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Abstract: Run-time monitoring of temporal properties and assertions is used for testing and as 
a component of execution-based model checking techniques. Traditional run-time monitoring 
however, is limited to observing sequences of pure Boolean propositions. This paper describes 
tools for observing temporal properties over time series; namely, sequences of propositions 
with constraints on data value changes over time. Using such Temporal Logic with time Series 
(TLS), it is possible to monitor important properties such as stability, monotonicity, temporal 
average and sum values, and temporal min/max values. The specification and monitoring of 
linear time temporal logic with real-time and time series constraints are supported by the 
Temporal Rover and the DBRover, which are in-process and remote run-time monitoring tools. 
The novel TLS extension described in this paper is based on practical experience and feedback 
provided by NASA engineers after using the DBRover to verify flight code. The paper also 
presents a novel hybrid approach to verify timing properties in rapid system prototyping that 
combines the traditional schedulability analysis of the design and the monitoring of timing 
constraint satisfaction during prototype execution based on a time-series temporal logic. The 
effectiveness of the approach is demonstrated with a prototype of the fish farm control system 
software. 

Keywords: Temporal Logic, Run-time Execution Monitoring, Rapid Prototyping, Execution-
based Model Checking, Real-time Systems 
Categories: D2.1, D2.4, D2.5, D2.6, D3.1, F3.1 

1 Introduction  

Temporal Logic is a special branch of modal logic that investigates the notion of time 
and order. In [Pnueli 77], Pnueli suggested using Linear-Time Propositional Temporal 
Logic (LTL) for reasoning about concurrent programs. Since then, several researchers 
have used LTL to state and prove correctness of concurrent programs, protocols, and 
hardware (e.g., [Hailpern and Owicki 83], [Manna and Pnueli 81]).  

Linear-Time Temporal Logic (LTL) is an extension of propositional logic where, 
in addition to the propositional logic operators, there are four future-time operators 
and four dual past time operators: always in the future (always in the past), 
eventually, or sometime in the future (sometime in the past), until (since), and next 
cycle (previous cycle).  
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Metric Temporal Logic (MTL) was suggested by Chang, Pnueli, and Manna as a 
vehicle for the verification of real time systems [Chang et al. 94]. MTL extends LTL 
by supporting the specification of relative time and real time constraints. All four LTL 
future time operators (Always, Eventually, Until, Next) can be constrained by relative 
time and real time constraints specifying the duration of the temporal operator. For 
example, {x>0} Until <5 {y>0} means x>0 must be true until a future time, at most 5 
real-time units in the future, where y>0 must hold. This paper describes additional 
extension to LTL and MTL suitable for the specification of time-series constraints. 

Run time Execution Monitoring (REM) is a class of methods of tracking temporal 
requirements for an underlying application. First applications of REM were 
verification oriented where REM methods were used to track whether an executing 
system conforms to formal specification requirements. REM is also useful as a 
component of execution-based model checkers such as the Java Path Finder 
[Havelund and Pressburger 00]. Recent adaptations of REM methods enable run time 
monitoring for non-verification purposes such as temporal business rule checking and 
temporal security rule checking [Drusinsky and Fobes 03]. Unlike previously 
published methods [Sistla and Wolfson 95], the newer methods are on-line; namely, 
temporal rules are evaluated without storing an ever growing and potentially 
unbounded history trace. The Temporal Rover and DBRover tools described in the 
next section perform on-line REM using executable alternating finite automata. The 
technique enables on-line monitoring complex Kansas State Specification Pattern 
assertions at a rate of 6000 to 60,000 cycles per second on a 1GHz CPU [Drusinsky 
03], and is capable of monitoring past-time and future-time temporal logic augmented 
with real-time constraints, time-series constraints, and special counting operators 
described in [Drusinsky 00]. High-speed on-line REM enables demanding 
applications such as formal specification based exception handling [Drusinsky 01]. 

REM is particularly useful in assisting real-time system engineers to evaluate the 
feasibility of temporal requirements with time-series constraints that must be satisfied 
over a period of time. When working in tandem with rapid prototyping, REM can be 
used to debug the requirements and identify errors early in the design process. The 
hybrid approach described in Section 4 is supported by an environment made up of 
the Software Engineering Automation Tools (SEATools) [Luqi et al. 01] and the 
DBRover System.  The effectiveness of the approach is demonstrated with a 
prototype of the fish farm control system software. 

 

2 Run Time Monitoring Tools: The Temporal Rover and DBRover 

The Temporal Rover [Drusinsky 00] is a code generator whose input is a Java, C, 
C++, or HDL source code program, where LTL/MTL assertions are embedded as 
source code comments. The Temporal Rover parser converts this program file into a 
new file, which is identical to the original file except for the assertions that are now 
implemented in source code. The following example contains an embedded MTL 
assertion for a Traffic Light Controller (TLC) written using the Temporal Rover 
syntax asserting that for 10 seconds, whenever light is red, camera should be on: 
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void tlc(int Color_Main, boolean CameraOn) { 
  … /* Traffic Light Controller functionality */ 
  /* TRBegin 
   TRClock{C1=getTimeInMillis()} // get time from OS 
   TRAssert{ Always({Color_Main == RED} Implies  
               Eventually_C1<10000_{CameraOn == 1})  

     } => 
// Customizable user actions                   
{printf("SUCCESS");printf("FAIL");printf("DONE!");} 

  TREnd */ 
} /* end of tlc */ 
 

The Temporal Rover generates code that replaces the embedded LTL/MTL 
assertion with real C, C++, Java, or HDL code, which executes in-process, i.e., as part 
of the underlying application. The DBRover is a software environment for specifying 
temporal constraints and remotely monitoring the temporal behavior of the target 
application. The DBRover consists of a GUI for editing temporal assertions, an MTL 
simulator, and an MTL execution engine. The DBRover builds and executes temporal 
rules for a target program or application. In run-time, the DBRover listens for 
messages from the target application, which are transmitted via HTTP, sockets, or 
serial communication, and evaluates corresponding temporal assertions. Hence, in the 
traffic light controller example above, the DBRover will listen for messages 
pertaining to the run-time values of the CameraOn Boolean propositions, as well as 
the run-time value of the Color_Main variable. The DBRover then evaluates the 
corresponding MTL assertion for that cycle. Monitoring is performed on-line, namely, 
the DBRover operates in tandem with the target program, and re-evaluates assertions 
every cycle. The DBRover uses an underlying algorithm that does not store a history 
trace of the data it receives; it can therefore monitor very long and potentially never 
ending executions of target applications.  

The DBRover was used successfully to verify flight code for NASA’s Deep 
Impact project [Drusinsky and Watney 02]. Nevertheless, feedback provided by 
NASA engineers showed that certain requirements require the ability to specify time-
series constraints. The next section describes an extension to LTL and MTL designed 
for this purpose. The Temporal Rover and DBRover were extended to support this 
new capability. 

3 Improving LTL and MTL: adding Time Series Constraints (TLS)  

While LTL and MTL assert about sequences of pure Boolean propositions, it is often 
required to assert about sequences of propositions over time series, i.e., series of data 
values with constraints on the change of those values over time. For example, 
consider a requirement R, stating that for one hour as of eventA, the value of variable 
x should be 10% stable. Such a requirement combines MTL with propositions based 
on temporal instances of a variable x. The need for such time series assertions 
typically involves the validation of statistical and algebraic artifacts such as stability, 
monotonicity, averaging and expectancy, sum and product values, and min/max 
values.  
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Like LTL, TLS assertions are non-deterministic and might have multiple 
overlapping instances active simultaneously. For example, in requirement R above, 
the values of a same variable named x are referred to and compared with one another 
in multiple points in time, for a plurality of eventA's, i.e., for a plurality of initial x 
values. One of many possible scenarios is where eventA occurs first when x =100, and 
then occurs again 30 minutes later when x =110; hence, in the overlapping 30 minutes 
time-segment, x values must range between 99 and 110 (Figure 1). Clearly, the 
number and timing of eventA occurrences is unknown in advance, and the simple 1-
hour end condition is, in general, non-deterministic, rendering the task of monitoring 
all possible scenarios non-trivial. 

 
 
 

 
 
 
 
 
 
 
 
 

Figure 1:  TLS Assertion for Requirement R 

TLS enables the specification of requirements in which propositions include 
temporal instances of variables. Consider the following automotive cruise control 
code with an embedded stability assertion requiring speed to be 5% stable while 
cruise is set and not changed (uses the Temporal Rover’s source code comments-
based syntax): 

 
void cruise(boolean cruiseSet, boolean cruiseChange, 
       boolean cruiseOff, boolean cruiseIncr, int speed){ 
  … /* Cruise Controller functionality */ 
  /* TRBegin 
      TRAssert{Always ({cruiseSet}Implies  
                {speed*0.95<speed’ && speed’<speed*1.05}  
                Until $speed$ {cruiseChange || cruiseOff} 
               ) }=> {…} // user actions 
  TREnd */ 
} /* end of tlc */ 

 
In this example speed is a temporal data variable, which is associated with the 

Until temporal operator. This association implies that every time the Until operator 
begins its evaluation, possibly in multiple instances (due to non-determinism), the 
speed value is sampled and preserved in the speed variable of this instance of the 
Until operator; this value is referred to as the pivot value for this Until operator 
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instance. Future speed values used by this particular evaluation of the Until statement 
are referred to using the prime notation, i.e., as speed’, and are called primed values. 
Hence, if speed is 100Kmh when cruiseSet is true, then the pivot value for speed is 
100, while every subsequent speed value is referred to as speed’ and must be within 
5% of the (pivot) speed. 

Note how speed is declared using the $speed$ notation to be a temporal data 
variable associated with the Until operator. This declaration indicates to the Temporal 
Rover that it should be sampling a pivot value from the environment in the first cycle 
of the Until operators lifecycle, and to refer to all subsequent samples of speed as 
speed’. 

Similarly, the following example consists of a monotonicity requirement for the 
cruise control system, where speed is monotonically increasing while Cruise Increase 
(cruiseIncr) command is active: 

 
      TRAssert {Always({cruiseIncr}Implies  
                  {(speed<=speed') && (speed=speed')>=0}  
                  Until $speed$ {!cruiseIncr} 
                )}=>  {…} // user actions 
 

In this example the temporal data variable speed is sampled upon the cruiseIncr 
event, and is compared to the current value (speed’) every cycle. The latest speed 
value is then saved as the pivot for next cycle’s comparison. 

The following example consists of a temporal averaging and min/max 
requirement for the cruise control system, requiring that while cruise is set and 
unchanged, the difference between average speed and minimum speed is always less 
than 1% of speed. 

 
      TRAssert {Always ({cruiseSet}Implies  
                  {(n++ >=0)&& ((sum+=speed’) >= 0) && 
                   ((average=sum/n) >=0) && 
                   ((min=(speed’<min?speed’:min) >=0) && 
                   (average-min < speed’/100) 
                  }  
                  Until  
                     $speed,min=1000,n=0,average=0,sum=0$ 
                  {cruiseChange || cruiseOff} 
                )}=> {…} // user actions 
 

In this example the only data value that is sampled from the environment (the 
cruise method/function) is speed. All other pivots (i.e., for min, n, average, and sum) 
are initialized upon the construction of the Until object. Likewise, the only prime 
value that is sampled from the environment is speed’, whereas all other primed 
variables are assigned as specified in the assignment statements (e.g. as 
average’=sum’/n’). The Temporal Rover makes this distinction when is recognizes an 
assignment in the declaration statement, such as sum=0 above. 
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4 Verifying Timing Properties in Rapid System Prototyping 

Real-time systems are those whose correct behavior depends not only on the logical 
result of the computation but also on the time at which the result is produced. 
Traditionally, these temporal requirements are expressed as hard and soft timing 
constraints. It is imperative for real-time systems to meet all deadlines in hard timing 
constraints but acceptable to miss the deadlines of the soft timing constraints 
occasionally [Liu 00]. There are currently two complementary approaches to 
evaluating the correctness of real-time systems: static analysis of its behavior 
according to a set of metrics (e.g. schedulability analysis to establish the feasibility of 
the timing constraints) and run-time monitoring of real-time systems to study its 
behavior according to a set of metrics (e.g. release jitter, frequency and degree of 
tardiness, etc.). While the static analytic approach plays a very important role in 
helping system designers set time budgets and allocate resources in their designs, they 
are only effective if correct timing constraints can be determined during the 
requirements analysis phase. Feasible requirements for large dynamic systems are 
difficult to formulate, understand, and meet without extensive prototyping. Moreover, 
traditional analytical techniques are not effective in evaluating time-series temporal 
behaviors. These requirements are best evaluated through a hybrid approach that 
combines the static schedulability analysis of the design and the run-time monitoring 
of the prototype execution based on TLS. The approach is supported by an 
environment made up of the Software Engineering Automation Tools (SEATools) 
and the DBRover.  
 

 

Figure 2: The SEATools Environment 

SEATools is based on the Prototyping System Description Language (PSDL) 
[Luqi et al. 88] [Luqi 93], which is a high-level language designed specifically to 
support the conceptual modeling of real-time embedded systems. Real-time 
requirements in the system development are modeled as PSDL specifications, which 
are dataflow graphs augmented with non-procedural timing and control constraints 
(Figure 3). PSDL allows the specification of both input and output guards to provide 
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conditional execution of an operator and conditional output of data. Guards can 
include conditions on timers that measure duration of system states, and can allow 
operators to execute only when fresh data has been written to an input stream. Each 
time critical operator has a maximum execution time (MET) constraint, representing 
the maximum time the operator may need to complete execution after it is fired, given 
access to all required resources. In addition, each periodic operator has a period and a 
deadline (FW). The period is the interval between triggering times for the operator 
and the deadline is the maximum duration from the triggering of the operator to the 
completion of its operation. Each sporadic operator has a maximum response time 
(MRT) and a minimum calling period (MCP). The minimum calling period is the 
smallest interval allowed between two successive triggering of a sporadic operator. 
The maximum response time is the maximum duration allowed from the triggering of 
the sporadic operator to the completion of its operation. An operator can be 
implemented in either a target programming language or PSDL. An operator with an 
implementation in the target programming language is called an atomic operator. An 
operator that is decomposed into a PSDL implementation is called a composite 
operator. For example, the monitor_environment operator in Figure 3 may be modeled 
as the graph shown in Figure 4.  
 

 

 

 

 
 

Figure 3: PSDL specification 

 

 
 
 
 

 

Figure 4: Decomposition of the monitor_environment operator 

MET  = 100 ms 
PERIOD  = 500 ms 

speed :  km_per_hour 
LATENCY  = 100 ms 

MET  = 200 ms 
MRT  = 1000 ms 
MCP  = 500 ms 
TRIGGERED 

  BY 
  ALL  speed 

OUTPUT 
  throttle_adjustment 

  IF | throttle_adjustment | > 0.01 

throttle_adjustment : real 
LATENCY  = 50 ms 

MET 
 = 1000 ms MRT 
 = 5000 ms MCP 
 = 100 ms 

TRIGGERED 
  BY 

  ALL 
  throttle_adjustment 

crusing_speed :
     km_per_hour 

monitor_ 
environment 

speed_ 
control 

throttle_ 
control boolean brake_on :  

LATENCY  = 100 ms 

MET = 50 ms
PERIOD = 500 ms

  

monitor_  
speed speed : km_per_hour

LATENCY = 100 ms 

monitor_  
brake 

MET = 50 ms
PERIOD = 500 ms

 

external 

external 

brake_on : boolean
LATENCY = 100 ms 
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PSDL’s declarative timing and control constraints help de-couple the behavioral 
aspects of a system from its timing properties to allow independent analysis of these 
two aspects, and organize timing constraints in a hierarchical fashion, to allow 
independent consideration of smaller subsets of timing constraints. 
 

5 The Fish Farm Control System (FFCS) 

In this section, we shall illustrate the hybrid approach with a fish farm control system 
prototype. The FFCS will control the fish food dispenser and water quality in a fish 
tank. The tank has a mechanical feeder that drops pellets of fish food from a feeder 
tube suspended above the tank. The feeder can be turned on and off by the computer. 
The tank also has a water inlet pipe and a drain pipe with valves controlled by the 
computer, and sensors that measure the water level (millimeters above the bottom), 
the oxygen level in the water (parts per million), and the ammonia level in the water 
(parts per million). The FFCS must deliver fish food at scheduled feeding times, 
repeated every day. The times when each feeding starts and stops are displayed on the 
console of the FFCS and can be adjusted from the keyboard. The FFCS must keep the 
oxygen level at least 8 parts-per-million (ppm), and the ammonia level at most 9 ppm. 
Fish will die if left in an environment with low oxygen or high ammonia for 1 minute 
or more. The fish tank is 1 meter wide, 2 meters long, and 1 meter deep (1mm level = 
2 liters volume). The FFCS must keep the water level between 60 and 90 cm at all 
time. The fill/drain valves allow a maximum flow of 0.5 liters per second when valve 
is fully open. The fresh water coming in the inlet valve contains 30 ppm of oxygen 
and contains no ammonia. The fish in the tank consumes oxygen at a rate of 0.1 
ml/sec and generates ammonia at a rate of 0.0015 ml/sec while resting and at a rate of 
0.003 ml/sec while they are eating. The FFCS should minimize water flow subject to 
the above constraints. In addition, we add another requirement that “when water level 
is below 88 cm for at least three minutes, the drain valve settings should be limited to 
be at most 10% of the maximum setting” to illustration the expressive power of the 
temporal logic. 

Figure 5 shows the PSDL model for the FFCS. In the interest of brevity, we shall 
only discuss the water quality control portion of the prototype in this paper, which is 
made up of six atomic operators:  monitor_h2o, monitor_o2, monitor_nh3, 
control_water_flow, adjust_inlet and adjust_drain, with the associated control and 
timing constraints shown in Table 1.   
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Figure 5: The PSDL model for the Fish Farm Control System 

 

Operator Control 
Constraints 

Timing 
Constraints 

monitor_h2o − 
Period = 2000 ms 

FW = 200 ms 
MET = 80 ms 

monitor_o2 − 
Period = 2000 ms 

FW = 200 ms 
MET = 80 ms 

monitor_nh3 − 
Period = 2000 ms 

FW = 200 ms 
MET = 80 ms 

control_water_flow − 
Period = 1000 ms 

FW = 200 ms 
MET = 100 ms 

Adjust_inlet 
Triggered by SOME 

activate_inlet 

MCP = 2000 ms 
MRT = 2500 ms 

MET = 80 ms 

adjust_drain 
Triggered by SOME 

activate_drain 

MCP = 2000 ms 
MRT = 2500 ms 

MET = 80 ms 

Table 1: The control and timing constraints of the water quality control operators  

 

1269Drusinsky D., Shing M.-T.: Monitoring Temporal Logic Specifications ...



Central to the design is the control_water_flow operator, which controls the inlet 
and drain water flow based on the following decision table.  

 
Water 
Level 

< 65 cm ≥ 65 cm, ≤ 85 cm > 85 cm 

Oxygen 
(O2) & 

Ammoni
a (NH3) 

Level 

− 

O2 < 8 
ppm or  

NH3 > 9 
ppm 

O2 ≥ 8 
ppm and  
NH3 ≤ 9 

ppm 

O2 < 8 
ppm or  

NH3 > 9 
ppm 

O2 ≥ 8 
ppm or  

NH3 ≤ 9 
ppm 

Inlet 
Valve 

Setting 
open open close open close 

Drain 
Valve 

Setting 
close close close open open 

Table 2: Decision table for the control water flow logic 

To find out if the prototype meets all the requirements using the DBRover 
System, we formally specify the following temporal rules using TLS: 
 
Rule 1: The water level must be between 60 and 90 cm at all time, formally written as:  
      Always {h2o >= 60 && h2o <=90}. 
 
Rule 2: The oxygen level cannot be less than 8 ppm for more than 60 seconds, 
formally written as:  
      Always {o2<8} Implies Eventually <=60 {o2>=8}. 
 
Rule 3: The ammonia level cannot be more than 9 ppm for more than 60 seconds, 
formally written as:  
      Always {nh3>9} Implies Eventually <=60 {nh3<=9}. 
 
Rule 4: If water level has been below 88 cm for 180 seconds, then the change of the 
drain valve setting must be less than or equal to 10% of the maximum setting (100)  
per second, formally written as:  
      Always( Always >=180 {h2o<=88} Implies  
        Eventually $dv, ffcs_timer$ 
        { ffcs_timer’==ffcs_timer || 
          abs(dv’ – dv)/(ffcs_timer’-ffcs_timer) <= 10}. 

 
We also add four operators (check_h2o_level, check_o2_level, check_nh3_level, 

check_drain_setting) to the PDSL model (Figure 6). These operators, when triggered 
respectively by new data values in the h20, o2, nh3 and drain_setting streams, will 
send the updated values to the DBRover for temporal property verification during 
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prototype execution (Figure 7). The control and timing constraints of these operators 
are shown in Table 3. 

 
 
 
 
 
 
 
 

 

Figure 7: The enhanced PSDL model with additional operators  
 

 
 
 
 
 

Figure 6: The enhanced PSDL model with additional operators 
 to invoke the DBRover runtime monitor 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 7: Architecture of the integrated SEATools / DBRover  
Runtime Monitor System 

DBRover generates 
true/false notification  
every cycle, and a  
potential action to be 
performed upon success 
and/or failure. 

FFCS Rules 

SEATools  

Diagnostic Info 
Viewer 

FFCS 
Prototype 

Static  
Scheduler 

check_h2o
_level 

module 

check_o2 
_level 

 

check_nh3 
_level 

 

check_drain 
_setting 

 

DBRover  

Verification Result 
Viewer 

Rule 1 
implementation 

Rule 2 
implementation 

Rule 3 
implementation 

Rule 4 
implementation 

1 
2 

3 

DBRover applies the current 
cycle value of the ammonia level 
to Rule 3: Always {nh3>9} 
Eventually <=60 {nh3<=9} 

Sockets communication 
of values of the Boolean 
propositions {nh3>9} 
used by Rule 3. 
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Operator Control 
Constraints 

Timing 
Constraints 

check_h2o_level 
Triggered by SOME 

h2o 

MCP = 1000 ms 
MRT = 1500 ms 

MET = 80 ms 

check_o2_level 
Triggered by SOME 

o2 

MCP = 1000 ms 
MRT = 1500 ms 

MET = 80 ms 

check_nh3_level 
Triggered by SOME 

nh3 

MCP = 1000 ms 
MRT = 1500 ms 

MET = 80 ms 

check_drain_setting 
Triggered by SOME 
h2o, drain_setting 

MCP = 2000 ms 
MRT = 2500 ms 

MET = 80 ms 

Table 3: The control and timing of the new operators 

Figure 8 shows a snapshot of the Temporal Rule Monitor panel of the DBRover 
system, showing the status of Rule 2 during prototype execution. Each line in the 
panel represents a new evaluation of the rule, where the top most line represents the 
latest evaluation. The output from the Temporal Rule Monitor indicated that Rule 2 
was invoked by the check_o2_level operator of the FFCS prototype once every 2 
seconds (as expected). The timing and logic of the control_water_flow operator 
(Tables 1 and 2) has caused the oxygen level in the fishpond to fall below 8 ppm 
roughly once every 10 seconds, but only for a brief duration of at most 2 seconds each 
time. Output for the other 3 rules (not shown) indicated that the water level, ammonia 
level and drain valve setting always stayed within the desired limits.  

Although the current design satisfied Rule 2, it caused the inlet valve to be turned 
on (for a duration of 2 seconds) once every 10 seconds, which is bad for the long-term 
health of the mechanical valve. One way to avoid frequent switching of the valve is 
by setting the frequency of the control_water_flow operator to longer periods. 
Through the use of SEATools, we were able to go through the cycle of changing the 
timing constraints of the operators, translating the PSDL specification into Ada code, 
compiling the Ada code and executing the prototype in less than 5 minutes. Figure 9 
shows a snapshot of the status of Rule 2 when the period of the control_water_flow 
operator was set to 30 seconds. The new period has caused the oxygen level in the 
fishpond to fall below 8 ppm roughly once every 2.5 minutes, and for a duration that 
varied from 3 seconds to 37 seconds.  This caused the inlet valve to be turned on (for 
a duration of 30 seconds) roughly once every 2.5 minutes. 
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Figure 8: The Temporal Rule Monitor Panel 

 

Figure 9: The status of Rule 2 when the control_water_flow operator 
fires once every 30 seconds 
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To illustrate the ability for the DBRover Monitor to catch permanent rule violations, 
we regenerated the executable prototype with the period of the control_water_flow 
operator set to 60 seconds. Figure 10 showed a snap shot of the status of Rule 2 after 
executing the prototype for 14 minutes and 17 seconds. The Temporal Rule Monitor 
detected that the oxygen level fell below 8ppm for more than 1 minute (from 5:07:43 
through 5:08:46) and declared a permanent violation (the Done message) of Rule 2 at 
5:08:46. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

6 Conclusion 

While temporal logic specifications and monitoring have been successfully used for 
the verification of complex reactive systems such as NASA’s Deep Impact flight code 
[Drusinsky and Watney 02], it was found that requirements with time-series 
constraints such as stability constraints, monotonicity constraints, average-value and 
expected-value constraints, and sum and product constraints, are all difficult to 
express in LTL. We have shown an extension of LTL and MTL, named TLS, capable 
of capturing such requirements. TLS specifications are supported by the Temporal 
Rover V8.0 and by its remote monitoring counterpart, the DBRover V2.0. The 
DBRover also includes a graphical simulator for TLS enabling the simulation and 
debugging of temporal requirements before deploying them on the monitor. 

We also show that run-time monitoring, in tandem with rapid prototyping, can be 
used in verifying temporal properties in the very early stage of the design process. 
This approach helps identify errors earlier in the design process and also helps debug 
the requirements themselves. Code generation support by SEATools and Temporal 
Rover is vital for such approach to be practical. The executable prototype consists 
3968 lines of source code, 2048 of which are Ada and C codes generated by the 
SEATools and the DBRover. The use of socket communication provides a very 
simple interface between the SEATools runtime environment and the DBRover 
System. We only need to create one atomic operator in the PSDL model for each 
temporal rule. The Ada implementation of each of these atomic operators consists of a 
one-line procedure call to invoke the corresponding C routine implementing the 
temporal rule. The mapping between the Ada and C code is very straightforward and 
can be automatically generated easily. Although the use of socket communication 

Figure 10: Output of the Temporal Rule Monitor showing the  
permanent violation of Rule 2  
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introduces additional time delay between the detection of events during the prototype 
execution and the checking of the affected temporal properties by the DBRover, it has 
negligible effect on the accuracy of the verification result because DBRover allows 
user to specify time based on the client’s clock. All events detected during prototype 
execution are stamped with the local clock before sending to the DBRover for 
verification. 
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