
A Case Study in Verification of UML Statecharts:

the PROFIsafe Protocol

R. Malik
Department of Computer Science, University of Waikato

Hamilton, New Zealand
robi@cs.waikato.ac.nz

R. Mühlfeld
Siemens Corporate Technology, CT SE 5
Postfach 3220, 91050 Erlangen, Germany

reinhard.muehlfeld@siemens.com

Abstract: We discuss our experience obtained during the PROFIsafe verification and
test case generation project at Siemens Corporate Technology. In this project, a for-
mal analysis of the PROFIsafe protocol for failsafe communication has been carried
out. A formal model based on finite-state machines has been obtained from the UML
specification of the protocol. This model has been analysed with formal verification
techniques, and several important properties have been proven. Based on the verified
model, a set of test cases for the automatic execution of conformance tests has been
derived. The paper explains how the UML statecharts defining the PROFIsafe proto-
col are translated into finite-state machines, and points out important aspects and
problems occurring during the modelling and verification of industrial applications.

Key Words: Reliability, Verification.

Categories: C.2.2 [Computer-Communication Networks]: Network Protocols—proto-
col verification; D.2.2 [Software Engineering]: Design Tools and Techniques—state dia-
grams; D.2.4 [Software Engineering]: Software/Program Verification—model checking.

1 Introduction

In this paper, we discuss the verification and test case generation of the industrial
field bus protocol PROFIsafe [10]. This protocol has been analysed in a project
at Siemens Corporate Technology, using the VALID Toolset as a model checking
environment. A preliminary report on the project has been presented in [8].

The PROFIsafe protocol, which is used for failsafe communication in indus-
trial field bus systems, must provide a very high level of reliability. Therefore,
several measures are taken in order to ensure the correctness of the protocol
specification. The formal analysis using model checking is one of these mea-
sures. As another measure, a certified testing environment is being set up in
order to ascertain that implementations of the protocol conform to the verified
specification.

The behaviour of the PROFIsafe protocol is specified by means of UML state-
charts. Its verification therefore leads to the general problem of verifying UML

Journal of Universal Computer Science, vol. 9, no. 2 (2003), 138-151
submitted: 14/10/02, accepted: 14/2/03, appeared: 28/2/03  J.UCS



statecharts, which has been addressed by several other researchers [6, 7, 12].
For example, [6, 12] describe a translation of general UML statecharts into
PROMELA for verification by the SPIN model checker [5]. In contrast, the speci-
fications to be verified in our project use only a small subset of UML statecharts.
This does not only enable us to use a simpler translation procedure; it also avoids
several ambiguities encountered when dealing with general UML statecharts.

This paper is organised as follows. In Section 2, we introduce the PROFIsafe
specification and the statecharts used. Afterwards, in Section 3, we discuss the
abstraction steps needed in order to obtain a formal model of the protocol.
In Section 4, we describe the translation process used to transform the UML
statecharts into the finite-state machines used by the model checker. In Section 5,
we explain which properties of the protocol were verified and present some of the
results. In Section 6, we show how test cases were generated from the verified
protocol. Finally, Section 7 contains some concluding remarks.

2 The PROFIsafe Protocol

The PROFIsafe protocol [10] is used for failsafe communication between two
agents using an insecure communication medium. The aim of failsafe commu-
nication is to ensure that two communication partners always enter a defined
safe state in the event of any communication failure. This is important in many
technical systems for which a high level of safety is required.

Although originally defined as an extension of the PROFIBUS field bus proto-
col [4], the PROFIsafe protocol can be used to establish failsafe communication
based on any underlying communication medium. Independently of the commu-
nication medium, it is designed to ensure a maximum error rate of one unnoticed
fault in 109 hours of operation [10].

The protocol defines communication between two distinguished communica-
tion partners, called host and slave, who exchange messages via the underlying
communication medium, called grey channel (Figure 1). The host usually runs
on a controlling computer, while the slave typically runs on a technical device
which is controlled by the host. Two kinds of slaves are considered: an input
slave represents a field device collecting data, e.g. a sensor, whereas an output
slave merely consumes data received from the host.

The protocol specification makes no assumptions about the grey channel,
which may produce all kinds of communication failures, such as delay, modifica-
tion, duplication, or loss of messages. However, in most practical applications,
such errors are assumed to occur only sparsely. The objective of PROFIsafe is
to detect these sparse failures, should they occur, and to switch host and slave
to their defined safe states before the fault can cause any harm.

The PROFIsafe profile [10] defines a new layer of failsafe communication by
specifying two new components called F-host and F-slave. The ‘F’ in F-host

139Malik R., Muehlfeld R.: A Case Study in Verification of UML Statecharts ...



Figure 1: PROFIsafe architecture.

and F-slave is used throughout the PROFIsafe profile to identify the ‘failsafe’
components introduced. These components use the grey channel as an underlying
communication medium, and provide a means of failsafe communication to their
users, represented by the application processes of the host and slave (Figure 1).

The basic idea of the protocol consists of sending acknowledgements and
monitoring live signs in the form of consecutive numbers in combination with
timers. To this end, the PROFIsafe profile defines the following additional infor-
mation to be put into all messages sent via the insecure grey channel.

Consecutive number. Each message is equipped with a consecutive number,
which is used by the recipient for monitoring the life of the sender and
the communication link. Both communication partners continuously check
whether the other partner manages to update the consecutive number before
a defined watchdog time has elapsed.

Eight bits are reserved for the consecutive number. The value 0 is used only
for the first protocol cycle. Afterwards, the consecutive number runs in cyclic
mode from 1. . . 255, wrapping over back to 1 at the end.

CRC2 checksum. Each message is equipped with an additional CRC check-
sum. This checksum is used to detect spurious or corrupted messages, which
may have slipped unnoticed through the grey channel.

Status byte. Each message sent from the F-slave to the F-host contains an
additional status byte, with individual bits reserved for the different possible
faults. In this way, the F-slave informs the F-host that it has detected a
certain error, e.g. a CRC fault.

140 Malik R., Muehlfeld R.: A Case Study in Verification of UML Statecharts ...



Figure 2: The statechart defining the behaviour of the PROFIsafe F-host.

The PROFIsafe profile [10] describes the behaviour of the PROFIsafe F-host
and F-slave by means of UML statecharts. As an example, Figure 2 shows the
statechart defining the behaviour of the PROFIsafe F-host.

The statecharts used here are very simple, exploiting only few features of the
rich statecharts language provided by UML [9]. For example, there is no state
hierarchy, and there are no entry, exit, or internal actions associated to states.
In this way, the model remains very clear and avoids the ambiguities related
to advanced features of UML statecharts [6, 12]. Also, the developers of this
specification can be very sure that it will be interpreted in the same way by
different readers and UML tools.

Activity states, in which a communication partner is waiting for new messages
to arrive, are highlighted in the PROFIsafe state diagrams (Figure 2). In this
way, the synchronisation constraints are made explicit.

3 Creating a Formal Model

In order to verify the protocol specification, a rigorous formal model needs to
be extracted from the statecharts. Most of the transitions in the statecharts
(Figure 2) contain verbal descriptions, which still require interpretation by a

141Malik R., Muehlfeld R.: A Case Study in Verification of UML Statecharts ...



human. Therefore, the first step involves adding the formal details which are
missing in the semi-formal guards and actions labelling the transitions.

We also need to abstract from some of the data used by the protocol, and
we need to introduce a simple description of the behaviour of the grey channel.
These tasks are not only needed in order to cope with the complexity of the
model, but also to obtain a meaningful verification model at all.

We use the following data abstractions.

– The verification model abstracts away from all user data. It deals only with
the logic behaviour of the two communication partners; it cannot be checked
whether any data values are transferred correctly.

– The CRC2 checksum, which in the real model is an integer of 16 or 32 bits,
is not modelled explicitly. Instead, it is replaced by a single bit, containing
only the information whether a message contains a correct or an incorrect
checksum. This completely suffices to analyse the logic behaviour of the
protocol, but of course makes it impossible to analyse the correctness of the
CRC computation algorithm.

– The verification model assumes a maximum consecutive number of 3 or 4,
thus considering only a small part of the original range from 0 to 255.

This simplification is justified as follows. A finite range of consecutive num-
bers causes problems when the wrap-over from the maximum value back
to 1 occurs too quickly, so that a message from the next cycle of consecu-
tive numbers is wrongly taken for a duplicate. Obviously, this problem is
more likely to occur if the range of possible consecutive numbers is reduced.
Therefore, if we can verify that a model with only 4 different consecutive
numbers does not have any problem, we can conclude that the same model
with 256 different consecutive numbers also behaves correctly.

In order to perform formal verification, it also is essential to formalise the
behaviour of the environment in which the system to be verified runs, i.e. the
grey channel. The behaviour of the grey channel is described verbally in the
PROFIsafe profile [10]. For verification purposes, we need a formal model of
the underlying communication medium which includes the possibility of the
communication faults to be considered.

We use a grey channel of limited buffering capacity which can delete, modify,
and duplicate messages, and produce spurious messages. However, if a message
is modified or a spurious message is produced, we assume the CRC2 checksum of
the delivered message to be incorrect. This reflects the assumption that corrupted
messages occur randomly, and are not introduced maliciously. Since PROFIsafe
is only required to protect a system from technical faults, this is a reasonable
assumption.

142 Malik R., Muehlfeld R.: A Case Study in Verification of UML Statecharts ...



In any verification task, it is essential to identify and formalise such additional
assumptions. Without the above assumption, it would be impossible to prove any
useful property of the PROFIsafe protocol.

Most verification tasks of industrial applications require similar kinds of ab-
straction and additional modelling. Unfortunately, carrying out this abstraction
is a difficult task which cannot be performed automatically. The authors be-
lieve that this is one of the major obstacles preventing formal verification from
becoming commonly used in industry.

4 From UML Statecharts to Finite-State Machines

We use the model checker of the VALID Toolset to verify the PROFIsafe proto-
col. The VALID Toolset, developed at Siemens Corporate Technology, supports
the modelling, verification and code generation of finite-state machines as de-
scribed in [1, 2, 11, 13]. Accordingly, the formalised and abstracted statecharts
specifying the PROFIsafe protocol are translated into appropriate finite-state
machines.

The framework used by the VALID Toolset is that of discrete-event systems
(DES) [11, 13]. In this context, a finite-state machine is defined to be a 5-tuple

G = (Σ, Q, δ, q0, Qm),

where Σ is an alphabet of events, Q is the state set (assumed finite and non-
empty), δ: Q × Σ → Q is the transition function, q0 ∈ Q is the initial state,
and Qm ⊆ Q is the set of marked or terminal states. The transition function
δ: Q×Σ → Q is defined at each state q ∈ Q only for some of the events σ ∈ Σ,
i.e. δ is a partial function.

Such finite-state machines can be represented graphically as a state transition
graph (e.g. in Figure 3). States are represented as nodes, with the initial state
highlighted by a thick border, and marked states coloured grey. The transition
function δ is represented by directed edges between states: the graph contains
an edge labelled σ from a state q1 to state q2 whenever δ(q1, σ) = q2.

Multiple finite-state machines can be composed by synchronisation on com-
mon events. All synchronised state machines repeatedly agree on an event to be
executed next, and simultaneously perform the corresponding state transition.
A state transition using an event σ can only take place, if all synchronised state
machines which have σ in their event alphabet allow the event σ to occur, i.e. if
the transition function δ is defined for the event σ at the current state.

For more details on synchronous composition and other concepts from the
theory of discrete-event systems, please refer to [2, 11, 13]. The framework of
finite-state machines used here can be considered as a very restricted subset of
UML statecharts. There are no variables, guards, or assignments; only simple
events can be used for synchronisation.

143Malik R., Muehlfeld R.: A Case Study in Verification of UML Statecharts ...



t 7 8

t 7 5

t 4 8

t 4 5

t 6 11

t 6 7

t 6 4

t 6 6

t 8 9

t 9 9

t 9 10

t 9 8

t 3 8

t 3 4

t 3 3

t 2 3

init

t 10 8

t 10 5

t 1 8
t 1 2

t 11 11
t 11 8

t 5 6

s6 await slave ack
s9 await slave ack

s10 slave ack check

s5 message prepare s4 slave ack check

s8 message prepare

s11 wait delay time

s0 init

s1 system start

s7 slave ack check

s2 message prepare

s3 await slave ack

Figure 3: Finite-state machine derived from PROFIsafe F-host statechart.

In order to obtain a set of finite-state machines from the UML statecharts
constituting the PROFIsafe specification, we perform a two-step translation. In
the first step, we create one finite-state machine from each statechart, by deleting
all guards and actions from the transitions and replacing them by event labels.
For example, the statechart in Figure 2 is replaced by a finite-state machine as
shown in Figure 3.

This step apparently removes all data dependencies from the transitions.
The synchronisation constraints described by the guards and actions on the
transitions are introduced into the model by adding one state machine for each
variable used in the statechart.

As an example, consider the variable representing the CRC2 checksum of
the last message received by the F-host. After data abstraction, this variable is
modelled as a flag, called in CRC, which is set if the last message had a correct
CRC2 checksum.

This variable is represented by a finite-state machine with three states as
shown in Figure 4. There are two states ok and nok representing the situation
that the flag in CRC is on or off, plus an additional state init representing a flag
with initially undefined value. The flag in CRC can change its value when a mes-

144 Malik R., Muehlfeld R.: A Case Study in Verification of UML Statecharts ...



t 10 8
t 4 8
t 7 8
rcv.*.*.*.*.nok rcv.*.*.*.*.ok

init init

rcv.*.*.*.*.nok
t 10 5
t 4 5
t 7 5
rcv.*.*.*.*.ok

nok

init

ok

Figure 4: Finite-state machine for in CRC variable of PROFIsafe F-host.

sage with correct or incorrect CRC2 checksum is received (events rcv.*.*.*.*.ok

resp. rcv.*.*.*.*.nok).
In addition, the current value of the flag restricts the possible transitions of

the main statechart. Consider the transition from state 4 to state 5 of the F-
host statechart (Figure 2). This transition can only be taken if the last message
received had no faults, i.e. if in CRC is set. Accordingly, the transition event t 4 5

in the finite-state machine of Figure 3 must be disabled if in CRC is not set. This
constraint is enforced by adding a selfloop labelled with this event to state ok

in Figure 4.
By constructing such finite-state machines for the statecharts of the F-host

and the F-slave and their variables, we obtain a behavioural model of the PROFI-
safe protocol. Given that the original UML statecharts are specified using formal
notation, the translation into finite-state machines can be performed automati-
cally. This translation process so far has only been carried out for the PROFIsafe
model, but based on the experience obtained, it can easily be extended to handle
arbitrary statecharts.

In addition, we need to model the behaviour of the grey channel. Since no
UML description of the grey channel is available, the grey channel has been
modelled directly as finite-state machines. Different models have been created,
representing different fault possibilities and buffering capacities. For the F-host,
F-slave, and grey channel together, we obtain models consisting of 300 to 383
finite-state machines, depending on the grey channel and protocol configuration
considered.

5 Verification

Based on the finite-state machine model of the PROFIsafe protocol, two steps
of verification have been carried out. Firstly, we have performed some standard
checks of universal properties in order to find out whether the logic specified
by the statecharts is consistent, or whether it contains any undesirable loops

145Malik R., Muehlfeld R.: A Case Study in Verification of UML Statecharts ...



or deadlocks. Secondly, we have checked whether the protocol satisfies certain
application-specific properties regarding failsafe communication.

5.1 Universal Properties

Universal properties are defined in a general way for a class of finite-state ma-
chines, usually specifying some kind of consistency which developers would like
to have satisfied for any system they develop. Their advantage is that they can
be checked directly for any system, as a push-button technology, without the
user having to provide any additional input. We have checked the PROFIsafe
model for the following universal properties.

Controllability. A specification is called controllable [11, 13] if it can always
cope with any external events which it may receive as input. In the case of a
PROFIsafe component (F-host or F-slave), this means that the component
must always be able to handle any possible incoming messages as well as any
external events such as timeouts.

Termination. We have analysed the PROFIsafe specification in order to check
whether it permits infinite control-loops [3], i.e. whether it is possible that
the execution enters an infinite loop without ever reaching an activity state.
This is an important question, since such a control-loop would permit the
state machine to get stuck in an infinite execution without ever considering
new input events.

Confluence. Next, we have checked that the behaviour defined by the PROFI-
safe statecharts is confluent [3]. This means that the protocol defines a deter-
ministic behaviour, i.e. that there are no situations in which the specification
permits multiple responses, e.g. the sending of different messages, after the
same sequence of inputs. Although not essential, such determinism usually is
desired by developers. Furthermore, creating test-cases as discussed in Sec-
tion 6 is much easier based on a confluent model, since there is only one
possible response at each state.

Nonconflicting. Finally, we have checked whether the PROFIsafe specification
is nonconflicting [11, 13]. A model is considered to be nonconflicting if, in
every situation, it is always possible to reach a given terminal state. This is a
crucial property for any useful specification: if it is not satisfied, this means
that the system may run into a livelock or into a deadlock.

In our analysis of the PROFIsafe specifications, we have included terminal
states by defining a situation of normal operation, which should be reachable
from any other state: a communication partner is in a terminal state if it

146 Malik R., Muehlfeld R.: A Case Study in Verification of UML Statecharts ...



is waiting for new messages during normal operation, all message buffers
contain good messages, and no errors are present.

In contrast to the properties discussed above, the nonconflicting property
may cease to hold if the behaviour of the environment is restricted. Non-
conflicting only means that the specification can reach a terminal state in
cooperation with the environment. If the environment is not cooperative, for
example if it does never send a certain message required to reach the ter-
minal state, then a deadlock situation may occur although the specification
has been proven to be nonblocking. Therefore, we have performed the non-
conflicting check based on different assumptions about the messages which
can be received from the grey channel.

The PROFIsafe model has been successfully verified to satisfy each of the
universal properties listed above.

5.2 Application-Specific Properties

As a second step of verification, we have defined and checked several application-
specific properties of the PROFIsafe protocol. Most importantly, we have ex-
amined whether the requirements of failsafe communication are guaranteed. We
have checked whether the occurrence of a fault causes both communication part-
ners to switch to their failsafe states within the required delay time.

There are different classes of faults to be considered, such as the occurrence of
a corrupted message (CRC fault) or the loss of a message (timeout). For each kind
of fault, it is required that, after recognition of the fault, both communication
partners switch to their failsafe states. Therefore, for each fault, we have verified
separately that the agent recognising the fault and its partner switch to their
failsafe states within a certain time limit. As is to be expected, verifying this
property for the partner of the agent recognising the fault turns out to be more
difficult, since both agents and an appropriate model of the grey channel need
to be considered during verification.

All the required properties were formally described by additional finite-state
machines and verified by VALID using a language inclusion check as described
in [1]. This analysis produced a couple of counter-examples, which pointed to
some problems in an earlier version of PROFIsafe, and which were used to im-
prove the next version of the profile [10].

5.3 Experimental Results

The table in Figure 5 shows some of the experimental data collected during
verification, namely the performance of the nonconflicting checks performed on

147Malik R., Muehlfeld R.: A Case Study in Verification of UML Statecharts ...



Consecutive Slave Timing Grey Peak Peak CPU
numbers config. model channel states transitions time

0..3 input no store1 1,672 35,318 87.48 s
output 40,657 349,560 168.73 s
input store2 1,672 35,318 71.41 s
input keepseq1 5,121 35,318 73.11 s
output 226,323 1,748,860 151.16 s
input keepseq2 21,944 257,123 143.00 s

0..4 input yes timed1 46,946 315,008 227.25 s
output 266,338 2,034,385 355.68 s

Figure 5: Experimental data from PROFIsafe nonconflicting checks.

the PROFIsafe model. As a nonconflicting check always requires the entire model
to be taken into account, this is one of the more difficult verification tasks.

As explained above and can be seen in the table, the conflict check was
carried out on different versions of the PROFIsafe model, considering input and
output slave configurations with different ranges of consecutive numbers, and
using different grey channel models.

The grey channels store1, store2, keepseq1, and keepseq2 are simple grey chan-
nels with fixed buffering capacity and the ability to modify messages provided
that the CRC2 checksum of the modified message is incorrect. Channels store1

and store2 can also modify a message by just changing its consecutive number
and leaving the CRC2 checksum intact; this is used to model a PROFIsafe config-
uration in which the consecutive number is not included in the CRC2 checksum.
Channels store1 and keepseq1 have a buffering capacity of 1, i.e. there can be
at most one undelivered message at any time. In contrast, channels store2 and
keepseq2 have a buffering capacity of 2.

Furthermore, we have created and analysed a PROFIsafe model including
timing assumptions, which is needed to verify certain application-specific prop-
erties requiring timing constraints. This model has been combined with a grey
channel model called timed1 with buffering capacity of 1, the ability to modify
messages provided that the CRC2 checksum of the modified message is incorrect,
and some assumptions limiting the amount of time how long a message can be
kept within the channel.

The table in Figure 5 shows some performance data collected when using the
VALID Toolset for checking the different PROFIsafe models to be nonconflicting.
For each run, the table shows the maximum number of states and transitions
constructed by the algorithm: this gives a rough estimate of the amount of
memory required. Furthermore, the amount of CPU time consumed for each

148 Malik R., Muehlfeld R.: A Case Study in Verification of UML Statecharts ...



verification run is given. All runs were carried out on a 600MHz Pentium III
processor with 512MB of RAM.

In summary, we can say that the verification of the complete protocol can be
carried out within some minutes on a standard personnel computer. However,
it was not possible to verify the model after further increasing its complexity.
Thus, the models described here must be considered as the most complex models
that can presently be handled by the tool.

6 Automated Testing

Based on the verified model, we have computed test cases which can be used to
execute conformance tests, in order to ascertain that a protocol implementation
has the same behaviour as the verified model. These test cases will be made
available to vendors of PROFIBUS applications, who will then be able to obtain
certificates of conformance for their implementations more easily.

In order to generate test cases from a model automatically, we must first spec-
ify a coverage criterion. A coverage criterion defines a set of states or transitions
which must at least be visited when executing the generated test suite. Which
coverage criterion is most useful, depends on the specific application. The usual
approach when testing an implementation is to try covering all possible portions
of the implementation’s code. When testing a PROFIsafe component, this cor-
responds to executing all transitions of the component’s statechart. Yet, such
an approach relies on the specific implementation suggested by the statecharts
given in the PROFIsafe profile, and does not consider alternative implementa-
tions, which may use completely different states and transitions.

Therefore, we have considered alternative criteria, which rely on the possible
exchange of messages defined by the protocol instead of its statechart represen-
tation. For generating our test cases, we have required that, during the execution
of the test suite, the component under test should at least once send and receive
all possible sequences of two messages, which may occur according to the proto-
col specification. In this way, we expect to cover the relevant behaviour, since
the PROFIsafe standard defines whether a message is to be considered as cor-
rect based on the previous message received. Therefore it is sufficient to consider
sequences of two messages.

Like verification, test case generation is performed on a simplified PROFI-
safe model with a limited range of consecutive numbers (0..4 instead of 0..255).
Using the full range of consecutive numbers would require more than 106 pairs
of messages to be considered in each test suite. Such a test suite, besides being
impractically large, would include many instances of the same logical behaviour,
only with different consecutive numbers. By using the restricted range of con-
secutive numbers, we obtain test cases which still cover all the relevant logical

149Malik R., Muehlfeld R.: A Case Study in Verification of UML Statecharts ...



behaviour and are much better usable. In order to actually run the tests, the
consecutive numbers from the computed test cases are mapped to the full range
in an appropriate way.

The task of test case generation has been carried out for the PROFIsafe F-
slave model. Two test suites have been computed, for an F-slave in input and
output slave configuration, respectively. Each test suite contains six test cases,
with the largest test case consisting of 2253 events. These test cases are currently
used to implement a certified testing environment for F-slave implementations.
In a second step, it is planned to do the same for the PROFIsafe F-host.

7 Conclusions

We have discussed the verification and test case generation for the industrial field
bus protocol PROFIsafe. The protocol is specified using a restricted version of
UML statecharts, which is free from ambiguities. After applying some abstrac-
tions, the statecharts are translated into finite-state machines and analysed using
the VALID Toolset.

In order to perform the formal analysis, the protocol specification given as
UML statecharts has to be translated into a formal model consisting of finite-
state machines. During the project described here, a specialised translation pro-
cess was used, which has been implemented only for the PROFIsafe model. Yet,
the translation process can be fully automated and applied to other statecharts
as well. In the future, we would like to extend it to a more general tool, which
can also handle the more complex constructs in general UML statecharts.

In the PROFIsafe specification, very simple statecharts are used, which, while
exploiting only few features of UML statecharts, have the very clear and unam-
biguous semantics needed for formal analysis. Based on this restricted state-
charts language, it is possible to obtain expressive verification results, which
have helped the designers to improve their specification. Furthermore, it is pos-
sible to generate test suites with guaranteed coverage, which will be used for
automated conformance tests of PROFIsafe implementations.

Acknowledgements

The authors would like to thank Bertil Brandin for his support and helpful
comments in preparing this paper.

References

1. B. A. Brandin, R. Malik, and P. Dietrich. Incremental system verification and
synthesis of minimally restrictive behaviours. In American Control Conference,
2000.

150 Malik R., Muehlfeld R.: A Case Study in Verification of UML Statecharts ...



2. C. G. Cassandras and S. Lafortune. Introduction to Discrete Event Systems.
Kluwer Academic Publishers, September 1999.

3. P. Dietrich, R. Malik, W. M. Wonham, and B. A. Brandin. Implementation con-
siderations in supervisory control. In B. Caillaud, P. Darondeau, L. Lavagno, and
X. Xie, editors, Synthesis and Control of Discrete Event Systems, pages 185–201.
Kluwer Academic Publishers, 2002.

4. EN 50170. European standard for Profibus-DP and FMS.
5. G. J. Holzmann. The SPIN model checker. IEEE Transactions on Software Engi-

neering, 23:279–295, 1997.
6. Alexander Knapp and Stephan Merz. Model checking and code generation for

UML state machines and collaborations. In Proceedings of the 5th Workshop on
Tools for System Design and Verification, FM-TOOLS 2002, pages 59–64, 2002.

7. D. Latella, I. Majzik, and M. Massink. Automatic verification of a behavioural
subset of UML statechart diagrams using the SPIN model checker. Formal Aspects
of Computing, 11(6):637–664, 1999.

8. R. Mühlfeld and R. Malik. Anwenderbericht: Verifikation von UML-Statecharts
am Beispiel des PROFIsafe-Profils. In Rational-Anwenderkonferenz (RAK 2002),
2002.

9. Object Management Group. Unified modelling language specification, version 1.3,
2001. Available at http://www.omg.org.

10. Profibus Nutzerorganisation e.V. PROFIsafe—profile for safety technology, ver-
sion 1.12, 2002.

11. Peter J. G. Ramadge and W. Murray Wonham. The control of discrete event
systems. Proceedings of the IEEE, 77(1):81–98, January 1989.

12. Timm Schäfer, Alexander Knapp, and Stephan Merz. Model checking UML state
machines and collaborations. Electronic Notes in Theoretical Computer Science,
55(3):1–13, 2001.

13. W. M. Wonham. Notes on control of discrete event systems, 1999. Systems Con-
trol Group, Department of Electrical Engineering, University of Toronto, Ontario,
Canada; at http://www.control.utoronto.ca/ under “Research”.

151Malik R., Muehlfeld R.: A Case Study in Verification of UML Statecharts ...


