
Optimized Temporal Logic Compilation

Andreas Krebs
(University of Tübingen, Germany

wsi@krebs-net.de)

Jürgen Ruf
(University of Tübingen, Germany
ruf@informatik.uni-tuebingen.de)

Abstract: Verification and validation are the major tasks during the design of digital
hardware/software systems. Often more than 70% of the development time is spent
for locating and correcting errors in the design. Therefore, many techniques have been
developed to support the debugging process. Recently, simulation and test methods
have been accompanied by formal methods such as equivalence checking and prop-
erty checking. However, their industrial applicability is currently restricted to small or
medium sized designs or to a specific phase in the design process. Therefore, simulation
is still the most commonly applied verification technique.

In this paper, we present a method for asserting temporal properties during simula-
tion and also during emulation of hardware prototypes. The properties under verifica-
tion are efficiently translated into an intermediate language (of a virtual machine). This
intermediate representation can then be interpreted during simulation. We may also
produce executable checkers running in parallel to the simulation. Furthermore, we are
able to translate the properties into synthesizable hardware modules which can then
be used during system emulation on FPGA-based emulators or as self test components
checking the functionality during the lifetime of the system.

Key Words: Verification, Simulation, System-Level, Temporal Logic, Emulation

Category: I.6.6, B.8.1

1 Introduction

Assuring correctness of digital designs is one of the major tasks in the system
design flow. Systems in our context are embedded hardware/software systems
such as bus arbiters, protocol controllers or microprocessors. These systems are
reactive, i.e., they are embedded in an interactive environment and have to react
within certain time bounds.

The system design starts with an abstract model describing the main func-
tionality. The extracted system components are partitioned into hardware and
software modules. These modules are then further refined until they are im-
plementable on the given target architecture respective in the given hardware
technology.

The elimination of design errors can become very expensive, especially if
errors are encountered in later design stages. Hence, it is extremely important

Journal of Universal Computer Science, vol. 9, no. 2 (2003), 120-137
submitted: 14/10/02, accepted: 14/2/03, appeared: 28/2/03 J.UCS

to find errors as early as possible.
State of the art validation techniques are simulation and test methods. Re-

cently, formal methods such as equivalence checking [Brand 1993] and model
checking [Clarke et al. 1990, Biere et al. 1999] found entrance into design lab-
oratories. Model checking is an automated method working well on small or
medium sized designs on block level and is usually applied very early in the de-
sign process. In contrast to this approach, equivalence checking has successfully
been used for verifying large designs and is the matter of choice once a design is
brought down to the gate level.

From a validation point of view, formal methods have the desired property
that one single verification run implicitly covers 100% of all test cases. The major
drawback of formal verification methods, however, is the limited size of verifiable
systems. In contrast to formal verification methods, simulation based approaches
only provide a partial test case coverage (defined by the simulated test-cases),
but do not suffer from combinational explosion and can therefore be applied to
very large systems.

Our approach aims at the verification of large systems on high levels of ab-
straction. Therefore, we have chosen a simulation based approach for validating
temporal properties. Our method checks simulation-runs during the validation
phase against one or more temporal specifications. We call this approach on-the-
fly since the property checking algorithm is directly linked to the simulator and
works like an observer during simulation.

Our approach works in two phases: In the first phase we translate the proper-
ties into an intermediate language. In the second phase, we use this intermediate
representation for different verification techniques:

1. Interpretation of the intermediate language during simulation. This approach
allows the validation of the temporal properties during simulation. We can
dynamically add and remove specifications.

2. Compilation of the intermediate language. If the properties are translated to
executable checker programs, they may be linked to the simulatable design
and may be executed very efficiently in parallel to simulation. The interpre-
tational and the compilational approach both directly reports the violation
of properties to the designer. Furthermore, both techniques may directly af-
fect the simulation, e.g. they may stop the simulation in case of a property
failure and return the simulation trace as counter example.

3. Translation of the intermediate language to hardware monitors. This tech-
nique allows the designer to generate synthesizable hardware blocks which
may be placed next to the digital hardware components of the system. These
hardware monitors may be used for checking the temporal properties during
the emulation of system prototypes on hardware emulators. This technique

121Krebs A., Ruf J.: Optimized Temporal Logic Compilation

speeds-up the simulation in software by a factor of 100 and more. Further-
more, the hardware checker components my be used as self-checking modules
acting in parallel to the final system running in its real world settings. These
modules may indicate functional failures and may switch the system into a
fail-safe state.

This paper is organized as follows: Section 2 discusses the state-of-the-art in
simulation-based verification techniques. Afterwards we present in Section 3 the
formal specification language LTL and the intermediate language which we use
for further processing. The translation of LTL formulas into the intermediate
language is subject of the Section 4. Section 6 addresses the interpretation and
the translation of the intermediate format to software or hardware monitors. We
conclude the paper with the presentation of some experimental results in Section
7 and a summary in Section 8.

2 Related work

Several approaches have been proposed in the literature for checking temporal
specifications during simulation. The method presented in [Augustin et al. 1988]
is utilized for checking event-patterns in VHDL descriptions. The patterns are
directly annotated as special comments inside the hardware description language
(VHDL). The patterns may be clustered hierarchically, i.e., a pattern may con-
tain sub patterns which have to appear in the specified order. As the patterns
can only be linearly chained, the supported logic is less expressive than the logic
introduced in this paper.

Nelson and Jones describe in [Nelson and Jones 1994] a simulation-based
checking algorithm based on a translation of the properties into finite state ma-
chines. The composition of the finite state machines is restricted to sequential
chaining of two state machines. Hence, temporal operators can only be com-
bined sequentially restricting the supported logic to temporal formulas that are
not nested. Sequential chaining is expressed by a newly introduced “THEN”
operator.

Canfield et. al. proposed in [Canfield et al. 1997] a method based on formula
manipulation. This approach checks the boolean fraction in the current simula-
tion cycle. If no violation is detected in the current cycle, the temporal operators
are unrolled by their fix-point definition and the algorithm is repeated. The ap-
proach requires less memory than approaches based on finite-state-machines.
However, the algorithm requires considerably more computation overhead in
each simulation cycle. In contrast to compilation based approaches which con-
sume the same computation time independent of the formula size, the computa-
tion overhead of the algorithm in [Canfield et al. 1997] increases with the size of

122 Krebs A., Ruf J.: Optimized Temporal Logic Compilation

the formula to check. The approach is, however, well suited in scenarios where
memory consumption is more important than simulation time.

The approach presented in [Ruf et al. 2001] uses also a translation of LTL
formulas into finite state machines. But this approach does not support neither
the translation to executable monitors nor the translation to hardware monitors.
Due to the intermediate representation used in the new approach we are able to
apply more powerful optimization techniques than used by our old approach.

Verification techniques have also been combined with test-bench genera-
tion methods and realized in commercially available tools (e.g., Specman Elite
[Verisity], TestBuilder [Cadence] or Vera [Synopsys]). All tools provide object-
oriented languages enriched with special constructs for specifying temporal be-
havior. Temporal specifications are therefore part of the test-bench in contrast
to our approach where temporal formulas can be placed inside the system de-
scription itself.

3 LTL and the intermediate language

In this section we present the language LTL used for property specification. We
also explain the intermediate language (IL) which serves as common base for the
following validation techniques.

3.1 LTL

LTL (linear time temporal logic [Emerson 1990]) is a temporal logic which is
often used for property specification (e.g. for model checking). The logic consists
of atomic propositions. These propositions are the signals of the system under
verification. For the rest of this paper, assume Props = {a, b, c, . . .} is a finite set
of distinct symbols, called the atomic propositions. Furthermore, LTL formulas
contain boolean operators (conjunction, disjunction or negation) and temporal
operators. The syntax of an LTL formula φ is recursively defined by:

φ :=
prop | ¬φ | φ ∧ φ
| X[m] φ | F[m,n] φ | G[m,n] φ | φU[m,n] φ

with prop ∈ Props, m ∈ � and n ∈ � ∪ {∞}. The X-operator assumes the
correctness of the formula φ in exactly m time steps. The F-operator assumes
the correctness of φ within m to n time steps. The G-operator guarantees that
the formula φ is true at all time steps t with m ≤ t ≤ n. φ U[m,n]ψ expresses
that ψ has to become true at t with t ∈ [m,n] and at all times v < t the formula
φ is true.

To define the formal semantics of LTL formulas over finite simulation runs
we first have to formally fix the notion of “simulation run”. We do this by
introducing traces.

123Krebs A., Ruf J.: Optimized Temporal Logic Compilation

Definition 1. A trace T [m..n] (n ≥ m) is a mapping T : {m, . . . , n} → 2Props.
If m and n are clear from the context, we often simply write T instead of T [m..n].
The set of all traces is denoted by T . The set of all traces T [0..n] with n = ∞ is
denoted by T ∞.

Definition 2. Let T [0..m], T ′[0..n] be two traces with n > m. T ′ is called a trace
extension of T iff

for all j with 0 ≤ j ≤ m : T (j) = T ′(j) (1)

LTL formulas are interpreted over traces and evaluated at certain time instances.
We first define the semantics of LTL for infinite traces.

Definition 3. Let T ∈ T ∞ be an infinite trace and f, g are two LTL formulas.
The satisfiability relation |=i for a time instance i ≥ 0, is defined recursively over
the structure of the LTL formulas:

T |=i a if a ∈ T (i)
T |=i ¬f if T �|=i f

T |=i f ∧ g if T |=i f and T |=i g

T |=i X[m]f if T |=i+m f

T |=i G[m,n]f if for all j with i+m ≤ j ≤ i+ nholds that T |=j f

T |=i F[m,n]f if there ex. a j with i+m ≤ j ≤ i+ n such that T |=j f

T |=i fU[m,n]g if there ex. a j with i+m ≤ j ≤ i+ n

such that T |=j g and for all i ≤ k < j.T |=k f

The standard temporal operators (F,G,U) are special cases of the timed op-
erators by instantiating m,n with 0 and ∞, respectively. We now define the
semantics of LTL in terms of a satisfiability relation.

Definition 4. Let f be an LTL formula and T ∈ T ∞ be a trace. T is called to
satisfy f (written as T |= f) iff

T |=0 f. (2)

We now interpret LTL formulas over finite traces.

Definition 5. Let T [0..n] be a trace and f be an LTL formula. f is called true
with respect to T (denoted by T |= f) if for all trace extensions T ′[0..∞] of T
holds that T ′ |= f . f is called false with respect to T if there exists no trace
extension T ′[0..∞] of T such that T ′ |= f . Otherwise f is called pending.

The abstract formulas in LTL have the disadvantage that they cannot be checked
directly in a linear way. An easy example would be “(X a) ∨ b”, where “b” has
to be checked first and “a” in the following time step. Considering a formula like
“((F a) ∧ b) ∨ ((F c) ∧ ¬ b)” we have to check different expressions in future
time steps depending on the values of “previous” ones. So we have to convert an
LTL formula into a “linear” language.

124 Krebs A., Ruf J.: Optimized Temporal Logic Compilation

3.2 The intermediate language

We use an intermediate language to capture all possible behaviors of the property
in an efficient way and to minimize the representation of the formal specification
before starting the validation process. Figure 1 shows the overall idea behind
our approach.

The advantage of this process is that we can interpret or convert the inter-
mediate language very fast, while the cost of transforming the LTL Formula into
this language has to be done only once and does not depend on the simulation.
The process is split into two parts “Stage 1” transforming the LTL formula into
the intermediate language and “Stage 2” the interpretation or conversion.

LTL Formula
F (a and X b)

Intermediate Language
L0: BRA a,L1,L3
L1: WAIT 1
L2: BRA b,TRUE,L0
L3: WAIT 1
L4: BRA a,L1,L3

Interprete

Compile to
native code

Generate
 Hardware
 Description

Stage 1 Stage 2

Figure 1: The two phase translation process

The basic commands of our intermediate language are:

WAIT n Wait n time steps
BRA t Branch to target t
RET [TRUE|FALSE] Return true|false.
CMP c Compare c to 0
BEQ t If the last comparision ’CMP c’ succeeded

branch to target t, continue otherwise.
BNE t If the last comparision ’CMP c’ failed

branch to target t, continue otherwise.
REQ [TRUE|FALSE] If the last comparision ’CMP c’ succeeded

return true|false, continue otherwise.
RNE [TRUE|FALSE] If the last comparision ’CMP c’ failed

return true|false, continue otherwise.

The conditional branching statements are always accompanied by a compare
statement. For a fast access, the signals used for conditions are encoded by an
integer index.

We introduce compound commands which are a combination of multiple
basic commands. The program shown in Algorithm 1 is internally represented

125Krebs A., Ruf J.: Optimized Temporal Logic Compilation

by a single command with 2 arguments “4” and “a”, but even if you disassemble
a program like this, the command is expanded. There exist up to 128 different
compound statements which can be statically defined before the compilation
Unless it is needed for optimization purposes, we will not make a difference
between basic commands and compound commands.

Algorithm 1 Check X[4] a
0000: 6e 04 0000
WAIT 4
CMP v
RNE TRUE
REQ FALSE

4 Transformation of LTL into IL

First the formula is parsed and a complete top-to-bottom flow analysis is done.
We will construct the IL program bottom to top according to the parse tree.
We already have to optimize the code at conversion time in order to reduce the
space need and to be more efficient.

4.1 Single variable

A variable “v” with index 0000 can be converted to the statement:

Algorithm 2 Check a single Variable
0000: 6e 00 0000
CMP v
RNE TRUE
REQ FALSE

4.2 Not operator

The not-Operator will transform the program by exchanging the branch targets
“true” and “false”.

4.3 Wait operator

The implementation of “X” is also very easy, we simply prepend a wait command
to the program.

126 Krebs A., Ruf J.: Optimized Temporal Logic Compilation

Algorithm 3 X-Operator
WAIT 1
... // remaining program

4.4 And operator

The following operation is more complex, but the basic algorithm will be the
same for all the missing operators. This algorithm merges several programs to one
new program by explicit unrolling parallel executions of the different programs.
This operation is used to handle the binary and the other temporal operators of
LTL.

We use multiple PCs to traverse the multiple programs or the same program
at different positions to construct the new program (see Figure 2). We demon-
strate the translation through an example by means of the “and” operator.

P1 P2

PC1

PC2

new program

Figure 2: Tracing two programs at the same time

Assume we have the LTL formula “X (a ∨ b)” (P1, Algorithm 4) and “a ∧
X b” (P2, Algorithm 5) already converted to the programs (the variable a has
index 0000 and b has index 0001).
We simulate both programs P1 and P2 to be executed in parallel. For that
we form the set of execution environments (ENVs) consisting only of the PC
(program counter) and the W (wait) register. The set of environments to start
with is {(P1:0000,0), (P2:0000,0)}. Now we merge the programs by executing
the commands of P1 and P2 in turns.

In order to decide which command goes first we introduce an ordered relation
upon the set of all possible ENVs of P1 and P2. This order basically sorts the
commands in a way that this statement comes first which would be executed

127Krebs A., Ruf J.: Optimized Temporal Logic Compilation

Algorithm 4 P1
0000: 20 01
WAIT 1
0002: 6d 00 0000
CMP 0
RNE TRUE
0008: 6e 00 0001
CMP 1
RNE TRUE
REQ FALSE

Algorithm 5 P2
0000: 66 00 0000
CMP 0
REQ FALSE
0006: 7e 01 0001
WAIT 1
CMP 1
RNE TRUE
REQ FALSE

next if the programs were executed in parallel. We discuss this relation later in
detail.

We choose the smallest command from our ENVs: because the command at
P1:0000 is a wait and P2:0000 has to be executed at this time step, we first
append P2:0000 (P2:0000¡P1:0000).

Algorithm 6 P1 and P2 (Step 1)
0000: 66 00 0000 (P1:0000,0)(P2:0000,0)
CMP 0
REQ FALSE

The “REQ FALSE” statement is kept because if one expression is false the
whole expression is false (its a conjunction). The new ENVs are {(P1:0000,0),
(P2:0006,0)}.

Now we have to wait for both commands since each wait register is smaller
than the steps we have to wait. We simulate one time step by incrementing all
wait registers and proceed with the ENVs {(P1:0000,1), (P2:0006,1)}.

The register W is now large enough to execute P1:0000 or P2:0006 next, but
according to our order relation we choose P1:0000 (because the variable that has
to be compared next in this thread is smaller).

128 Krebs A., Ruf J.: Optimized Temporal Logic Compilation

Algorithm 7 P1 and P2 (Step 2)
0000: 66 00 0000 (P1:0000,0)(P2:0000,0)
CMP 0
REQ FALSE
0006: 74 01 0000 ???? (P1:0000,0)(P2:0006,0)
WAIT 1
CMP 0
BEQ (P1:0008,0)(P2:0006,1)

We cannot simply return true if the condition (P1:0002:CMP 0) is true (the main
operation is a conjunction), so we will follow this thread, which forces us to add
a jump point to where we check the case that the condition (P1:0002:CMP 0)
is false. The wait statement has automatically integrated in the new statement.
Notice that we only decrement the W for the ENV of P1 since we did not yet
process the wait statement of P2.

Since we continue with the thread that (P1:0002:CMP 0) is true, we only have
to follow (P2:0006,1). We can simply copy all commands that can be reached
from (P2:0006,1). We have to drop the wait statement of P2:0006 because W is
already 1 which means that P2 is already in the correct time step.

Algorithm 8 P1 and P2 (Step 3)
0000: 66 00 0000 (P1:0000,0)(P2:0000,0)
CMP 0
REQ FALSE
0006: 74 01 0000 ???? (P1:0000,0)(P2:0006,1)
WAIT 1
CMP 0
BEQ (P1:0008,0)(P2:0006,1)
0010: 6e 00 0001 (P2:0006,1)
CMP 1
RNE TRUE
REQ FALSE

We now have to follow the thread we did not follow yet. So we restore the ENVs
to {(P1:0008,0), (P2:0006,1)}.

Both commands can be executed without a wait, and they compare the same
variable b, so they can be executed in one command. We add a conditional branch
statement that compares b. If b is true both statements would return true, so
we will also return true (actually we drop all statements that return true as
described before and get the empty set of ENVs and because of this we return
true). If b is false both statements would return false, so we will also return false
(also if only one of the statements would return false we return false).

129Krebs A., Ruf J.: Optimized Temporal Logic Compilation

Algorithm 9 P1 and P2 (Step 4)
0000: 66 00 0000 (P1:0000,0)(P2:0000,0)
CMP 0
REQ FALSE
0006: 74 01 0000 ???? (P1:0000,0)(P2:0006,1)
WAIT 1
CMP 0
BEQ (P1:0008,0)(P2:0006,1)
0010: 6e 00 0001 (P2:0006,1)
CMP 1
RNE TRUE
REQ FALSE
0016: 6e 00 0001 (P1:0008,0)(P2:0006,1)
CMP 1
RNE TRUE
REQ FALSE

Now we have followed all threads. There is one case that did not appear in this
sample if we detect at any stage that the set of ENVs already exists in the
resulting algorithm we insert a goto statement to that location. This operation
might introduce loops.

In the final step we “link” the program by removing the symbolic targets and
replace them with the absolute addresses.

Algorithm 10 P1 and P2 (Step 5)
0000: 66 00 0000
CMP 0
REQ FALSE
0006: 74 01 0000 0016
WAIT 1
CMP 0
BEQ 0016
0010: 6e 00 0001
CMP 1
RNE TRUE
REQ FALSE
0016: 6e 00 0001
CMP 1
RNE TRUE
REQ FALSE

4.5 Other operators

In a similar way we can implement the “or” operator. For the “G” and “F”
operator we use a list of ENVs to traverse the program, starting with the list
that contains only the initial ENVs. Whenever we wait one time step we add the
initial PC to the list of ENVs. In this way we simulate “e ∧ X e ∧ X X e ∧ ...”
for “G e” (“e ∨ X e ∨ X X e ∨ ...” for “F e”). For the time bounded operator

130 Krebs A., Ruf J.: Optimized Temporal Logic Compilation

we interrupt this unrolling if the time bound is reached. Operators, including
unbounded once, only need to be unwound finitely often, because the number of
new instructions is limited by the power set of the old instructions.

With these commands we also implemented a limited “U” (until) Operator.
One operand of the until operator has to be a boolean expression. There exists
an experimental implementation allowing instead of a boolean expression a time
limited temporal expression, i.e., unlimited “G”, “F” or “U” are excluded as
operands of an until operator.

5 Optimizations

Before we further operate on the intermediate language programs for validation,
we apply some optimizations to reduce program size or execution speed. These
optimizations are divided in two classes: optimizations to decrease compile time
and optimizations to increase execution speed.

5.1 Compilation time optimizations

The most direct optimization during compilation time is to store already com-
piled expressions or subexpressions and reload them if they are used in other
expressions. The recognition of expressions is modulo variable names, i.e., many
small expressions may be found quickly. The cache can also be written to hard
disk, in order to provide a precompiled set of often used specifications.

One of the most important optimizations is that the commands in the pro-
grams are “ordered”. If during one time step two variables are checked e.g. “a ∧
b” we will always check “a” first. So the expressions “a ∧ b” and “b ∧ a” com-
pile to the exact same IL code. This allows us to merge the conditional branches
very effectively during the compilation. Another effect of this ordering is that
every variable is checked at most once during a time step. The variables within
one time step are ordered by their index. This allows the merge operation to
generate small and fast programs.

The second optimization is used after the execution of “some” compilation
steps. It searches for traces that return equal results and merges them. This
optimizations takes very long. Therefore we apply it only after a heuristically
determined number of compilation steps or if the operation that was last com-
piled usually creates a lot of equal traces e.g. “G”, “F” or “U”. The problem with
this optimization is that we first have to compile the full expression and then
reduce its size, i.e. for statements like: “G a → F[20] b”, this optimization does
not improve compilation time unless the expression is used as a subexpression
in another formula. But in any case it reduces the program size. An experimen-
tal version of this optimization runs during compilation time. It uses additional
information about traces, and makes it therefore possible to reduce the size of

131Krebs A., Ruf J.: Optimized Temporal Logic Compilation

the result. In the example “G a → F[20] b” the subexpression “F[20] b” creates
the information that it contains a trace of 21 consecutive statements, that it can
only become true under the condition that “b” is true, and that otherwise it will
fail.

Another way to speed up compilation time is to compile only parts of the
expression. The remaining parts will be interpreted. This means that at execution
time a dynamic set of ENVs has to be handled. Sticking to the example above the
“a → F[20] b” operation would generate code that checks “F[20] b” each time “a”
is true. And returns true/false/pending according to the results of “F[20] b”. Of
course this forces us to use multiple execution environments since multiple “F[20]
b” expressions might be executed in the same turn. So this will reduce execution
time by large if “a” is very often true. But if we know that “a” is not very often
true and/or the expression is very long, the increase in compilation time is worth
the reduction in execution time. For instance, to compile the formula “G(a →
X[20] b)” needs 220 = 1048576 statements! The formula “a → X[20] b” needs 2
statements. In this situation it is worth to interpret the outermost G operator
to avoid the blowup in the program size. Currently the user has to specify when
interpretation is preferred over compilation. Therefore we have introduced some
new operations forcing the compiler to use interpretation, e.g. the expressions
above becomes “F[20] b when a”.

5.2 Execution time optimizations

Multiple operations may be packed to one compound command. Especially the
combination WAIT, CMP, BNE/RNE, BEQ/REQ occur very often and there-
fore we reduced these combinations to one compound statement.

Assume we have an LTL expression “exp” that always has to be true if a
certain signal “a” is true. The LTL expression will be “G a → exp”. Depending on
the index of the signal “a” and the signals in exp, the left side of the implication
might be checked before the right side or vice versa. To support the compiler
by optimizing formulas which are often evaluated to true or to false, we added
special hint operators. For instance “a |→ b” (if a is false most of the time) or
“a →| b” (if b is true most of the time). Similar hints can be given for the other
operators. The compiler uses these hints to order the evaluation of variables
in the most efficient way. Another possibility is to count the frequency certain
variables are true or false. For instance most interrupt signals of a CPU are
normally false, where a clock signal is 50% of the time false and 50% of the time
true.

In certain situations optimization may cut down execution time extremely.

132 Krebs A., Ruf J.: Optimized Temporal Logic Compilation

6 Interpretation and conversion

In this section we describe different techniques which can be applied to the
intermediate language programs. These techniques are used for the simulation-
or emulation-based verification of hardware/software systems.

Interpretation of the intermediate language is very easy and straightforward.
We need two variables the PC and a wait register W.

Depending on the interface we can either follow the control flow and actively
wait when we reach a wait statement, or return with result pending. In most
cases the interpreter will be called once every time step, so we have to return
when we reach a wait statement. We will use W to wait multiple time steps at
a wait statement with a parameter greater than 1.

The other way is to compile the intermediate language to native machine
code. Since all CPUs, even simple ones, contain at least one register for W and
can handle conditional branches, this again is very straightforward.

A third possibility is to convert the intermediate language into a hardware
description. We will show a very simple way of doing this on the previous example
Algorithm 5.

The final hardware monitor contains one “start” signal for launching the
checking process and one “clock” for triggering all internal flip-flops. For each
signal used in the formula, there is one input to the checker. The output signals
“true” and false indicate the cuccess or the failure of the checking process. The
main checker circuit is depicted in Figure 3 a).

Figure 3 b) shows the mapping of IL-commands to hardware elements. We
need a 2-multiplexer for every conditional branch and a delay register (edge
triggered flip-flop) for every wait statement. We can also use the first and the
second hardware blocks for REQ, RNE and RET respectively. In this case we
have to connect the targets with the true or the false output. We connect the
“start” signal to the first component. If n different branch commands of the
program have the same target it is necessary to introduce an or-gate with fan-in
n to collect all branch activations.
We connect the components according to the control flow. The resulting circuit
of Algorithm 5 is shown in Figure 4.
Similar to the interpretation option used to reduce the compile time, we can
apply this option in the hardware circuit. The idea is to start the checking process
in several consecutive clock cycles. Since the signals propagate in a pipeline
manner through the circuit we do not get any interference between the checking
signals started in different clock cycles. This technique is best demonstrated by
means of an example. consider a formula with an outermost G operator. This
formula has to hold in each clock cycle. So we do not compile the G-operator
into the hardware but we assert the start signal in each clock cycle. If once the

133Krebs A., Ruf J.: Optimized Temporal Logic Compilation

main
circuit

b)a)

v

CMP v
BEQ target1
BNE target2

BRA target

WAIT n

input

input

input

target1

target2

target

target2n∆

clock

MUX 1:2

false

design signals

true

start

clock

...

Figure 3: Basic blocks for hardware translation

∆1

b

true

false
MUX 1:2

MUX 1:2

a

clock

start

Figure 4: Final checker circuit

false output becomes active, we know that there were a violation of the formula
under consideration.

7 Experimental results

For performing some experimental results we have implemented our approach
in C++. We have coupled the IL-compiler with the SystemC simulation ker-
nel [Grötker et al. 2002]. The checker interface is accessed via a set of library
functions. LTL specifications may directly be placed in the system description.

We have executed some experiments by means of a scalable arbiter circuit
specified in SystemC. This circuit is described in [Ruf et al. 2001]. The circuit
controls the mutual exclusive access of multiple components to a shared resource
(e.g. a bus). The arbiter combines a priority access control with a round robin
schedule for guaranteing the fairness. The circuit consists of one arbitration cell
for each accessing component. These cells are connected in a regular way.

For each arbiter cell we checked: “G (reqi → (F[2n] acki)) ∧ (acki → reqi)”.
In order to see any compile times at all, the compiler cache was disabled. With

134 Krebs A., Ruf J.: Optimized Temporal Logic Compilation

more arbiter cells the compilation time is actually increasing linear, but the
circuit simulation time increases over proportional. The execution time is zero
because it is too small for measurements. Our results do not show measurable
run-time difference between interpretation of the IL programs or compilation
into native C++-code. The total run time was about 20-300 seconds and the
execution time of all runs was less then 1/100 second. The results are shown in
Table 1.

A second example was the micro controller interface for the I2C-protocol
[Philips 2000] used for on-chip communication. We verified an abstract system
description consisting of two nodes connected to the I2C-bus. We have checked
the following LTL expressions:

– The I2C-bus is a pull-down bus, i.e. a low input signal pulls down the bus
signal to a low voltage value:
“G(¬sclo0 → ¬sclo)”, “G(¬sclo1 → ¬sclo)”,
“G(¬sdao0 → ¬sdao)”, “G(¬sdao1 → ¬sdao)”

– Every starting frame on the bus will eventually be terminated.
“G((sdao ∧ sclo ∧ X (¬sdao ∧ sclo)) → F (sclo ∧ ¬sdao ∧ X (sclo ∧ sdao)))”

The compilation time with enabled formula cache and the run-time overhead are
zero.

We have investigated other real-world systems with our approach, e.g. a
holonic material transport system, a radio-based railway crossing or a micro
controller interface for sequential communication.

For examining our compiler, we checked the comile times for different formu-
las. The results are shown in Table 2.
The last three examples show a formula producing an exponential amount of
commands. Since the only register is the program counter, it contains all infor-
mation about the values of “a” in the last 8, 12, 16 time steps. This blow-up can
be avoided by the interpretation optimization technique.

number of arbiter cells 10 20 30 40 50 60 100 160
compilation time
overhead (%) 21.3 22.6 20.6 17.8 18.3 16.7 13.5 10.0
execution time
overhead (%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 1: Runtime overhead caused by the compilation (without caching) and
checking (compared to pure simulation runtime)

135Krebs A., Ruf J.: Optimized Temporal Logic Compilation

formula compilation time

G((a ∧ c ∧ X(¬a ∧ c))→F(c ∧ ¬a ∧ X(c ∧ a))) 0.01 seconds
G((a ∧ c ∧ X(¬a ∧ c))→F[8](c ∧ ¬a ∧ X(c ∧ a))) 0.01 seconds
G[10]((a ∧ c ∧ X(¬a ∧ c))→F[8](c ∧ ¬a ∧ X(c ∧ a))) 0.01 seconds
G((a → F b) ∧ (c → d ∨ X[5] e)) 0.06 seconds
G ((e ∧ b) → ((a ∧ X[3] b) ∨ (c → d ∨ X[3] e))) 0.03 seconds
G (a → X[8] b) 0.01 seconds
G (a → X[12] b) 0.13 seconds
G (a → X[16] b) 3.63 seconds

Table 2: Compile times for different formulas

8 Conclusion

We have presented a simulation-based approach for checking temporal asser-
tions (LTL formulas) in digital hardware/software systems. LTL formulas are
translated to an intermediate language. This intermediate language may be in-
terpreted or compiled for a simulation-based system validation. The intermediate
language may also be translated to hardware observers for emulation-based ver-
ification or for built-in self testing units.

We have presented a number of optimization strategies to decrease the inter-
mediate language program size and to speed up the validation process. By means
of real-world case studies we have shown the practicability of our approach.

For future work we plan to integrate further optimization strategies and we
will extend the input language to industrial standards like sugar [Sugar 2001].
We also plan to extend this approach to branching time logic by collecting the
simulation results of different runs.

References

[Augustin et al. 1988] L.M. Augustin, B.A. Gennart, Y. Huh, D.C. Luckham, and A.G.
Stanculescu. Verification of VHDL designs using VAL. In Design Automation
Conference (DAC). ACM/IEEE, 1988.

[Sugar 2001] Ilan Beer, Shoham Ben-David, Cindy Eisner, Dana Fisman, Anna
Gringauze, and Yoav Rodeh. The temporal logic sugar. Lecture Notes in Computer
Science, 2001.

[Biere et al. 1999] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan
Zhu. Symbolic model checking without BDDs. In Tools and Algorithms for Con-
struction and Analysis of Systems, 1999.

[Brand 1993] D. Brand. Verification of Large Synthesized Designs. In IEEE/ACM
International Conference on Computer Aided Design (ICCAD), Santa Clara, Cal-
ifornia, November 1993. ACM/IEEE, IEEE Computer Society Press.

136 Krebs A., Ruf J.: Optimized Temporal Logic Compilation

[Clarke et al. 1990] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J.
Hwang. Symbolic Model Checking: 1020 States and Beyond. In IEEE Sympo-
sium on Logic in Computer Science (LICS), Washington, D.C., June 1990. IEEE
Computer Society Press.

[Canfield et al. 1997] W. Canfield, E. Emerson, and A. Saha. Checking formal specifi-
cations under simulation. In International Conference on Computer Design (ICCD
’97). IEEE Computer Society Press, 1997.

[Emerson 1990] E.A. Emerson. Temporal and Modal Logic. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B, Amsterdam, 1990. Elsevier
Science Publishers.

[Grötker et al. 2002] T. Grötker, S. Liao, G. Martin, and S. Swan. System design with
SystemC. Kluwer Academic Publishers, 2002.

[Nelson and Jones 1994] B.E. Nelson and R.B. Jones. Simulation event pattern check-
ing with proto. In SHDL 1994, 1994.

[Philips 2000] Philips Semiconductor. The I2C-Bus Specification Version 2.1, January
2000. http://www.semiconductors.philips.com/buses/i2c/facts.

[Ruf et al. 2001] J. Ruf, D. W. Hoffmann, T. Kropf, and W. Rosenstiel. Simulation-
guided property checking based on multi-valued AR-automata. In Design Automa-
tion and Test in Europe (DATE). IEEE Conmputer Society Press, 2001.

[Synopsys] www.synopsys.com.
[Cadence] www.testbuilder.net.
[Verisity] www.verisity.com.

137Krebs A., Ruf J.: Optimized Temporal Logic Compilation

