, and
the orientation from QP to q coincides with the positive orientation of the
hyperbolic plane;

– the hyperbolic length of the segment PQ is equal to the hyperbolic length of
a side of a regular rectangular s-gon (such a length is unique in the hyperbolic
plane).

An example is the strip S0 = (l1, M1M0, ls−1), where the segment M1M0 is
supported by the h-arrow l0, see Fig. 2.

For every strip S = (p, PQ, q) there is a unique h-isometry, preserving the
orientation of H2, which maps S0 = (l1, M1M0, ls−1) on S, in such a way that
the image of the h-arrow l1 is p, the image of the segment M1M0 is PQ, and the
image of the h-arrow ls−1 is q.

With every strip S = (p, PQ, q) we associate the s-gon P with side PQ and
two other sides, supported by p and by q, respectively. We call P the leading
s-gon of the strip S and the pair (S,P) - s-strip. The leading s-gon P0 of the
strip S0 = (l1, M1M0, ls−1) is the tile of the zero-th generation of the tiling T sw

s .

3.2 The splitting procedure

The splitting procedure was introduced in [6] for 5-corners and 5-strips in the
hyperbolic plane. Here we shall define it in general. There are several possibilities
for this as this was already noticed for the case s = 5 in [10]. We choose a
particular one, which is the most appropriate for our purposes. For the following
definitions consult Fig. 2.

401Margenstern M., Skordev G.: Fibonacci Type Coding for the Regular Tilings ...



Splitting of s-corners
Since all s-corners are h-isometric to the s-corner (C0,P0), it is enough to

define the splitting only for that one.
First we introduce some notations, see Fig. 2. Remind that one of the sides of

the leading s-gon P0 of the s-corner (C0,P0) is the segment M0M1, supported
by the h-arrow l0. We denote this side by 0. A second side of P0 is supported by
the h-arrow ls−1. We denote this side by (s − 1). The other sides of the s-gon
P0 are denoted by 1,2, . . . , (s − 2) in the positive orientation. Let Mi be the
intersection point of the sides (i − 1) and i, for 1 ≤ i ≤ s − 1.

Moreover we denote by:

– li the h-arrow supporting the side i and with the initial point Mi, for 1 ≤
i ≤ s − 4;

– ls−2 the h-arrow supporting the side (s − 2) and with the initial point Ms−1;

– l̃i the h-arrow supported by the h-arrow li and with the initial point Mi+1,
for 0 ≤ i ≤ s − 4;

– l̃s−1 the h-arrow supported by ls−1 and with the initial point Ms−1;

– l̃s−2 the h-arrow supported by ls−2 and with the initial point Ms−2.

Then we have the corners Ci+1 = (l̃i, li+1, Mi+1), 0 ≤ i ≤ s− 5, and Cs−2 =
(ls−2, l̃s−1, Ms−1) and the strip Ss−3 = (l̃s−4, Ms−3Ms−2, l̃s−2). Denoting their
leading s-gons by Pi, we have the s-corners (Ci,Pi), for 1 ≤ i ≤ s−2, i �= s−3,
and the s-strip (Ss−3,Ps−3).

Then we define the splitting of the s-corner (C0,P0) as the representation

C0 \ P0 = C1 ∪ C2 ∪ . . . ∪ Cs−4 ∪ Ss−3 ∪ Cs−2

of the closure of the complement of P0 in the corner C0 as an union of the (s−3)
corners, and the s-strip defined above.

We call C1, C2, . . . , Cs−4, Ss−3, Cs−2 descendants of the s-corner (C0,P0).
Later on we consider them in this order.

The particularity of this definition is the choice of the position of the s-strip
between the corners: it is the penultimate.

Splitting of s-strips
Since all strips are h-isometric to the strip (S0,P0), it is enough to define the

splitting of this strip. We shall use the notations introduced by the definition of
the splitting of the s-corner (C0,P0), see Fig. 2.

The splitting of the s-strip (S0,P0) is defined as the representation

S0 \ P0 = C2 ∪ . . . ∪ Cs−4 ∪ Ss−3 ∪ Cs−2
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Figure 1 The tiling for s = 5 (left), and for s = 6 (right)

of the closure of the complement of its leading tile P0 in the s-strip S0 as a union
of (s− 4) corners and one strip. We call C2, . . . , Cs−4, Ss−3, Cs−2 descendants of
the s-strip (S0,P0). Later on we consider them in this order.

The particularity of our definition is again the choice of the position of the
s-strip between the corners: it is also the penultimate.

3.3 Recurrent splitting of the s-corner

Now we shall apply the splitting procedure by induction, starting with the initial
s-corner (C0,P0). We call it the corner of the zero-th generation. The descen-
dants of (C0,P0) (w.r.t. the splitting procedure)

(C1,P1), (C2,P2), . . . , (Cs−4,Ps−4), (Ss−3,Ps−3), (Cs−2,Ps−2),

given in this order, are called regions (s-corners or s-strip) of the first generation.
Observe that the leading s-gons P1, . . . ,Ps−2 of the regions of the first gen-

eration are the tiles of the first generation of the tiling T sw
s .

Now we proceed by induction. Assume that the regions (s-corners or s-strips)
of the k-th generation are defined, and that their leading s-gons are all the tiles
of the k-th generation of the tiling T sw

s . Applying the splitting procedure to the
s-corners and s-strips of the k-th generation (in the given order) we obtain the
regions (s-corners and s-strips) of the (k+1)-th generation. We consider them in
the order which is inherited from the order of the regions of the k-th generation
and the order of descendants of the corresponding s-corners and s-strips.

Obviously, the leading s-gons of the regions of the (k + 1)-th generation are
all the tiles of (k + 1)-th generation of the tiling T sw

s .
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Figure 2 The splitting of an s-corner with s = 6

3.4 The spanning tree Ts

The recurrent splitting procedure of the s-corner (C0,P0) is described by a
tree Ts. The nodes of this tree correspond to the s-corners and s-strips of the
hierarchical splitting of (C0,P0). Accordingly, the generation is preserved. Let v

be a node, corresponding to the region R (s-corner or s-strip). The descendants
of v correspond to the descendants of R w.r.t. the splitting of R. We transfer
the order of the sets of regions of the k-th generation to the set of nodes of the
k-th generation of the tree Ts.
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Figure 3 The tree associated to the splitting of Figure 2 for s = 5

We think of this tree Ts as being embedded in the Euclidean plane. On
the top of the tree there is the root: it corresponds to the s-corner (C0,P0) of
the zero-th generation. On the k-th line below, there are the nodes of the k-th
generation. They are displayed in the order from left to right which is inherited
from the order of the k-th generation w.r.t. the splitting, see Fig. 3, 4.
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Figure 4 The tree associated to the splitting of Figure 2 for s = 6

Observe also that the nodes of the tree Ts are in one-to-one correspondence,
preserving the generation, with the tiles of the tiling T sw

s . Therefore the tree Ts

is a spanning tree of the adjacency graph of the tiling T sw
s .
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3.5 The status of the nodes and the substitution, generating the
tree Ts

There are two type of regions in the splitting procedure: s-corners and s-strips,
and therefore there are two types of nodes of the tree Ts. To distinguish them
we introduce the status σ(v) of the node v ∈ Ts. We say that the status σ(v)
is equal to one if the node corresponds to an s-corner, and that it is equal to
zero, if the node corresponds to an s-strip. Symbolically, in the figures below,
the nodes of status one are represented by small white discs, and the nodes of
status zero are represented by small black discs.

The tree Ts is fully described by its root, which is of status one, and by a set
of rewriting rules, we call it also substitution, µ given symbolically on Fig. 5.

s-4

s-5

Figure 5 The substitution µ, which generates the tree Ts

The formal definition of the substitution µ : {0, 1} −→ {0, 1}∗ which we shall
use in the last section, is

µ(0) = 1s−501
µ(1) = 1s−401,

where {0, 1}∗ is the monoid of all words written by 0 and 1, and 1a01 is a short
notation for the string beginning with a symbols 1 followed by 0 and then by 1.

With the string v0 . . . vk of consecutive nodes of the same generation in Ts we
associate the word σ(v0) . . . σ(vk) ∈ {0, 1}∗. Then the string of the consecutive
descendants of the nodes v0, . . . , vk is associated with the word µ(σ(v0) . . . σ(vk))
and we have µ(σ(v0) . . . σ(vk)) = µ(σ(v0)) . . . µ(σ(vk)).

The tree Ts describes a combinatorial structure of the tiling T sw
s . Its tiles

are of two types: tiles of status one, and tiles of status zero. Tiles T (v) of status
one correspond to nodes v of Ts of status σ(v) = 1, and tiles T (v) of status zero
correspond to nodes v of status σ(v) = 0.

4 The number of the tiles of the k-th generation of T sw
s

Here we shall use the combinatorial structure of the the tiling T sw
s , which we

described in the previous section, to determine the number uk of the tiles of the
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k-th generation of T sw
s . We shall obtain also the number ũk of the tiles of the

k-th generation of the tiling Ts.

Proposition 1
Let uk, k ≥ 0, be the number of the tiles of the k-th generation of the tiling

T sw
s . Then the sequence Uk = (uk)k≥0 satisfies the recurrent equation : uk+2 =

(s − 2)uk+1 − uk with initial terms u0 = 1 and u1 = s − 2. Therefore, we have

uk =
1√

s(s − 4)
(λk+1

s − λ−k−1
s ),

where λs > 1 and λ−1
s are the roots of the equation

λ2 − (s − 2)λ + 1 = 0.

Proof
Let v be a node v of status σ(v) = 1 of the tree Ts. The number of its

descendants is (s − 2). For a node v of status σ(v) = 0 it is (s − 3). Denote by
fk the number of all nodes v of the k-th generation of status σ(v) = 1, and by
dk the number of all nodes v of the k-th generation of status σ(v) = 0. Then
uk = fk + dk, for k ≥ 0, and f0 = 1, d0 = 0. From the substitution µ it follows
that:

fk+1 = (s − 3)fk + (s − 4)dk,

dk+1 = fk + dk.

Therefore, dk+1 = uk for k ≥ 0 and

uk+2 = (s − 2)uk+1 − uk, k ≥ 0,

i.e., the sequence Uk = (uk)k≥0 is a solution of the recurrent equation of second
order

xk+2 − (s − 2)xk+1 + xk = 0, k ≥ 0, (1)

with the initial conditions x0 = 1, x1 = s − 2.
Denote by λs and λ−1

s the roots of the characteristic equation λ2− (s−2)λ+
1 = 0 of the equation (1), and let λs > 1. Then all solutions of (1) are linear
combinations of the fundamental solutions (λk

s )k≥0 and (λ−k
s )k≥0. Then, using

the initial values u0 = 1, u1 = s − 2, we obtain the assertion.

Remark
For s = 5 the number uk is the (2k + 1)-th Fibonacci number, see [6].
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5 The number of the tiles of the k-th generation of the tiling
Ts

The tiling Ts and its tiles of the k-th generations are defined by induction as in the
case of the tiling T sw

s . The s-gon P0 is called the s-gon of the zero-th generation
of Ts, and all its sides are called free sides of the zero-th generation. The images of
the s-gon P0 w.r.t. h-reflections in the free sides of zero-th generations are called
tiles of the first generation of Ts . The sides of the tiles of the first generation,
which are not sides of the tile of the zero-th generation, are called free sides of
the first generation. Further, by induction, as in the case of the construction of
the tiling T sw

s , we define the tiles and free sides of the k-th generation of Ts.
Eventually, we obtain the complete tiling Ts.

Corollary 1
Let uk be the number of the tiles of the k-th generation of the tiling T sw

s .
Let ũk be the number of the tiles of the k-th generation of the tiling Ts. Then it
follows that

ũk+1 = suk, k ≥ 0 and ũ0 = 1.

Therefore, we have

ũk+1 =
s√

s(s − 4)
(λk+1

s − λ−k−1
s ), k ≥ 0 and ũ0 = 1,

where λs > 1 and λ−1
s are the roots of the equation

λ2 − (s − 2)λ + 1 = 0.

Proof
The tiling Ts consists of the tiling T sw

s and its images, w.r.t. the h-reflections
in the vertical and the horizontal diameters d1 and d2 of the unit disc B2.
Therefore

ũk+2 = uk+2 + 2uk+1 + uk, k ≥ 0,

and ũ0 = 1, ũ1 = s.
Then the both assertions follow, since the sequence (uk)k≥0 satisfies the re-

current equation (1).

Remarks
1. The sequence (ũk≥0) satisfies the recurrent equation (1).
2. As expected ũk (and uk) depend exponentially on k. Their growths is given

by the dominant root λs of the characteristic equation of the recurrent relation
(1).
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6 Fibonacci type coding of the nodes of the tree Ts

Denote the set of the nodes of the tree Ts by Vs. We defined before the status
function σ : Vs −→ {0, 1}. Here we shall define the numeration function ν :
Vs −→ {1, 2, . . .}. Then, following the approach of [8, 10], we use the numeration
function for the definition of a Fibonacci type coding of the nodes of Ts. The
coding which we introduce here, is different, for the case s = 5, from the coding,
proposed in [8, 10]. The new coding is better adapted to the problem we consider,
and this is the reason why the algorithms which are given later, are simpler.

6.1 The numeration function on Ts

For the definition of the numeration function ν : Vs −→ {1, 2, . . .} we enumerate
the nodes of the tree Ts, starting from the root: we label it by 1 and then continue
the enumeration for every next generation of the nodes from left to right, i.e.,
in the order, which we introduced before. In this way we define the function
ν : Vs −→ {1, 2, . . .}. We call its value ν(v) the numeration label of the node v.

Since the nodes of the tree Ts are in one-to-one correspondence with the tiles
of the tiling T sw

s , par abus de langage, we say also that ν(v) is the numeration
label of the tile T (v), corresponding to the node v.

Now we use the greedy numeration system with a basis Us = (un)n≥0 of the
natural numbers. We remind shortly only what we need. For more information
see [3].

As we have
sup

n

un+1

un
= λs =

1
2
(s − 2 +

√
s2 − 4s),

and as the integer part [λs] of the real number λs is (s − 3), the appropriate
alphabet As for this greedy representation is As = {0, 1, . . . , s − 3}, see [3].

Then every natural number m is represented as

m = αkuk + · · · + α0u0, α0, . . . , αk ∈ As, αk �= 0. (2)

We associate with the natural number m the word αk . . . α0 ∈ A∗
s, where A∗

s is
the monoid of all concatenations (words) of the elements of the alphabet As. We
say that the word αk . . . α0 represents the natural number m, w.r.t. the basis
sequence Us = (un)n≥0, and shall write αk . . . α0 for αkuk + · · · + α0u0.

Remark
Representations with a few leading zeros are also used and we use them later

on.
The representation (2) is not unique, i.e., several words (elements of A∗

s)
correspond to the natural number m. We consider the so called normalised greedy
representation U(m) of m. This representation is the maximal word, representing
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m, w.r.t. the lexicographic order in A∗
s, induced by the natural order in As. The

normalised greedy representation is obtained by the greedy algorithm, [3].
We define the Fibonacci type code, or simple code, of the node v ∈ Vs (and

the corresponding tile T (v) ∈ T sw
s ) by

c(v) = U(ν(v)), v ∈ Ts,

i.e., by the normalised greedy representation of the numeration label ν(v) of the
node v, w.r.t. the basis sequence Us = (un)n≥0.

The first generations of the tree Ts for s = 5 and s = 6 are represented on
the Fig. 3 and 4. The numeration labels and the codes of the nodes are given on
these figures. The code is given as a column below the corresponding node. It has
to be read from the top to the bottom. The nodes of status one are represented
by small white discs, and the nodes of status zero are represented by small black
discs. The doted lines are for a further use.

Remark
The normalised greedy representation of the natural numbers, w.r.t. the Fi-

bonacci sequence F = (Fn)n≥0, was used for the coding of the tiles of the
pentagrid T sw

s in [10]. In this case the sequence U5 = (un)n≥0, used above as a
basis, is the sequence of the odd Fibonacci numbers.

6.2 The code and the status of a node

Here we observe that the status of a node v is given by the rightmost letter of
its code. This is important for the algorithms, presented in the next sections.

Proposition 2
Let v be a node of the tree Ts with code c(v) = αk . . . α0. Then the node v

has a status σ(v) = 0 if and only if the last letter α0 of its code is zero, i.e.,

σ(v) =
{

0 α0 = 0
1 α0 �= 0,

and so, the penultimate descendant of the node v has a code αk . . . α00.

Proof
It follows from the technical lemmas in the last section.

Remark
The notion of the continuator of a given node of the tree Ts, w.r.t. the greedy

representation used for the coding, was defined in [10]. In our case the continuator
of the node v with the code αk . . . α0 is the node with the code αk . . . α00,
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i.e., it coincides with the descendant of v of status zero. In general, using as
a basis for the greedy representation sequences different from the our sequence
Us = (un)n≥0, this may be not the case.

7 An algorithm for the code of the predecessor and the
descendants of a given node

Here we consider the following question: given a node v ∈ Ts with a code c(v) =
αk . . . α0, find the codes of the predecessor and descendants of v. For both cases,
the tool is given by Proposition 2.

7.1 Algorithm for the code of the predecessor of a given node

Let v1 be the predecessor of the node v. There are two cases:

– the node v has status σ(v) = 0. Then its code c(v) = αk . . . α10. From
Proposition 2, we get that the code of v1 is c(v1) = αk . . . α1;

– the node v has status σ(v) = 1, and its code is c(v) = αk . . . α11. This
implies that the node v is the last descendant of the node v1. Then the
previous descendant v′ of v1 has code c(v′) = αk . . . α10, and by Proposition
2 the code of v1 is c(v1) = αk . . . α1;

– the code of v is c(v) = αk . . . α1α0, with α0 ≥ 2. Then the node v precedes
in Ts the continuator v′ of the node v1. Let the code of the node v′ be
c(v′) = γk . . . γ10. Then the code of the node v1 is c(v1) = γk . . . γ1.

The word γk . . . γ10 is the normalised greedy representation of the natural
number αk . . . α0 + s− 2−α0. We find the code γk . . . γ10 of the node v1 by
an addition of the number s−2−α0 to αk . . . α1α0 in the greedy numeration
system with the basis Us = (un)n≥0.

7.2 Algorithm for the codes of the descendants of a given node

As before v ∈ Ts, and its code c(v) = αk . . . α0. To find the codes of the descen-
dants of v we consider two cases:

– the status σ(v) of v is one. Then the node v has (s − 2) descendants. The
penultimate of them is the continuator. Its code is αk . . . α00. Then the
code of the last descendant of v is αk . . . α01. The codes of the first (s − 4)
descendants of v are obtained by substracting (in the greedy numeration
system) 1, 2, . . . , (s − 4) from the code αk . . . α00;
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– the status σ(v) of v is zero. Then v has (s−3) descendants. The penultimate
of them v′ has status zero and code αk . . . α00. The last descendant has code
αk . . . α01. The codes of the first (s − 5) descendants of v are obtained by
substracting (in the greedy numeration system) 1, 2, . . . , (s − 5) from the
code αk . . . α00.

Remark
For a given node v there is a unique path in Ts, connecting it with the root

of the tree Ts. As a corollary from the previous rules we obtain an algorithm
which gives the codes of the consecutive nodes of this path, starting with the
code of the node v.

8 Algorithm for the codes of the tiles adjacent to a given tile
in Tsw

s

Let v ∈ Ts has a code c(v) = αk . . . α0. The node v corresponds to the tile
T (v) ∈ T sw

s . As we mentioned before, we say that αk . . . α0 ∈ A∗
s is the code of

the tile T (v).
Here we address the following question: how to find the codes of the tiles

T (w), adjacent to T (v) in T sw
s , from the code of v. Among these tiles T (w) are

the tiles, corresponding to the predecessor and the descendants of the node v.
We already know how to find their codes. We shall find the codes of the rest of
the tiles T (w), adjacent to T (v) in T sw

s .
On the Fig. 3, 4 the node v is connected by a doted lines with these nodes

w.
We have three types of tiles in the tiling T sw

s : the tile of generation zero, the
boundary tiles, and the inner tiles. We consider them separately:

– the tile T (v) of generation zero corresponds to the root v of the tree Ts. It
has (s−2) neighbour tiles in T sw

s . The root is a node of a status one, and has
(s − 2) descendants in Ts. Therefore we know the codes of all tiles adjacent
to T (v) in T sw

s ;

– the boundary tiles are the tiles with one side, supported by the vertical or the
horizontal diameters d1, d2 of the unit disc B2. Every boundary tile T (v),
has (s − 1) adjacent tiles in T sw

s . The node v, corresponding to T (v) has
status one, and is connected with (s− 1) nodes in the tree Ts. Therefore we
know the codes of all tiles adjacent to a given boundary tile;

– inner tiles are the tiles of T sw
s , which are not boundary tiles, and are different

from the root. We consider two cases:
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• inner tiles T (v) of a status σ(v) = 0.

The node v, corresponding to such a tile has (s − 3) descendants and
one predecessor in the tree Ts. We know how to obtain their codes. Two
more nodes w1 and w2, not connected with v in Ts, correspond to tiles
T (w1) and T (w2), adjacent to T (v) in T sw

s . We shall find their codes.

Let v be a node of the k-th generation. Denote by v1 the node with
the numeration label ν(v1) = ν(v) − 1, and by v2 the node with the
numeration label ν(v2) = ν(v)+1. They are nodes of the k-th generation.
Then the node w1, corresponding to the tile T (w1), is the last descendant
of the node v1, and the node w2, corresponding to the tile T (w2), is the
first descendant of the node v2.

To find the codes of the nodes w1 and w2 we need the codes of the nodes
v1 and v2, respectively: the code of v1 is obtained by substracting one
in the greedy numeration system from the code of the node v, and the
code of v2 is obtained by adding one to the code of the node v.

Let c(v1) = γk . . . γ0. Then the code c(w1) of w1 is γk . . . γ01.

Let c(v2) = δk . . . δ0. Then the code c(w2) of w2 is obtained by substract-
ing (s − 4) from the code δk . . . δ00 in the greedy numeration system.

• inner tiles T (v) of a status σ(v) = 1:

∗ the predecessor v′ of v is of a status zero, and v is the last descendant
of v′

The node v is connected with (s − 1) nodes in the tree Ts. There is
one more node w, not connected with v in Ts, with corresponding
tile T (w), adjacent to T (v) in the tiling T sw

s . We shall find its code.

Consider the node v1 with the numeration label ν(v1) = ν(v) + 1.
Then the node w is the first descendant of the node v1. We know its
code from the previous section.

∗ the predecessor v′ of v has status one, and v is the last descendant
of v′.

The node v is connected with (s − 1) tiles in the tree Ts. There is
one more node w, not connected with v in Ts, with corresponding
tile T (w), adjacent to T (v) in the tiling T sw

s . We shall find its code.

Consider the node v1 with the numeration label ν(v1) = ν(v′) + 1.
Then the node w coincides with v1. Its code is obtained by adding
one to the code of the node v′ in the greedy numeration system.

∗ the predecessor v′ of v has status one, and does not belong to the
previous two cases
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The node v is connected with (s − 1) tiles in the tree Ts. There is
one more node w, not connected with v in Ts, with corresponding
tile T (w), adjacent to T (v) in the tiling T sw

s . We shall find its code.

Consider the node v1 with the numeration label ν(v1) = ν(v) − 1.
Then the node w, corresponding to the tile T (w), is the last descen-
dant of the node v1. The code of v1 is obtained by substracting one
from the code of the node v in the greedy numeration system. Let
c(v1) = αk . . . α0. Then c(w) = αk . . . α01.

Remark
It is clear that there are uncountable many ways to perform the hierarchical

splitting procedure of the s-corner: on every step we have a choice of the po-
sition of the s-strip. It was shown in [10] in the case s = 5 that there are also
uncountable many ways, which posses nice properties. There is one possibility
among these, which is better than the others, as far as it provides us with a very
simple linear algorithm for the path from a node to the root of the tree T5, and
for the codes of the tiles adjacent to a given tile in T sw

5 . These algorithms are
different from the algorithms presented here.

9 The language associated to the tiling T sw
s

For the notions, used in this section, see [4].
We consider the language Ls ⊂ A∗

s of all normalised greedy representations
of the natural numbers, w.r.t. the basis sequence Us = (uk)k≥0. The language Ls

consists of all codes of the nodes of the tree Ts. We say that Ls is the language
associated to the tiling T sw

s .

Proposition 3
The language Ls, associated to the tiling T sw

s , is a regular language.

Proof
The assertion follows from [3].
A direct simple argument is the following description of the language Ls. It

consist of all words αk . . . α0 ∈ A∗
s , which satisfy:

– αk �= 0;

– the words (s− 3)(s− 4)l(s− 3) are not subwords of αk . . . α0, for any l ≥ 0.

Remarks
1. An appropriate splitting construction could be applied to the tiling T ne

e

of the north-east quarter of the Euclidean plane by unit squares. In this case
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we also have two types of regions: corners, and strips. A corner is isometric by
an Euclidean isometry to the north-east quarter, and the strip is isometric to
the product of the arrow [0, +∞) and the unit segment. The tree Te, describing
the recurrent splitting procedure of the corner, has nodes of two types: of status
one, corresponding to the corners, and nodes of status zero, corresponding to the
strips. The root of Te is a node of status one. The substitution µe : {0, 1} −→
{0, 1}∗, generating the tree Te, is given by: µe(0) = 0, and µe(1) = 01. Here
we used the same notation as for the definition of the substitution µ, which
generates the tree Ts, associated with the tiling T sw

s .
The number of the nodes of the k-generation of the tiling T ne

e is (k +1). The
sequence Ue = (k + 1)k≥0 is not appropriate as a basis sequence for a greedy
representation of the natural numbers.

2. In the work in progress we consider the tiling of the 3-dimensional hyper-
bolic space by regular dodecahedra with dihedral right angles and faces regular
rectangular 5-gons. There is a splitting procedure in this case also, but the situa-
tion is more complicated and some important differences with the 2-dimensional
case appear, see [12, 13].

10 Technical lemmas

Here we give the technical lemmas about the tree Ts, and the coding of its
vertices, which are used in the proofs of the Propositions 2 and in the algorithms
which we presented before. By reading these lemmas it is useful to consult Fig.
6.

From the definitions of the tree Ts, and the substitution, µ : {0, 1} −→
{0, 1}∗, generating it, we have:

Lemma 1
Let µk : {0, 1}∗ −→ {0, 1}∗ be the k-th iteration of the substitution µ. Then

µk(1) = σ(v1) . . . σ(vuk
),

where v1, . . . , vuk
are the nodes of the k-th generation of the tree Ts, and σ :

Vs −→ {0, 1} is the status function.

For what follows, we need some notations.
Let the code of the node v ∈ Vs be c(v) = αl . . . α0 ∈ A∗

s. By Ts(v) =
Ts(αl . . . α0) we denote the subtree of Ts with root v, e.g., Ts = Ts(1).

By Ts(v)k = Ts(αl . . . α0)k denote the kth level of the tree Ts(v), i.e., the
string of all consecutive nodes of the k-th generation of this tree, in the order
which is inherited from the tree Ts.
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Figure 6 The decomposition of Ts(1)k+1 for the proof of Lemma 3.

In this figure, numbers of the rightmost column indicate the level
of the tree and then, the length of the codes of the nodes that lie on the

k+1th level. Vertical words are these codes of level k+1. We indicate,
for each subtree, the code of the leftmost element and the code of the
rightmost one.

For a given string v1 . . . vum of consecutive nodes of the m-th generation of
the tree Ts we denote by

Ts(v1)kTs(v2)k . . . Ts(vum)k (3)

the concatenation of the strings of nodes Ts(v1)k, . . . , Ts(vum)k. The string (3)
is a concatenation of consecutive nodes of the tree Ts of the same generation.

Lemma 2
Let Ts(1)k+1 = v1 . . . vuk+1 , and let the length of the word µk(0) be ak. Then

– Ts(1)k+1 = Ts(2)k . . . Ts(s − 3)kTs(10)kTs(11)k;

– Ts(10)k = Ts((s − 3)2)k−1 . . . Ts((s − 3)(s − 4))k−1Ts(100)k−1Ts(101)k−1.
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Moreover, for the codes of the nodes v1 . . . vuk+1 we have:

c(v1) = 1k2, . . . , c(vuk
) = 21k, . . . , c(v(s−4)uk

) = (s − 3)1k,

c(v(s−4)uk+(s−5)uk−1 ) = (s − 3)(s − 4)1k−1,

c(v(s−4)uk+(s−5)uk−1+ak−1) = 1001k−1,

c(v(s−4)uk+ak−1) = 101k, c(vuk+1) = 1k+2.

Proof
It follows directly from the definitions, see Fig. 6.

Let v1, v2 ∈ Vs. The subtrees Ts(v1) and Ts(v2) are isomorphic iff the nodes
v1 and v2 have the same status, i.e., σ(v1) = σ(v2).

We consider the isomorphism

ι = ιv1,vv2
: Ts(v1) −→ Ts(v2),

which preserves the order of the numeration in Ts, i.e., for v′, v′′ ∈ Ts(v1) satis-
fying ν(v′) < ν(v′′) then ν(ι(v′)) < ν(ι(v′′)) holds.

Let 2 ≤ j ≤ s−3. Then the tree Ts(j) is isomorphic with the tree Ts = Ts(1).
Denote by

ιj = ιj,1 : Ts(j) −→ Ts(1)

the isomorphism, which preserves the order of the numeration.

For all the lemmas which follow, see Fig. 3, 4, 5, 6.

Lemma 3
Let v be a node of the k-th generation of the tree Ts(j), for 2 ≤ j ≤ s− 3. If

the code of the image ιj(v) of the node v, w.r.t. the isomorphism ιj, is

c(ιj(v)) = αk+1αk . . . α0,

with possibly αk+1 = 0, then

c(v) = (αk+1 + j − 1)αk . . . α0.

Proof
Since v is a node of the k-th generation of the tree Ts(j)k, then v is a node

of the (k + 1)-th generation of the tree Ts(1), and ιj(v) ∈ Ts(1)k.
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Lemma 2 implies that for the values of the numeration function on v and
ιj(v) we have

j1k−12 ≤ ν(v) ≤ (j + 1)1k,

1k−12 ≤ ν(ιj(v)) ≤ 1k+1

(remind that we write m = αk . . . α0 if m = αkuk + · · · + α0u0).
Then

ν(v) = ν(ιj(v)) + (j − 1)uk+1,

which implies the assertion.

The tree Ts(11) is isomorphic with the tree Ts(1). Let

ι11 : Ts(11) −→ Ts(1)

be the isomorphism, which preserves the order of the numbering in Ts.

Lemma 4
Let v be a node of the k-th generation of the tree Ts(11). If the code of the

image ι11(v) of the node, w.r.t. the isomorphism ι11, is

c(ι11(v)) = αk+1 . . . α0,

with possibly αk+1 = 0, then the code of the node v is

c(v) = 1αk+1 . . . α0.

Proof
Since v is a node of the k-th generation of the tree Ts(11)k, then v ∈ Ts(1)k+1

and ι11(v) ∈ Ts(1)k. From Lemma 2 it follows that

101k−12 ≤ ν(v) ≤ 1k+2,

1k−12 ≤ ν(ιs−1(v)) ≤ 1k+1.

Then
ν(v) = ν(ιs−1(v)) + uk+2,

which implies the assertion.

The tree Ts((s − 3)j), 2 ≤ j ≤ s − 4, is isomorphic with the tree Ts(2). Let

κj = ι(s−3)j,2 : Ts((s − 3)j) −→ Ts(2)
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be the isomorphism, which preserves the order of the numeration in Ts.

Lemma 5
Let v ∈ Ts((s − 3)j)k−1, 2 ≤ j ≤ s − 4. If the code of the node κj(v) is

c(κj(v)) = αk . . . α0, αk ∈ {1, 2}, then the code of v is

c(v) = (s − 3)(αk + j − 2)αk−1 . . . α0.

Proof
Since v ∈ Ts((s − 3)j)k−1, then v ∈ Ts(1)k+1, κj(v) ∈ Ts(2)k−1.
From Lemma 2, it follows that:

(s − 3)(j − 1)1k−22 ≤ ν(v) ≤ (s − 3)j1k−1,

1k−12 ≤ ν(κj(v)) ≤ 21k−1,

ν(v) = ν(κj(v)) + (s − 3)uk+1 + (j − 2)uk.

This implies the assertion.

The tree Ts(100) is isomorphic with the tree Ts(10). Let

λ = ι100,10 : Ts(100) −→ Ts(10)

be the isomorphism preserving the order of the numbering in Ts.

Lemma 6
Let v ∈ Ts(100)k−1.

(i) If
(s − 3)(s − 4)1k−22 ≤ ν(v) ≤ (s − 3)(s − 4)k,

and the code of the node λ(v) is

c(λ(v)) = (s − 3)αk−1 . . . α0,

then the code of the node v is

c(v) = (s − 3)(s − 4)αk−1 . . . α0.

(ii) If
10k+2 ≤ ν(v) ≤ 1001k−1,

and the code of λ(v) is
c(λ(v)) = 10αk−1 . . . α0,
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then
c(v) = 100αk−1 . . . α0.

Proof
Since v ∈ Ts(100)k−1, then v ∈ Ts(1)k+1 and λ(v) ∈ Ts(10)k−1.

Case (i):
(s − 3)(s − 4)1k−22 ≤ ν(v) ≤ (s − 3)(s − 4)k. (4)

Then it follows that:

(s − 3)1k−22 ≤ ν(λ(v)) ≤ (s − 3)(s − 4)k. (5)

The codes of the nodes v satisfying (4) are:

c(v) = (s − 3)(s − 4)αk . . . α0. (6)

The codes of the nodes w satisfying (5) are:

c(w) = (s − 3)βk . . . β0. (7)

Since (4) and (5) have the same length, then (6) and (7) imply the assertion.

Case (ii):
10k+2 ≤ ν(v) ≤ 1001k−1. (8)

Then it follows that:
10k+1 ≤ ν(λ(v)) ≤ 101k−1. (9)

The codes of the nodes v satisfying (8) are:

c(v) = 100αk−1 . . . α0. (10)

The codes of the nodes w satisfying (9) are:

c(w) = 10βk−1 . . . β0. (11)

Since (8) and (9) have the same length, then (10) and (11) imply the assertion.

The tree Ts(101) is isomorphic with the tree Ts(1). Let

ρ : Ts(101) −→ Ts(1)

be the isomorphism, preserving the order of the numeration in Ts.
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Lemma 7
Let v ∈ Ts(101)k−1. If the code of the node ρ(v) is

c(ρ(v)) = αk . . . α0

with possibly αk = 0, then the code of the node v is

c(v) = 10αk . . . α0.

Proof
Since v ∈ Ts(101)k−1, then v ∈ Ts(1)k+1 and ρ(v) ∈ Ts(1)k−1. From Lemma

2 it follows that:
1001k−22 ≤ ν(v) ≤ 101k (12)

and
1k−22 ≤ ν(ρ(v)) ≤ 1k. (13)

The code of the node v satisfying (12) is of the type

c(v) = 10αk . . . α0 (14)

and for the code of the node w, satisfying (13) it follows that:

c(w) = βk . . . β0. (15)

Since (12) and (13) have the same length, then (14) and (15) imply the assertion.
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