
Alias Verification for Fortran Code Optimization

Thi Viet Nga Nguyen
(Ecole des Mines de Paris, France

nguyen@cri.ensmp.fr)

François Irigoin
(Ecole des Mines de Paris, France

irigoin@cri.ensmp.fr)

Abstract: Alias analysis for Fortran is less complicated than for programming lan-
guages with pointers but many real Fortran programs violate the standard: a formal
parameter or a common variable that is aliased with another formal parameter is modi-
fied. Compilers, assuming standard-conforming programs, consider that an assignment
to one variable will not change the value of any other variable, allowing optimizations
involving the aliased variables. Higher performance results but anything may happen:
the program may appear to run normally, or produce incorrect answers, or behave
unpredictably. The results may depend on the compiler and the optimization level.

To guarantee the standard conformance of programs in order to make program analyses
exact and program optimizations safe, precise alias information, i.e the determination
of overlaps among arrays is studied in this paper. Static analyses and code instru-
mentation are used to find all violations of the aliasing rules in Fortran code. Alias
violation tests are inserted only at places where it cannot be proved statically that
they are useless in order to reduce the number of dynamic checks at run-time. A
specific memory location naming technique is used to obtain compact representation
and to enhance the precision of alias analysis. Modifications on the dependence graph
created by aliasing are also studied to show the impact of aliases on the correctness
of some program optimizing transformations. Experimental results on SPEC95 CFP
benchmark are presented and some related issues are also discussed.

Key Words: alias, dummy aliasing, verification, optimization

Category: D.2.4 Software Engineering - Software/Program Verification [Assertion
checkers] D.2.5 Software Engineering - Testing and Debugging [Debugging aids, Sym-
bolic execution] D.3.4 Programming Languages - Processors [Compilers, Optimization]

1 Introduction

Aliasing occurs when two or more variables refer to the same storage location
at the same program point. Alias analysis is critical for performing most opti-
mizations correctly because all the ways a location, or the value of a variable,
may or must be used or defined must be taken into account. Compile-time alias
information is key to data dependence analysis and hence is also important for
program analyses, transformation, parallelization, verification, debugging and
understanding. For example, a good precision of alias information increases the
degree of instruction-level parallelism by a factor of 4 to 8 times with respect to
the conservative alias information [Wal91].

Journal of Universal Computer Science, vol. 9, no. 3 (2003), 270-297
submitted: 30/9/02, accepted: 27/1/03, appeared: 28/3/03 J.UCS

The sources of aliases vary from language to language. Intraprocedural aliases
occur due to pointers in languages like LISP, C, C++ or Fortran 90, union con-
structs in C or EQUIVALENCE in Fortran. Interprocedural aliases are created by
parameter passing and by access to global variables, which propagate intraproce-
dural aliases across procedures and introduce new aliases. Alias analysis can be
classified by its formal characterization [Muc97]: may versus must information
and flow-sensitive versus flow-insensitive analysis. The may alias information
indicates what may occur on some path through a flow graph, while the must
information indicates what must occur on all paths through the flow graph.
Flow-insensitive information is independent of the control flow encountered in
a procedure, while flow-sensitive aliasing information depends on control flow.
Furthermore, interprocedural alias analysis can be classified context-insensitive
or context-sensitive. The context-insensitive approach cannot distinguish among
different call sites of a procedure. The information about calling states is com-
bined for all call sites and the resulting information about return states is re-
turned at all return points. By contrast, the context-sensitive approach considers
interprocedurally realizable paths [RHS95] by maintaining the relationship be-
tween procedure calls and procedure returns.

In Fortran, parameters are passed by reference and, as long as the actual
argument is associated to a named storage location, the called subprogram can
change the value of the actual argument by assigning a value to the correspond-
ing formal parameter. So new aliases are created among formal parameters if the
same actual argument is passed to two or more formal parameters, or between a
formal parameter and a common variable if an actual argument is allocated in
a common block which is also visible in the called subprogram or other subpro-
grams in the call chain below it. Restrictions on association of entities in Fortran
77 (Section 15.9.3.6 [ANS83]) state that neither aliased formal parameters nor
variables in the common blocks may become defined during execution of the called
subprogram or other subprograms in the call chain. If these rules were enforced
by compilers, aliases would be created only in a few ways and be pin-pointed at
compile-time. Mostly, they would not impact on data dependence analysis and
the optimizations based on it, nor on maintenance and re-use.

However, established programming practice often violates the Fortran 77
standard [ZC90]. Compilers should follow practice at least to some degree so as
not to place the burden of alias analysis on the programmer. This can cause
programs to produce results depending on optimization levels and programmers
to end up using different optimization levels for each module of an application.
A contrived example of such aliasing is given in Figure 1.

The assignment to X(1) in the first loop iteration modifies Y which is loop
invariant and stored in a register. With the Sun WorkShop 6 FORTRAN 77 5.1
compiler, the output is 4 4 4 4 4 instead of 4 8 8 8 8 if the optimization level is

271Nguyen T.V.N., Irigoin F.: Alias Verification for Fortran Code Optimization

PROGRAM ALIAS SUBROUTINE SUB(X,Y)
INTEGER I,A(5) INTEGER I,X(5),Y
DO I = 1, 5 DO I = 1, 5
A(I) = 2 X(I) = Y*X(I)

ENDDO ENDDO
CALL SUB(A,A(1)) END
PRINT *,A
END

Figure 1: Formal parameter aliasing example

greater than 2 and if the modules are compiled separately. Some Fortran com-
pilers such as OpenVMS, DEC Unix, Ultrix and AIX from IBM have an option
to assert the presence of aliases among dummy arguments (Fortran terminology
for formal parameters). If this option is selected, program semantics requires
frequent recomputation on dummy arguments and common variables that in-
sures correct results, but optimizations are inhibited. By default, no aliases be-
tween dummy arguments and common variables exist. One called module can
be compiled with the dummy aliasing assumption and the other modules with
the opposite setting to improve performance. The no-alias assumption should
only be used for source programs that strictly obey Fortran 77 rules for asso-
ciations of variables, but how can the programmer know for sure if there are
aliases between dummy arguments and common variables or not? As mentioned
in a study comparing the diagnostic capabilities of Fortran compilers [App01],
no compiler provides this standard violation check, one of the most common
Fortran pitfalls. Only Forcheck (http://www.forcheck.nl), a commercial Fortran
verifier, spots violation only on aliased scalar dummy arguments and only at
run-time.

The most difficult problem in Fortran alias analysis is to compute exactly
the overlapping memory locations between arrays. Overlapping for arrays in an
EQUIVALENCE statement is known at compile-time because the subscript expres-
sions are integer constant expressions. In parameter passing cases, such as in
Figure 2, the worst-case assumption is: the whole arrays V1 and V2 are aliased.
But, if two intervals [I, I + M1 − 1] and [J, J + M2 − 1] can be proved disjoint, V1
and V2 are not aliased, and so optimizations can be applied in SUB2, if this is
the only call to SUB2. Furthermore, V1 and V2 can overlap, but if all the writ-
ten array elements in SUB2 are proved not to be in the overlapping section, the
restriction on association of entities in Fortran is not violated.

Programmers sometimes pass overlapping array regions purposefully, think-
ing that it will be safe because they know in which order the subroutine deals
with the data. However, bugs related to this programming practice are very dif-
ficult to track, since compilers can reorder the subroutine’s code, which results
in incorrect output.

272 Nguyen T.V.N., Irigoin F.: Alias Verification for Fortran Code Optimization

SUBROUTINE SUB1 SUBROUTINE SUB2(V1,V2,N1,N2)
REAL A(100) REAL V1(N1), V2(N2)
READ *,I,J,M1,M2 ...
CALL SUB2(A(I),A(J),M1,M2) END
END

Figure 2: Array overlapping example

Our alias verification is broken down into three steps. Firstly, interprocedu-
ral aliases are computed for the whole program. Then, this information is used
to decide statically if the program violates the standard restrictions on alias or
not. There are three cases: no possibility of an alias, certainty of an alias, and
possibility of an alias. In the last case, tests are inserted to check violations at
execution time. Finally, the impact of alias violation on program optimizations
is studied. If the new data dependence arcs due to aliases are redundant with
existing paths in the data dependence graph, the aliases have no impact on
optimization. These three steps are implemented in PIPS (Paralléliseur Inter-
procédural de Programmes Scientifiques), a research compiler developed at Ecole
des Mines de Paris [IJT91, Iri93].

The paper is organized as follows. Section 2 discusses some related work.
Section 3 describes the interprocedural alias propagation and Section 4 the in-
terprocedural alias verification. Section 5 discusses the impact of alias violations
and points out some optimizations whose correctness depends crucially on alias
information. Section 6 studies empirical results on alias checking on SPEC95
CFP benchmark. Finally, Section 7 presents conclusions and ideas for future
work.

2 Related Work

A lot of work about alias analysis has been carried out over the past 25 years.
Alias computation is usually divided into two parts [Muc97]: alias gatherer and
alias propagator. Since the sources of aliases vary from language to language,
the alias gatherer is a language-specific component which is provided by the
compiler front end. Meanwhile, the alias propagator is a common component
which performs a data-flow analysis using the aliasing relations discovered by the
alias gatherer to combine the aliasing information at join points in a procedure
and to propagate it to where it is needed. The various alias analyses offer different
trade-offs between computational complexity and accuracy.

Pointer alias analysis algorithms use varying degrees of flow-sensitivity, call-
ing - context and alias representation and have empirically been studied in a
lot of research papers [Cou86, LR92, CBC93, Deu94, BCCH95, Ruf95, WL95,
ZRL96, Ste96, SH97, HBCC99, LH01, LPH01, CRL01, DLFR01, GLS01, HT01a,

273Nguyen T.V.N., Irigoin F.: Alias Verification for Fortran Code Optimization

HT01b, HP01, Hin01, MDCE01, RLS+01]. Ruf [Ruf95] compares the precision of
a simple, efficient, context-insensitive points-to analysis for the C programming
language with that of a maximally context-sensitive version of the same analy-
sis. He found that context-insensitive techniques can be implemented quite effi-
ciently, and can produce information that is surprisingly precise, as well as useful
in improving the efficiency of context-sensitive techniques. Hind et al. [HP01]
provide the comparison of the effectiveness (compile-time efficiency and preci-
sion) of six pointer analysis algorithms: four flow-insensitive, one flow-sensitive,
one flow-insensitive but uses precomputed flow-sensitive information. The results
of their paper suggest that the Steensgaard’s flow-insensitive algorithm [Ste96]
computing one solution set for the entire program and using a union-find data
structure to avoid iteration is usable in production compilers. If better precision
is required, the analyses of Andersen [And94] or Burke et al. [BCCH95] can be
used. Further precision may be obtained by the interprocedural analyses of Choi
et al. [CBC93] and Hind et al. [HBCC99]. The efficiency of these analyses is
improved by identifying realizable execution paths and by identifying different
instances of dynamically allocated objects created along different call paths. Ex-
tensions of points-to analysis algorithms for object-oriented languages such as
Java and C++ are studied in [LPH01, CRL01, WFPS02].

However, pointer analysis is not really within the scope of this paper. Alias
analyses for programming languages without pointers such as Fortran 77 are
discussed earlier in the literature [Bar77, Ban79, ABC+88, Coo84, CK89, CK88,
MW93]. These analyses deal with aliases arising from the renaming effects at call
sites in languages with call-by-reference parameter passing. They are formulated
as a data-flow analysis problem. The static call graph of a program is built and
used to find the potential aliases at every procedure entry point. Banning [Ban79]
presents an aliasing analysis that follows parameter binding chains through the
program in a depth first fashion to compute all possible aliases. Cooper and
Kennedy [CK89] improve the alias analysis computation time based on the fun-
damental insight that significant advantages can be achieved by separating the
treatment of reference formal parameters from the treatment of global variables.
Their algorithm requires O(N2 + NE) steps, where N and E are the number of nodes
and edges of the program’s call graph, respectively. An alias detection analysis is
implemented by Mayer and Wolfe in the Nascent compiler [MW93], by improving
Cooper and Kennedy’s algorithm. The number and cardinality of maybe aliased
variable sets as well as their relationship with the number of global variables and
formal parameters per procedure on PerfectClub and Riceps benchmarks are re-
ported in the paper. They also study the interaction of dependence analysis and
aliasing by considering the parallelization of loops with formal array arguments.
However, these methods treat arrays as atomic objects. This granularity is not
fine enough and imposes alias restrictions too strict to be useful. Moreover, the

274 Nguyen T.V.N., Irigoin F.: Alias Verification for Fortran Code Optimization

case where an actual array element can be associated to a formal array param-
eter seems omitted in [MW93], so aliases between two formal array parameters
may go undetected. A more sophisticated analysis of arrays might produce use-
ful information about the offsets and patterns of overlap in a program. Such an
analysis is implemented in the PTRAN compiler [ABC+88, HBCM92, HBCM94].
When an array is involved in an alias, it determines, when possible, the differ-
ence in starting address between the aliased variables. These offsets are used
in dependence analysis by linearization between aliased arrays. In [HBCM94], a
precise interprocedural array analysis (FIDA) is used to avoid the conservative
aliasing assumption and to improve the number of parallelized loops.

The parameter-induced aliasing in Ada has recently been studied in [GP01].
They implement the alias analysis developed by [Coo84] and examine manually
the introduced alias pairs. The experimental results reveal a rare occurrence of
aliasing that may explain the reliability of Ada programs.

However, to our knowledge, no work has been done on the verification of
restrictions on alias use, especially for array variables. This verification is critical
for code safety, debugging and maintainability (referential transparency) because
allowing writing on aliased variables may result in unpredictable behaviors and
make optimizations impossible. Current compilers could detect the violations
dynamically but run-time checks are still an overhead and they can catch only
those violations that actually happen during a particular run. The objective of
this work is to check the whole program, to generate a minimum number of tests
by using precise alias information for both kinds of variables, scalar and array,
and then to study the impact of alias violation on other program optimizations.

3 Interprocedural Alias Propagation

ANSI Fortran 77 standard [ANS83] defines several ways to create aliases and
most are detectable exactly during compilation. The EQUIVALENCE statement is
used to specify how two or more entities in the same program unit do share stor-
ages units. The effects of aliases created by EQUIVALENCE statements are purely
local and statically determinable, as long as the equivalenced variables are not
also in common storage. The COMMON statement associates different variables in
different subprograms to the same storage. Determining the full effects of vari-
ables in common storage requires interprocedural analysis as for aliases created
by parameter passing. When a procedure is called, an association is established
between the actual arguments and the corresponding formal parameters in the
called procedure. The formal parameter has the storage location of the actual
argument for this invocation.

Formal parameters may become aliased in several ways. Two formal param-
eters are aliased if the same actual argument is passed to both of them. Also,

275Nguyen T.V.N., Irigoin F.: Alias Verification for Fortran Code Optimization

if a global variable is used as an actual argument and a variable aliased to the
global variable is passed as another actual argument, the two corresponding for-
mal parameters are aliased. In addition, formal parameter aliases can be passed
through call chain, creating more aliased formal parameters. A global variable
can only become aliased to a formal parameter in a routine in which it is visible
and only by its being passed as an actual argument to that formal parameter.

3.1 Storage Sequence Association

In our approach, arrays are not treated as atomic variables. To compute the over-
lap between arrays, the following definitions are needed to describe relationships
that exist among variables, based on Section 17.1 [ANS83].

Definition 3.1 A storage sequence of a variable is a sequence of storage units
that the variable represents. The size of a storage sequence is the number of
storage units in the storage sequence.

For example, an integer type scalar variable or array element has a storage se-
quence of one storage unit; a double precision type has a storage sequence of
two storage units. An array has a storage sequence consisting of the storage
sequences of the array elements in the order determined by the array element
ordering. The storage sequence of a common block consists of the storage se-
quences of all variables in the block in the order of their appearance.

Definition 3.2 Two storage sequences are associated if they share some storage
units.

Definition 3.3 In a procedure, two formal parameters are aliased by a call chain
if and only if their corresponding storage sequences for this call chain are asso-
ciated.

Definition 3.4 In a procedure, a formal parameter and a common variable are
aliased by a call chain if and only if their corresponding storage sequences for
this call chain are associated.

3.2 Memory Location Naming

To decide when two storage sequences can be associated, we introduce a memory
location naming technique that allows a compact representation of variable ad-
dresses. It provides all information required to locate a variable in the memory:
the area, offset and call chain.

276 Nguyen T.V.N., Irigoin F.: Alias Verification for Fortran Code Optimization

3.2.1 Actual Variable

Actual variables are variables that have a known address in some memory space.
They include common and local variables. Since the storage sequences of two
common blocks in a same program unit cannot share storage units, a unique
name is given to each common block. This name is called an area. A local
variable is stored in a static or dynamic area of the procedure where the variable
is declared.

The offset of a variable is used to locate the variable in its area. The size of the
storage sequence of this variable defines the offset of the next variable in the same
area. If several variables are involved in an EQUIVALENCE, their offsets in the area
are computed with respect to the association of the storage sequences. Since the
subscript expressions in an EQUIVALENCE statement are known at compile-time,
the computation of this information is straightforward.

3.2.2 Formal Variable

A formal variable does not have its own address. But when it is associated to
an actual argument, it will have the address of the actual argument. This actual
argument in turn may be a formal variable of the current caller, and in this
case, we have to go up the call chain until we reach an actual argument that is
an actual variable. So, depending on the call path, different addresses may be
associated to one formal variable.

When an array is passed in a CALL statement, the starting address of the
formal array argument is computed using the offset of the actual array argument,
and the subscript expression if an array element is passed. The subscript value
expression of an array element determines the order of that element in the array.
As Fortran language allocates array in column-major order, the subscript value
of an array reference A(s1, s2, · · · , sn) is 1 +

∑n

i=1

(
(si − li)

∏i−1

j=1
dj

)
where n is the

number of dimensions of the array, di = ui − li + 1 is the size of the i-th dimension.
li and ui are respectively the corresponding lower and upper declaration bounds.
Note that

∏0

j=1
dj = 1. The size of an array element is the number of storage

units required to store this element.

Definition 3.5 The relationship between the offsets of the formal and actual
array arguments is expressed by the equation:

offset(formal array) = offset(actual array) + element size*(subscript value-1)

One important assumption for alias analysis is the absence of bound violations
in the program, i.e to guarantee that all subscript values are bounded. The next
two theorems specify the necessary conditions for an alias between a formal
parameter and a common variable or two formal parameters in a procedure to

277Nguyen T.V.N., Irigoin F.: Alias Verification for Fortran Code Optimization

exist. Their proofs are rather trivial because they are theorems of exclusion to
enumerate all possible cases of aliasing. The treatments of formal parameters
and common variables are separated.

Theorem 3.1 In a procedure, if a formal parameter and a common variable are
aliased by one call chain, then one of the following conditions must be satisfied:
1. The corresponding actual argument is an actual variable whose area is that

of the common variable. This alias is created by only one call site, regardless
of the call chain.

2. The corresponding actual argument is a formal variable of the caller and
following the call chain, it is located in the area of the common variable.

Proof. We prove that if the corresponding storage sequences of the formal pa-
rameter and the common variable are associated, either Condition 1 or 2 must
be satisfied.

If the corresponding actual argument is an actual variable, it cannot be a
local variable of the caller because a local variable of one procedure cannot
be associated to a common variable of the other. This actual variable must
be a common variable, and since the two common variables share the same
storage units, they must be in the same common block, declared in two different
procedures. So they are in the same area. The call chain has only one element,
that is the direct call site.

If the corresponding actual argument is a formal variable of the caller, fol-
lowing the call chain, we reach an actual variable. Reasoning as in the first case,
we come to the same conclusion.

Theorem 3.2 In a procedure, if two formal parameters are aliased by a call
chain, then one of the following conditions must be satisfied:
1. The same actual argument is passed to them. This alias is created by only

one call site.
2. The corresponding actual arguments are in an EQUIVALENCE statement of the

caller. This alias is also created by only one call site.
3. One actual argument is a common variable and the other actual argument is

a formal variable of the caller, and following the call chain, the address of
this formal variable has the same area as the common variable.

4. The corresponding actual arguments are formal variables of the caller and
following the call chain, they have addresses which share the same area.

Proof. Supposing that two formal parameters are aliased by a call chain, we
have three possibilities:
1. Two corresponding actual arguments are actual variables of the caller. If

they are different variables, the only way to associate their storage sequences
within a program unit is to declare them in an EQUIVALENCE statement. So
in this case, either Condition 1 or Condition 2 must be satisfied.

278 Nguyen T.V.N., Irigoin F.: Alias Verification for Fortran Code Optimization

2. One actual argument is a formal variable and the other is an actual variable
of the caller. This actual variable cannot be a local variable because the
storage sequence of a local variable cannot be shared with that of another
variable of another procedure. So the actual variable must be a common
variable. Following the call chain, the formal variable will reach an actual
variable. This actual variable in turn must be a common variable. And since
the storage sequence of two common variables in two different subprograms
are associated, they must be in the same common block, and therefore the
same area. Condition 3 is satisfied.

3. Both actual arguments are formal variables of the caller. The simplest case
is when they are the same variables (Condition 1) and the alias is created
by only one call, which is the direct caller. These actual arguments cannot
be equivalenced by the caller because they are formal parameters. If not,
following the call chain, we will reach, not necessarily at the same time, the
two corresponding actual variables.
We have two sub-cases:
– We reach the two actual variables at the same call site. As in the first

case, these actual variables are the same variables or in an EQUIVALENCE

statement of the current call site procedure. Their addresses must share
the same area.

– If one actual variable is reached before the other, which means that they
are actual variables of two different subprograms and since their storage
sequences are associated, they must be common variables in the same
common block and therefore in the same area.

Condition 4 is satisfied by these sub-cases.
The theorem is proved by enumeration.

3.3 Alias Propagation Algorithm

The basic idea for computing interprocedural aliases is to follow all the pos-
sible chains of parameter bindings at all call sites. The acyclic call graph is
traversed in the invocation order that process a procedure before all its callees,
and alias information is accumulated incrementally from the main program. In
our interprocedural compiler PIPS, each analysis is performed only once on each
procedure and produces a summary result that is used later at call sites. For
each procedure, symbolic addresses of formal parameters of its callers have al-
ready been computed. This information is available in the database of PIPS and
is used to compute addresses of the formal parameters of the current procedure.

Algorithm 3.1 shows the interprocedural alias propagation, based on Theo-
rem 3.1 and Theorem 3.2. This propagation computes in fact an over approx-
imated set of aliases in a procedure. Our analysis is context-sensitive since it

279Nguyen T.V.N., Irigoin F.: Alias Verification for Fortran Code Optimization

distinguishes the different calls of a procedures by storing the call path that
produces the alias.

Algorithm 3.1
procedure Interprocedural Alias Propagation (p)

p : current procedure
begin

for each call site c to p

q := corresponding caller(c)
partition the actual argument list to groups of same and equival. variables
for each group g

for each actual argument a in g

f = corresponding formal argument(a, c)
if g is a group of same variables then

area(f) = ALIAS AREA g
else

area(f) = area(a)
endif
call chain(f) = {c}
offset(f) = compute and translate offset(a, c, p, q)

endfor
endfor
for each actual argument a in the argument list

if a is a common variable then
f = corresponding formal argument(a, c)
area(f) = area(a)
call chain(f) = {c}
offset(f) = compute and translate offset(a, c, p, q)

endif
if a is a formal variable and one of its addresses has a common area or
the same area as an address of another actual argument that is a formal
variable then

f = corresponding formal argument(a, c)
area(f) = corresponding area(a)
call chain(f) = corresponding call chain(a) ∪ {c}
offset(f) = compute and translate offset(a, c, p, q)

endif
endfor

endfor
end

By dividing the list of actual arguments into groups of identical or equivalenced
variables, all formal parameters in a same group have the same area. If the

280 Nguyen T.V.N., Irigoin F.: Alias Verification for Fortran Code Optimization

same variable is passed to different formal parameters, a special area called
ALIAS_AREA_g and a call chain of one element are associated to the formal
parameters (Condition 1 and 2 of Theorem 3.2). The advantage is that although
the actual argument can be a formal parameter of the caller, we do not need to
keep the whole call chain in which an actual variable is reached. If the actual
argument a is a common variable, an alias may exist under Condition 1 of
Theorem 3.1 if a is visible in the called procedure and Condition 3 of Theorem 3.2
if there exists another actual argument that is a formal variable of the caller and
one of its addresses has the same area as a.

If a is a formal variable and one of its addresses has a common area which
is visible in p, there may be an alias according to Condition 2 of Theorem 3.1.
If this address has the same area as another common actual argument, an alias
may exist under Condition 3 of Theorem 3.2. In the last case, if this address
has the same area as an address of another actual argument that is a formal
variable, an alias may happen following Condition 4 of Theorem 3.2.

The compute and translate offset function in Algorithm 3.2 computes the off-
set of the formal parameter with respect to that of the actual argument and the
subscript value. The offset is translated to the frame of the procedure p by using
global variables information and the bindings between actual and formal param-
eters. If the translation is not possible, an unknown expression is returned and
the alias verification phase treats this case differently, as discussed in the next
section.

Algorithm 3.2
function compute and translate offset(a, c, p, q)
begin

off = offset(a) + subscript value(a, c)
if off can be translated to the frame of p then

off = translate to callee frame(off,c, p, q)
else

off = unknown
endif
return off

end

3.4 Alias Propagation Example

Our example to illustrate the alias propagation is given in Figure 3. Each for-
mal parameter of subroutine SUB2 has two addresses corresponding to two dif-
ferent call paths: {MAIN:CALL SUB2(W,B,50)} and {MAIN:CALL SUB1(A,100),

SUB1:CALL SUB2(V,V(M+1),M)}.
There is no possible alias for SUB1 but the two calls to SUB2 may cause aliases

in this module. In the first call, the common variable W that is visible in SUB2

281Nguyen T.V.N., Irigoin F.: Alias Verification for Fortran Code Optimization

is passed as an actual argument to V1. An address is added for V1 by the alias
propagation. The area of this address is that of W, the offset is computed from
zero and the call chain is this call site.

In the second call, array V is associated to two different formal parameters
V1 and V2 by the second call. The offset of V1 and V2 is computed with respect
to that of V and the subscript value in the actual argument list. A special area
is used and we only need to keep the direct caller of SUB2. The element size of
real variable is 4.

PROGRAM MAIN

COMMON /COM/ W(50)

END

REAL A(100), B(50)

CALL SUB2(W,B,50)

CALL SUB1(A,100)

CALL SUB2(V,V(M+1),M)

SUBROUTINE SUB1(V,N)

REAL V(N)

READ *,M

IF (2*M .LE. N) THEN

ENDIF

END

SUBROUTINE SUB2(V1,V2,L)

COMMON /COM/ W(50)

REAL V1(L), V2(L)

DO I =1, L

V1(I) = V2(I)

ENDDO

END

offset(V1) = 0, offset(V2) = 4*L

call_chain(V1) = call_chain(V2)

 = {SUB1:CALL SUB2(V,V(M+1),M)}

area(V1) = COMMON:COM

offset(V1) = 0

call_chain(V1) ={MAIN:CALL SUB2(W,B,50)}

1

22

area(V1) = area(V2) = ALIAS_AREA_1

Figure 3: Interprocedural alias propagation example

So for each procedure, the propagation phase produces compact and precise
alias information that is used in the next phase to check the restrictions on
aliased variables.

4 Interprocedural Alias Verification

We enforce the Fortran standard about the restrictions on association of entities
(Section 15.9.3.6 [ANS83]). However, the restrictions on association of array
variables are not clear. Arrays can be treated as units, that is, if two formal
array parameters or one formal array parameter and one global array variable are
aliased, assignment on any element of any array is forbidden. This granularity is
not fine enough because we may not write on the aliased elements, which identify
the same storage units. Expecting users to follow this rule is not realistic because

282 Nguyen T.V.N., Irigoin F.: Alias Verification for Fortran Code Optimization

memory management is often performed by passing sections of huge workspace
used as a user managed heap.

Arrays can also be treated element by element. Each array element is con-
sidered as a scalar variable. There is an alias violation if and only if an array
element is defined and the aliased element of another array is referenced. That is
data dependence arcs are generated between references to two different arrays.
This interpretation is the most complicated because we must compare between
all different referenced array elements during program execution, which is not
often performed efficiently using static analysis. So we give other definitions of
the so called writing violation on aliased variables in a subprogram, which is
finer than the first interpretation but less complicated than the last one.

4.1 Alias Violation Condition

Definition 4.1 A call chain causes an alias violation of formal parameter (of
common variable) in a subprogram if, following this call chain, there exists two
different formal parameters (a common variable and a formal parameter) sharing
storage units that are defined during the execution of the subprogram.

Note that if the storage sequences of variables concerned are disjoint, they share
no storage unit. Therefore, we have:

Lemma 4.1 In a subprogram, if the storage sequences of all formal parameters
(if the storage sequences of all formal parameters and those of all common vari-
ables) allocated by the execution of a call chain are disjoint, there is no alias
violation of formal parameter (of common variable) caused by this call chain.

The next two lemmas show that the alias violation depends on writing or not on
the overlapping section of two aliased variables. The sequence of storage units
that are defined during execution of the subprogram is called defining sequence.

Lemma 4.2 In a subprogram, if the defining sequence of every formal parameter
(every common variable) is disjoint with the storage sequence of all other formal
parameters allocated by the execution of a call chain, there is no alias violation
of formal parameter (of common variable) caused by this call chain.

Lemma 4.3 In a subprogram, if there exists a formal parameter (a common
variable) whose defining sequence is not disjoint with the storage sequence of
another formal parameter allocated by the execution of a call chain, there is
an alias violation of formal parameter (of common variable) caused by this call
chain.

The alias verification on each procedure of the program is defined by these
three lemmas. Procedures with no formal parameter and procedures with formal

283Nguyen T.V.N., Irigoin F.: Alias Verification for Fortran Code Optimization

parameters but no possible alias (calculated during the propagation phase) are
excluded. To compute the defining sequence of a variable in a procedure, we need
information about write effects of statements on this variable. In general, the
exact effect is only known at elementary statements such as assignments because
of different control paths. However, to reduce the number of analyzed pairs of
aliased variables, we can use the summary effect [KAC+96] of a procedure on its
formal and common variables. This is an over approximation of the exact effects.
By using this information, if a variable is never defined during the procedure
execution, we do not have to treat it.

4.2 Alias Verification Algorithm

A necessary condition for two formal parameters or one formal parameter and
one global variable to be aliased by a call chain is that their addresses have the
same area. The alias verification applied for each procedure having at least one
formal parameter and possible alias is given by Algorithm 4.1.

Algorithm 4.1
procedure Interprocedural Alias Verification (p)

p : current procedure
begin

for each maybe aliased variables by call chain(v1, v2, cc)
o1 = corresponding offset(v1)
o2 = corresponding offset(v2)
if o1 �= unknown and o2 �= unknown then

alias check in callee(v1, v2, o1, o2, p)
else

c = direct call site(cc)
q = direct caller(cc)
o′1 = offset in caller(v1, c, q)
o′2 = offset in caller(v2, c, q)
if o′1 �= unknown and o′2 �= unknown then

alias check in caller(v1, v2, o
′
1, o

′
2, q)

else
direct alias check(v1, v2, p)

endif
endif

endfor
end

For each maybe aliased pair of variables where at least one of them is present in
the summary write effects of the procedure, the verification works as follow. If
the offsets of both variables are known, depending on the type of variable, scalar

284 Nguyen T.V.N., Irigoin F.: Alias Verification for Fortran Code Optimization

or array, different checks are performed in the frame of the current procedure
(Algorithm 4.2). As a matter of space, we only describe the most complicated
case, when both variables are array variables. In the cases of Lemma 4.1 and
Lemma 4.2, there is no alias violation between the two arrays. Otherwise, a test
is inserted before each statement that writes on one variable. Flags are inserted
before each call site in the call chain to mark if the execution reaches the current
statement or not. If one clause oj ≤ ri or ri ≤ oj + sj (i, j = 1, 2 i �= j) is known
to be true at compile-time, it can be removed from the test condition.

Algorithm 4.2
procedure Alias check in callee (v1, v2, o1, o2, p)
begin

... both variables are array variables ...
s1 = size of storage sequence(v1)
s2 = size of storage sequence(v2)
if (o2 + s2 ≤ o1) or (o1 + s1 ≤ o2) is true then

no alias violation
else

for each statement s in p that writes on vi, i = 1, 2
ri = oi + element size(vi) * (subscript value(vi, s) - 1)
if ri < oj or ri > oj + sj is true then

no alias violation
else

insert flagk = .true. before each call site k in cc (k = 1, n)
insert IF (flag1 .and....f lagn .and. (oj ≤ ri) .and. (ri ≤ oj + sj))

STOP message before s

endif
endfor

endif
end

If at least one offset is unknown because it cannot be translated to the frame of
the called procedure in the propagation phase, we try to check for alias violation
in the frame of the direct caller of the current procedure (Algorithm 4.3). The
new offset of each variable is computed in the caller’s frame by using function
offset in caller, described as follows:
– If the variable is a common variable, its offset in the common block does not

change and is returned if the variable is visible in the caller. Otherwise, an
unknown expression is returned.

– If the variable is a formal parameter, we return the left hand-side expression
in Definition 3.5. In fact, this is the value before the translation step in the
propagation phase. If the offset of the actual argument is unknown because

285Nguyen T.V.N., Irigoin F.: Alias Verification for Fortran Code Optimization

the actual argument is a formal parameter of the caller and information is
lost somewhere earlier in the call chain, we return an unknown expression.

Algorithm 4.3
procedure Alias check in caller(v1, v2, o

′
1, o

′
2, q)

begin
... both variables are array variables ...
s1 = size of storage sequence(v1)
s2 = size of storage sequence(v2)
if s1 and s2 can be translated to the frame of q then

s′1 = translate to caller frame(s1, c, p, q)
s′2 = translate to caller frame(s2, c, p, q)
if (o′2 + s′2 ≤ o′1) or (o′1 + s′1 ≤ o′2) is true then

no alias violation
else

for each statement s in p that writes on vi, i = 1, 2
ri = oi + element size(vi) * (subscript value(vi, s) - 1)
if ri can be translated to the frame of q then

r′i = translate to caller frame(ri, c, p, q)
if r′i < o′j or r′i > o′j + s′j is true then

no alias violation
else

insert flagk = .true. before each call site k in cc (k = 1, n − 1)
insert IF (o′j ≤ r′i).and.(r′i ≤ o′j + s′j) flagn = .true. before c

insert IF (flag1 .and. ... f lagn) STOP message before s

endif
else

direct alias check(v1, v2, p)
endif

endfor
endif

else
direct alias check(v1, v2, p)

endif
end

If both new offsets can be computed in the caller’s frame, we repeat the alias
violation checking between two variables as above, but in the frame of the caller.
Each time the size of the storage sequence or the subscript value is needed, we
have to translate it to the caller’s frame, by using global variables information
and the bindings between actual and formal parameters. Tests inserted before
each statement defining a variable in the current procedure and before the direct
call site are different from those in the first case.

286 Nguyen T.V.N., Irigoin F.: Alias Verification for Fortran Code Optimization

If the translation is not possible, or one offset is unknown, we have to use the
direct alias check version that inserts before each statement defining a variable,
for example v1, the procedure call ALIAS CHECK(message, v1, r1, v2, s2) where
r1 is computed as in Algorithm 4.2, s2 is the size of the storage sequence of
v2. ALIAS CHECK(char ∗ message, void ∗ p1, int ∗ i1, void ∗ p2, int ∗ i2) is a
C function that takes the base address in the memory of two variables, the
referenced element of one variable and the size of the other to check if there is
alias violation on the referenced element or not. This check is expensive because
no static analysis is exploited.

4.3 Alias Verification Example

In Figure 3 example, no alias violations are caused by CALL SUB2(V,V(M+1),M)

because the intersection between [0:4*L-1] and [4*L:8*L-1] is empty (the storage
sequence size of each array is 4*L). However, alias violations occur when writing
on V1(I) which is aliased with an element in W. The instrumented code is shown
in Figure 4.

PROGRAM MAIN
COMMON /COM/ W(50)
REAL A(100),B(50)
COMMON /ALIAS FLAGS/ ALIAS FLAG(1)
LOGICAL ALIAS FLAG(1)
ALIAS FLAG(1) = .TRUE.
CALL SUB2(W,B,50)
CALL SUB1(A,100)
END

SUBROUTINE SUB2(V1,V2,L)
COMMON /COM/ W(50)
REAL V1(L),V2(L)
COMMON /ALIAS FLAGS/ ALIAS FLAG(1)
LOGICAL ALIAS FLAG(1)
DO I = 1,L

IF (I.GE.1.AND.I.LE.50.AND.ALIAS FLAG(1)) STOP "Alias violation:
write on V1, aliased with W by CALL SUB2(W,B,50) in MAIN"

V1(I) = V2(I)
ENDDO
END

Figure 4: Interprocedural alias verification example

The generated alias checks are expensive because they are left inside loop.
They can be optimized by safely applying code hoisting since our instrumented
code does not violate the standard anymore.

287Nguyen T.V.N., Irigoin F.: Alias Verification for Fortran Code Optimization

5 Impact of Alias Violation on Program Optimizations

Although modifying an aliased variable may let the program produce incorrect
results or behave unpredictably when using optimization, this violation on alias
restrictions occurs occasionally in established programming practice. This sec-
tion contains several examples of code optimizations which are not safe when
alias conditions are violated by the user. Different optimization levels of the Sun
WorkShop 6 FORTRAN 77 compiler are used to show different results obtained
with each example.

Figure 5 shows that a trivial register allocation can be incorrect if alias in-
formation is not taken into account. The register allocation when using the opti-
mization level 3 of the SUN compiler leads to incorrectly assigning the value 120
to L, instead of 144 because M is aliased with N by the call in the main program
but its value is not recomputed after the assignment N = 12.

PROGRAM MAIN SUBROUTINE SUB(M,N)
CALL SUB(I,I) M = 10
END N = 12

L = M * N
PRINT *,L
END

Figure 5: Correctness of register optimization

Figure 6 depicts another example about the correctness of a common subex-
pression elimination. According to [Muc97], an occurrence of an expression in
a program is a common subexpression if there is another occurrence of the ex-
pression whose evaluation always precedes this one in execution order and if the
operands of the expression remain unchanged between the two evaluations. The
second occurrence of expression M + L is not a common subexpression because
the last condition on the unchanged operands is not satisfied by the aliasing
between M and N and the assignment N = 6. But with the optimization level 3 of
the SUN compiler, the result is 6 instead of 7 (when no optimization is used).

PROGRAM MAIN SUBROUTINE SUB(M,N)
I = 5 L = 1
CALL SUB(I,I) K = M + L
END N = 6

PRINT *, M + L
END

Figure 6: Correctness of common subexpression elimination

288 Nguyen T.V.N., Irigoin F.: Alias Verification for Fortran Code Optimization

The invariant code motion in Figure 7 for the assignment M = 2 is not correct
if the alias between M and N is not taken into account. That is why with the
optimization level 3, the SUN compiler gives the result 6 instead of the expected
output 3.

PROGRAM MAIN SUBROUTINE SUB(M,N)
I = 5 L = 1
CALL SUB(I,I) DO WHILE (L.LE.N)
END M = 2

L = L + 1
ENDDO
PRINT *, L
END

Figure 7: Correctness of invariant code motion

Figure 8 shows the impact of aliasing on loop parallelization. If N is greater
than 30, there are aliases between array elements X(I+30) and Y(I) because
they point to the same actual array element A(I+30). The loop in module COPY

can be unrolled as shown in Figure 9, as well as the corresponding computation
on array A. So if this loop is executed in parallel, the result would be different
than if it is executed sequentially, i.e the value of Y(31) is 31 instead of 1.

PROGRAM MAIN SUBROUTINE COPY(X,Y,N)
REAL A(100) REAL X(N), Y(N)
DO I = 1,100 DO I = 1,N

A(I) = I Y(I) = X(I)
ENDDO ENDDO
READ *, N END
CALL COPY(A,A(31),N)
PRINT *,A
END

Figure 8: Correctness of loop parallelization

Y(1) = X(1) A(31) = A(1) = 1
... ...
Y(I) = X(I) A(30 + I) = A(I) = I
... ...
Y(31) = X(31) A(61) = A(31) = 1
... ...

Figure 9: Loop unrolling from Figure 8

289Nguyen T.V.N., Irigoin F.: Alias Verification for Fortran Code Optimization

All the above examples show that alias analysis is essential to perform most
optimization correctly or to warn the programmer. The aliases between vari-
ables create more dependences between program statements. As explained in
[AK02], a transformation preserves the semantics of the program if the control
and data dependences are respected. Any ordering-based optimization that does
not change the dependences of a program is guaranteed not to change the results
of the program.

So the effect of new dependence arcs created by standard violation aliases
on the data dependence graph is important because it decides whether other
program transformations on the procedure are safe or not. If these new data
dependence arcs are redundant with existing paths in the data dependence graph,
the aliases have no impact on ordering-based optimizations. Take as an example
a piece of code from the benchmark hydro2d in the SPEC95 CFP benchmarks
[DD98] where calls to subroutine FCT make two formal parameters UNEW and
UTRA aliased and they are defined by the called module. As shown in Figure 10,
the new data dependence arcs (dashed arcs) created by the alias between UNEW

and UTRA are redundant with existing paths in the dependence graph. So we can
prove that all ordering-based optimizations for FCT are safe.

SUBROUTINE FCT(UNEW,UTRA,UOLD)
PARAMETER (MP = 402, NP = 160)
DIMENSION UNEW(MP,NP), UTRA(MP,NP), UOLD(MP,NP)
DO I = 1,MQ

DO J = 1,NQ
s1 DZ1(I,J) = UOLD(I+1,J) - UOLD(I,J)
s2 AZ1(I,J) = UTRA(I+1,J) - UTRA(I,J)

ENDDO
ENDDO
DO I = 1,MQ

DO J = 1,NQ
s3 UTRA(I,J) = UTRA(I,J) + DZ1(I,J) - DZ1(I-1,J)

ENDDO
ENDDO
DO I = 1,MQ

DO J = 1,NQ
s4 UNEW(I,J) = UTRA(I,J) - AZ1(I,J) - AZ1(I-1,J)

ENDDO
ENDDO
END

S1

S2

S3

S4

Df

Df

Da

Df

Da Do

Da

UNEW = UTRA

Figure 10: Dependence graph of a code fragment from hydro2d

Actually, this phase has been implemented in PIPS for scalar variables and
it treats arrays as atomic variables. When aliases create more dependence arcs,
the analysis is able to tell if these arcs modify the existing dependence graph,

290 Nguyen T.V.N., Irigoin F.: Alias Verification for Fortran Code Optimization

so the aliases have impacts on optimization or not. The alias violation checking
as well as the effect of array alias violation is studied with the SPEC95 CFP
benchmarks, that is shown in the next section.

6 Experimental Results

We use the SPEC95 CFP benchmarks that contain ten applications written in
Fortran 77. They are scientific benchmarks with floating point arithmetic and
many of them have been derived from publicly available application programs.
We are not interested in tomcatv which is a single procedure program. For the
other nine benchmarks, the number of modules in a program varies from 6 to
105; the number of procedure and function calls is in the range from 5 to 243.
Table 1 summarizes relevant information for all benchmark in SPEC95 CFP.

Program Line Mod Call Flag Test Check Mod Comp. Viol. AR DG
tomcatv 190 1 0 0 0 0 0 0s No
swim 429 6 5 0 0 0 0 1s No
su2cor 2332 35 166 0 0 0 0 14s No
hydro2d 4292 42 98 8 12 0 2 9s Yes *
mgrid 484 12 23 0 0 10 3 1s Yes *
applu 3868 16 27 6 6 0 2 8s Yes *
turb3d 2101 23 111 60 156 13 12 10s Yes *
apsi 7361 96 190 23 194 2945 66 92s Yes *
fpppp 2784 38 27 0 0 250 1 30s No
wave5 7764 105 243 36 334 495 24 98s Yes *

Table 1: SPEC95 CFP: numbers of lines, modules and calls; numbers of inserted
flags, tests, checks, modules with possible aliases; compilation times; alias viola-
tion results: array resizing and dependence graph categories

Some array declarations conflict with alias analysis. The assumed-size ar-
ray declaration (Section 5.1.2 [ANS83]) with an asterisk as the last dimension
and array declaration with a final dimension specified as 1 prevent us from
knowing the storage sequence size of some arrays in the called modules. These
kinds of declarations may cause spurious array bound violations, inhibit program
analyses such as array bound checking, uninitialized variable analysis, program
debugging, etc. Unlike other compilers that ignore these assumed-size arrays,
we deal with this by applying array resizing [AN01] to five benchmarks: ap-
plu, turb3d, apsi, fpppp and wave5. Assumed-size declarations also occur in two

291Nguyen T.V.N., Irigoin F.: Alias Verification for Fortran Code Optimization

other benchmarks, su2cor and hydro2d, but the corresponding arrays are not
involved in aliases so array resizing is not needed for these benchmarks. The
array resizing phase tries to compute automatically the proper upper bound for
the assumed-size array declarations. It uses the relationship between actual and
formal arguments from parameter-passing rules: the size of the formal argument
array must not exceed the size of the actual argument array. New array decla-
rations in the called procedure are computed with respect to the declarations
in the calling procedures. Codes are instrumented to pass the array descriptors
corresponding to each procedure call. All assumed-size arrays are resized.

The numbers of inserted flags, tests, direct alias checks, modules with possi-
ble aliases and the compilation times (in seconds) are also reported in Table 1.
Compilation times for both alias propagation and verification phases are mea-
sured on an UltraSparc II 440MHz 256Mo RAM. Codes with generated checks
are then compiled and executed using the standard input data for SPEC95 CFP
benchmarks. Six out of ten benchmarks violate alias rules: hydro2d, mgrid, ap-
plu, turb3d, apsi and wave5. As tomcatv has only one routine, there are certainly
no aliases for this benchmark. swim and su2cor are proved to be free of dummy
aliased variables by our analysis. fpppp is instrumented with 250 checks, gener-
ating 2% execution slowdown and has no alias violations for its standard input
files. Runtime slowdown cannot be measured for the other benchmarks because
the execution is interrupted at the first violation.

Column 8 shows the number of modules where there may be aliases between
its formal parameters and common variables. It is important to see that, in com-
parison to Column 3, this number only takes a small percentage. For example,
only one called module in fpppp must be compiled with the dummy aliasing as-
sumption to assert the presence of aliases. Meanwhile, the total number of called
modules in this benchmark is 37. The no alias assumption can be safely applied
to the remaining modules in the program; hence the execution performance is
improved.

Two kinds of alias violations appear in the six benchmarks. The first category
exists in apsi and wave5 : assumed-size arrays are resized with new dimensions
that are too large with respect to actual array accesses. Figure 11 gives an illus-
trating example.

PROGRAM ALIAS SUBROUTINE RUN(X,Y,Z,L)
REAL WORK(1000) DIMENSION X(*),Y(*),Z(*)
CALL RUN(WORK,WORK(L+1),WORK(2*L+1),L) ...
END END

Figure 11: Assumed-size array declaration example

292 Nguyen T.V.N., Irigoin F.: Alias Verification for Fortran Code Optimization

Because Fortran uses the column-major scheme to store arrays, the address
in memory of a given array reference is calculated from the base address of the
array and the subscript value, which do not involve the last dimension. The up-
per bound can be left unspecified, and the compiler does not know the logical
size of the formal array in the called routine. The physical size in the called rou-
tine is the size the array has in the caller. We only have to ensure that references
to elements do not go past the end of the actual array. So with array resiz-
ing, we infer new declarations: DIMENSION X(1000),Y(1000-L),Z(1000-2*L).
These declarations are correct with respect to the standard but they may be too
large for actual array accesses in the called routines. The intersection between
the storage sequence of array X, computed from the array size, and the defined
sequence of array Y or Z are not empty. So alias alarms are raised because the
actual accesses of array X are not taken into account. To cope with this problem,
we could use another approach for array resizing, based on array regions [AN01].
They give information about the set of array elements accessed during the code
execution. In this case, array declarations are more precise and greatly reduce
the number of alias violations. However, it is not always possible to compute the
array region, due to non-linear expressions, indirection arrays, the lack of struc-
ture of programs, etc. A good programming practice is to pass disjoint array
sections to the called routine, i.e DIMENSION X(L),Y(L),Z(L). This motivates
us to use the alias information to derive proper array declarations, a problem not
only in Fortran but also in other programming languages such as C, MATLAB
and APL [AN01].

The second category of alias violation includes real violations because two
scalar variables or two array elements share the same memory location and one of
them is written. This category includes hydro2d, mgrid, applu and turb3d bench-
marks. However, after applying the phase of checking alias impact on dependence
graph, the legal schedules in these programs are not changed by these aliases. Ex-
ample on hydro2d in Section 5 illustrates this kind of violation. Aliases in mgrid,
applu and turb3d are simpler than in hydro2d because one aliased variable is
only defined once in the referenced procedure, and the other aliased variables
are not used in this procedure.

To sum up, although the standard specification is violated by some programs,
we did not find any aliasing problem in the SPEC95 CFP benchmarks. This is
no surprise since these benchmarks are well-debugged. We applied the analysis
to a large scale industrial application, about 100.000 lines of code, and found
several potential bugs.

7 Conclusion

Our alias analysis is flow- and context- sensitive and gives efficient and precise
alias information. This information lets us avoid the worst-case assumption about

293Nguyen T.V.N., Irigoin F.: Alias Verification for Fortran Code Optimization

aliases and perform program analyses under less restrict assumptions about the
program quality. For example, without alias information, the used-before-set
analysis can give false results because some variables may be initialized implic-
itly by aliasing. Other optimizations such as load and store reordering, partial
redundancy elimination, constant propagation and copy propagation are hard or
impossible to carry out because of aliasing. Our analysis can be applied to other
programming languages with the call-by-reference mechanism.

We developed algorithms to check for violation of aliasing rules in Fortran, an
option which is missing in most compilers. Violations are detected not only for
scalar but also for array variables. This standard checking is useful to debug code,
to help programmers to correct errors in order to gain performance by applying
optimizations safely. Once alias checks are generated, the instrumented code
respects the standard about aliasing. Other techniques such as code hoisting,
partial redundancy elimination, induction variable optimization can be safely
used to optimize the generated code. On the other hand, a program can be
guaranteed to be free of dynamic alias errors by our static analysis.

An important issue is the impact of aliasing on the dependence graph and
hence on code optimizations. New scheduling constraints cause real alarms for
program transformations. The experimental results show that the SPEC95 CFP
programs do not suffer from effective aliasing errors. They also show that accu-
rate alias detection depends on array resizing and dependence graph analysis,
and that alias analysis cannot be fully evaluated with standard benchmark. Ex-
periments on less well debugged codes are necessary.

The result can be applied to Fortran 90. Useless array copies can be sus-
pended and useful procedure cloning can be performed to improve the handling
of array sections if the alias information is available.

Another important perspective is that the alias information itself can be used
to resize array, also an array declaration problem in other programming language
such as C, MATLAB and APL. The PIPS software and our alias checking im-
plementations are available on http://www.cri.ensmp.fr/pips.

References

[ABC+88] Frances Allen, Michael Burke, Philippe Charles, Ron Cytron, and Jeane
Ferrante. An overview of the PTRAN analysis system for multiprocessing.
Journal of Parallel and Distributed Computing, 5:617–640, 1988.

[AK02] Randy Allen and Ken Kennedy. Optimizing Compilers for Modern Archi-
tectures. Morgan Kaufmann Publishers, San Francisco, 2002.

[AN01] Corinne Ancourt and Thi Viet Nga Nguyen. Array resizing for code debug-
ging, maintenance and reuse. In ACM SIGPLAN-SIGSOFT Workshop on
Program Analysis for Software Tools and Engineering, pages 32–37, June
2001.

[And94] Lars Ole Andersen. Program Analysis and Specialization for the C Program-
ming Language. PhD thesis, DIKU, University of Copenhagen, Denmark,
May 1994.

294 Nguyen T.V.N., Irigoin F.: Alias Verification for Fortran Code Optimization

[ANS83] ANSI. Programming Language FORTRAN, ANSI X3.9-1978, ISO 1539-
1980. American National Standard Institute, New York, 1983.

[App01] John Appleyard. Comparing Fortran compilers. ACM SIGPLAN - Fortran
Forum, 20(1):6–10, 2001.

[Ban79] John P. Banning. An efficient way to find the side effects of procedure
calls and the aliases of variables. In ACM Symposium on Principles of
Programming Languages, pages 29–41, January 1979.

[Bar77] Jeffrey M. Barth. An interprocedural data flow analysis algorithm. In
ACM Symposium on Principles of Programming Languages, pages 119–131,
January 1977.

[BCCH95] Michael Burke, Paul Carini, Jong-Deok Choi, and Michael Hind. Flow-
insensitive interprocedural alias analysis in the presence of pointers. In
International Workshop on Languages and Compilers for Parallel Comput-
ing, volume 892 of Lecture Notes in Computer Science. Springer-Verlag,
1995.

[CBC93] Jong-Deok Choi, Michael Burke, and Paul Carini. Efficient flow-sensitive
interprocedural computation of pointer induced aliases and side effects. In
ACM Symposium on Principles of Programming Languages, pages 232–245,
January 1993.

[CK88] David Callahan and Ken Kennedy. Analysis of interprocedural side effects
in a parallel programming environment. Journal of Parallel and Distributed
Computing, 5:517–550, 1988.

[CK89] Keith D. Cooper and Ken Kennedy. Fast interprocedural alias analysis. In
ACM Symposium on Principles of Programming Languages, pages 49–59,
January 1989.

[Coo84] Keith D. Cooper. Analyzing aliases of reference formal parameter. In ACM
Symposium on Principles of Programming Languages, pages 281–290, Jan-
uary 1984.

[Cou86] Deborah S. Coutant. Retargetable high level alias analysis. In ACM Sym-
posium on Principles of Programming Languages, pages 110–118, January
1986.

[CRL01] Ramkrishna Chatterjee, Barbara G. Ryder, and William A. Landi. Com-
plexity of points-to analysis of Java in the presence of exceptions. IEEE
Transactions on Software Engineering, 27(6):481–512, June 2001.

[DD98] Jozo J. Dujmovic and Ivo Dujmovic. Evolution and evaluation of SPEC
benchmarks. ACM SIGMETRICS, 26(3):2–9, 1998.

[Deu94] Alain Deutsch. Interprocedural may-alias analysis for pointers: beyond k-
limiting. ACM SIGPLAN Notices, 29(6):230–241, 1994.

[DLFR01] Manuvir Das, Ben Liblit, Manuel Fahndrich, and Jakob Rehof. Estimating
the impact of scalable pointer analysis on optimization. In Static Anal-
ysis, volume 2126 of Lecture Notes in Computer Science, pages 260–278.
Springer-Verlag, 2001.

[GLS01] Rakesh Ghiya, Daniel Lavery, and David Sehr. On the importance of points-
to analysis and other memory disambiguation methods for C programs. In
ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, pages 47–58, June 2001.

[GP01] Wolfgang Gellerich and Erhard Plodereder. Parameter-induced aliasing in
Ada. In Ada-Europe, volume 2043 of Lecture Notes in Computer Science,
pages 88–99. Springer-Verlag, 2001.

[HBCC99] Michael Hind, Michael Burke, Paul Carini, and Jong-Deok Choi. Interpro-
cedural pointer alias analysis. ACM Transactions on Programming Lan-
guages and Systems, 21(4):848–894, 1999.

[HBCM92] Michael Hind, Michael Burke, Paul Carini, and Sam Midkiff. Interproce-
dural array analysis: How much precision do we need? In Workshop on
Compilers for Parallel Computers, pages 48–64, June 1992.

295Nguyen T.V.N., Irigoin F.: Alias Verification for Fortran Code Optimization

[HBCM94] Michael Hind, Michael Burke, Paul Carini, and Sam Midkiff. An empirical
study of precise interprocedural array analysis. Scientific Programming,
3(3):255–271, 1994.

[Hin01] Michael Hind. Pointer analysis: haven’t we solved this problem yet ? In
ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software
Tools and Engineering, pages 54–61, June 2001.

[HP01] Michael Hind and Anthony Pioli. Evaluating the effectiveness of pointer
alias analyses. Science of Computer Programming, 39:31–55, 2001.

[HT01a] Nevin Heintze and Olivier Tardieu. Demand-driven pointer analysis. In
ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, pages 24–34, June 2001.

[HT01b] Nevin Heintze and Olivier Tardieu. Ultra-fast aliasing analysis using CLA:
A million lines of C code in a second. In ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 254–263, June
2001.

[IJT91] François Irigoin, Pierre Jouvelot, and Rémi Triolet. Semantical interpro-
cedural parallelization: an overview of the PIPS project. In International
Conference on Supercomputing, pages 144–151, June 1991.

[Iri93] François Irigoin. Interprocedural analyses for programming environments.
In Environments and Tools for Parallel Scientific Computing, pages 333–
350. Elsevier, 1993.

[KAC+96] Ronan Keryell, Corinne Ancourt, Fabien Coelho, Béatrice Creusillet,
François Irigoin, and Pierre Jouvelot. PIPS: A workbench for building in-
terprocedural parallelizers, compilers and optimizers. In European Parallel
Tool Meeting, October 1996.

[LH01] Donglin Liang and Mary Jean Harrold. Efficient computation of param-
eterized pointer information for interprocedural analyses. In Static Anal-
ysis, volume 2126 of Lecture Notes in Computer Science, pages 279–298.
Springer-Verlag, 2001.

[LPH01] Donglin Liang, Maikel Pennings, and Mary Jean Harrold. Extending and
evaluating flow-insensitive and context-insensitive points-to analyses for
Java. In ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for
Software Tools and Engineering, pages 73–79, June 2001.

[LR92] William Landi and Barbara G. Ryder. A safe approximate algorithm for
interprocedural pointer aliasing. ACM SIGPLAN Notices, 27(7):235–248,
1992.

[MDCE01] Markus Mock, Manuvir Das, Craig Chambers, and Susan J. Eggers. Dy-
namic points-to sets: a comparison with static analyses and potential appli-
cations in program understanding and optimization. In ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools and Engi-
neering, pages 66–72, June 2001.

[Muc97] Steven S. Muchnick. Advanced Compiler Design and Implementation. Mor-
gan Kaufmann Publishers, San Francisco, 1997.

[MW93] Herbert G. Mayer and Michael Wolfe. Interprocedural alias analysis: im-
plementation and empirical results. Software - Practice and Experience,
23(11):1201–1233, November 1993.

[RHS95] Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise interprocedural
dataflow analysis via graph reachability. In ACM Symposium on Principles
of Programming Languages, pages 49–61, January 1995.

[RLS+01] Barbara G. Ryder, William A. Landi, Philip A. Stocks, Sean Zhang, and
Rita Altucher. A schema for interprocedural modification side-effect anal-
ysis with pointer aliasing. ACM Transactions on Programming Languages
and Systems, 23(2):105–186, 2001.

[Ruf95] Erik Ruf. Context-insensitive alias analysis reconsidered. ACM SIGPLAN
Notices, 30(6):13–22, June 1995.

296 Nguyen T.V.N., Irigoin F.: Alias Verification for Fortran Code Optimization

[SH97] Marc Shapiro and Susan Horwitz. Fast and accurate flow-insensitive points-
to analysis. In ACM Symposium on Principles of Programming Languages,
pages 1–14, January 1997.

[Ste96] Bjarne Steensgaard. Points-to analysis in almost linear time. In ACM
Symposium on Principles of Programming Languages, pages 32–41, January
1996.

[Wal91] David W. Wall. Limits of instruction-level parallelism. ACM SIGPLAN
Notices, 26(4):176–188, 1991.

[WFPS02] Peng Wu, Paul Feautrier, David Padua, and Zehra Sura. Instance-wise
points-to analysis for loop-based dependence testing. In International Con-
ference on Supercomputing, pages 262–273, 2002.

[WL95] Robert P. Wilson and Monica S. Lam. Efficient context-sensitive pointer
analysis for C programs. In ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 1–12, June 1995.

[ZC90] Hans P. Zima and Barbara M. Chapman. Supercompilers for Parallel and
Vector Computers. Addison-Wesley, Reading, 1990.

[ZRL96] Sean Zhang, Barbara G. Ryder, and William Landi. Program decomposi-
tion for pointer aliasing: A step toward practical analyses. In ACM SIG-
SOFT Symposium on Foundations of Software Engineering, pages 81–92,
October 1996.

297Nguyen T.V.N., Irigoin F.: Alias Verification for Fortran Code Optimization

