
Monitoring Temporal Logic Specifications Combined
with Time Series Constraints

Doron Drusinsky
(Naval Postgraduate School and Time-Rover, Inc. California, USA

doron@time-rover.com,
www.time-rover.com)

Man-Tak Shing

(Naval Postgraduate School California, USA
shing@nps.navy.mil)

Abstract: Run-time monitoring of temporal properties and assertions is used for testing and as
a component of execution-based model checking techniques. Traditional run-time monitoring
however, is limited to observing sequences of pure Boolean propositions. This paper describes
tools for observing temporal properties over time series; namely, sequences of propositions
with constraints on data value changes over time. Using such Temporal Logic with time Series
(TLS), it is possible to monitor important properties such as stability, monotonicity, temporal
average and sum values, and temporal min/max values. The specification and monitoring of
linear time temporal logic with real-time and time series constraints are supported by the
Temporal Rover and the DBRover, which are in-process and remote run-time monitoring tools.
The novel TLS extension described in this paper is based on practical experience and feedback
provided by NASA engineers after using the DBRover to verify flight code. The paper also
presents a novel hybrid approach to verify timing properties in rapid system prototyping that
combines the traditional schedulability analysis of the design and the monitoring of timing
constraint satisfaction during prototype execution based on a time-series temporal logic. The
effectiveness of the approach is demonstrated with a prototype of the fish farm control system
software.

Keywords: Temporal Logic, Run-time Execution Monitoring, Rapid Prototyping, Execution-
based Model Checking, Real-time Systems
Categories: D2.1, D2.4, D2.5, D2.6, D3.1, F3.1

1 Introduction

Temporal Logic is a special branch of modal logic that investigates the notion of time
and order. In [Pnueli 77], Pnueli suggested using Linear-Time Propositional Temporal
Logic (LTL) for reasoning about concurrent programs. Since then, several researchers
have used LTL to state and prove correctness of concurrent programs, protocols, and
hardware (e.g., [Hailpern and Owicki 83], [Manna and Pnueli 81]).

Linear-Time Temporal Logic (LTL) is an extension of propositional logic where,
in addition to the propositional logic operators, there are four future-time operators
and four dual past time operators: always in the future (always in the past),
eventually, or sometime in the future (sometime in the past), until (since), and next
cycle (previous cycle).

Journal of Universal Computer Science, vol. 9, no. 11 (2003), 1261-1276
submitted: 1/5/03, accepted: 5/9/03, appeared: 28/11/03 © J.UCS

Metric Temporal Logic (MTL) was suggested by Chang, Pnueli, and Manna as a
vehicle for the verification of real time systems [Chang et al. 94]. MTL extends LTL
by supporting the specification of relative time and real time constraints. All four LTL
future time operators (Always, Eventually, Until, Next) can be constrained by relative
time and real time constraints specifying the duration of the temporal operator. For
example, {x>0} Until <5 {y>0} means x>0 must be true until a future time, at most 5
real-time units in the future, where y>0 must hold. This paper describes additional
extension to LTL and MTL suitable for the specification of time-series constraints.

Run time Execution Monitoring (REM) is a class of methods of tracking temporal
requirements for an underlying application. First applications of REM were
verification oriented where REM methods were used to track whether an executing
system conforms to formal specification requirements. REM is also useful as a
component of execution-based model checkers such as the Java Path Finder
[Havelund and Pressburger 00]. Recent adaptations of REM methods enable run time
monitoring for non-verification purposes such as temporal business rule checking and
temporal security rule checking [Drusinsky and Fobes 03]. Unlike previously
published methods [Sistla and Wolfson 95], the newer methods are on-line; namely,
temporal rules are evaluated without storing an ever growing and potentially
unbounded history trace. The Temporal Rover and DBRover tools described in the
next section perform on-line REM using executable alternating finite automata. The
technique enables on-line monitoring complex Kansas State Specification Pattern
assertions at a rate of 6000 to 60,000 cycles per second on a 1GHz CPU [Drusinsky
03], and is capable of monitoring past-time and future-time temporal logic augmented
with real-time constraints, time-series constraints, and special counting operators
described in [Drusinsky 00]. High-speed on-line REM enables demanding
applications such as formal specification based exception handling [Drusinsky 01].

REM is particularly useful in assisting real-time system engineers to evaluate the
feasibility of temporal requirements with time-series constraints that must be satisfied
over a period of time. When working in tandem with rapid prototyping, REM can be
used to debug the requirements and identify errors early in the design process. The
hybrid approach described in Section 4 is supported by an environment made up of
the Software Engineering Automation Tools (SEATools) [Luqi et al. 01] and the
DBRover System. The effectiveness of the approach is demonstrated with a
prototype of the fish farm control system software.

2 Run Time Monitoring Tools: The Temporal Rover and DBRover

The Temporal Rover [Drusinsky 00] is a code generator whose input is a Java, C,
C++, or HDL source code program, where LTL/MTL assertions are embedded as
source code comments. The Temporal Rover parser converts this program file into a
new file, which is identical to the original file except for the assertions that are now
implemented in source code. The following example contains an embedded MTL
assertion for a Traffic Light Controller (TLC) written using the Temporal Rover
syntax asserting that for 10 seconds, whenever light is red, camera should be on:

1262 Drusinsky D., Shing M.-T.: Monitoring Temporal Logic Specifications ...

void tlc(int Color_Main, boolean CameraOn) {
 … /* Traffic Light Controller functionality */
 /* TRBegin
 TRClock{C1=getTimeInMillis()} // get time from OS
 TRAssert{ Always({Color_Main == RED} Implies
 Eventually_C1<10000_{CameraOn == 1})

 } =>
// Customizable user actions
{printf("SUCCESS");printf("FAIL");printf("DONE!");}

 TREnd */
} /* end of tlc */

The Temporal Rover generates code that replaces the embedded LTL/MTL
assertion with real C, C++, Java, or HDL code, which executes in-process, i.e., as part
of the underlying application. The DBRover is a software environment for specifying
temporal constraints and remotely monitoring the temporal behavior of the target
application. The DBRover consists of a GUI for editing temporal assertions, an MTL
simulator, and an MTL execution engine. The DBRover builds and executes temporal
rules for a target program or application. In run-time, the DBRover listens for
messages from the target application, which are transmitted via HTTP, sockets, or
serial communication, and evaluates corresponding temporal assertions. Hence, in the
traffic light controller example above, the DBRover will listen for messages
pertaining to the run-time values of the CameraOn Boolean propositions, as well as
the run-time value of the Color_Main variable. The DBRover then evaluates the
corresponding MTL assertion for that cycle. Monitoring is performed on-line, namely,
the DBRover operates in tandem with the target program, and re-evaluates assertions
every cycle. The DBRover uses an underlying algorithm that does not store a history
trace of the data it receives; it can therefore monitor very long and potentially never
ending executions of target applications.

The DBRover was used successfully to verify flight code for NASA’s Deep
Impact project [Drusinsky and Watney 02]. Nevertheless, feedback provided by
NASA engineers showed that certain requirements require the ability to specify time-
series constraints. The next section describes an extension to LTL and MTL designed
for this purpose. The Temporal Rover and DBRover were extended to support this
new capability.

3 Improving LTL and MTL: adding Time Series Constraints (TLS)

While LTL and MTL assert about sequences of pure Boolean propositions, it is often
required to assert about sequences of propositions over time series, i.e., series of data
values with constraints on the change of those values over time. For example,
consider a requirement R, stating that for one hour as of eventA, the value of variable
x should be 10% stable. Such a requirement combines MTL with propositions based
on temporal instances of a variable x. The need for such time series assertions
typically involves the validation of statistical and algebraic artifacts such as stability,
monotonicity, averaging and expectancy, sum and product values, and min/max
values.

1263Drusinsky D., Shing M.-T.: Monitoring Temporal Logic Specifications ...

Like LTL, TLS assertions are non-deterministic and might have multiple
overlapping instances active simultaneously. For example, in requirement R above,
the values of a same variable named x are referred to and compared with one another
in multiple points in time, for a plurality of eventA's, i.e., for a plurality of initial x
values. One of many possible scenarios is where eventA occurs first when x =100, and
then occurs again 30 minutes later when x =110; hence, in the overlapping 30 minutes
time-segment, x values must range between 99 and 110 (Figure 1). Clearly, the
number and timing of eventA occurrences is unknown in advance, and the simple 1-
hour end condition is, in general, non-deterministic, rendering the task of monitoring
all possible scenarios non-trivial.

Figure 1: TLS Assertion for Requirement R

TLS enables the specification of requirements in which propositions include
temporal instances of variables. Consider the following automotive cruise control
code with an embedded stability assertion requiring speed to be 5% stable while
cruise is set and not changed (uses the Temporal Rover’s source code comments-
based syntax):

void cruise(boolean cruiseSet, boolean cruiseChange,
 boolean cruiseOff, boolean cruiseIncr, int speed){
 … /* Cruise Controller functionality */
 /* TRBegin
 TRAssert{Always ({cruiseSet}Implies
 {speed*0.95<speed’ && speed’<speed*1.05}
 Until $speed$ {cruiseChange || cruiseOff}
) }=> {…} // user actions
 TREnd */
} /* end of tlc */

In this example speed is a temporal data variable, which is associated with the

Until temporal operator. This association implies that every time the Until operator
begins its evaluation, possibly in multiple instances (due to non-determinism), the
speed value is sampled and preserved in the speed variable of this instance of the
Until operator; this value is referred to as the pivot value for this Until operator

1264 Drusinsky D., Shing M.-T.: Monitoring Temporal Logic Specifications ...

instance. Future speed values used by this particular evaluation of the Until statement
are referred to using the prime notation, i.e., as speed’, and are called primed values.
Hence, if speed is 100Kmh when cruiseSet is true, then the pivot value for speed is
100, while every subsequent speed value is referred to as speed’ and must be within
5% of the (pivot) speed.

Note how speed is declared using the $speed$ notation to be a temporal data
variable associated with the Until operator. This declaration indicates to the Temporal
Rover that it should be sampling a pivot value from the environment in the first cycle
of the Until operators lifecycle, and to refer to all subsequent samples of speed as
speed’.

Similarly, the following example consists of a monotonicity requirement for the
cruise control system, where speed is monotonically increasing while Cruise Increase
(cruiseIncr) command is active:

 TRAssert {Always({cruiseIncr}Implies
 {(speed<=speed') && (speed=speed')>=0}
 Until $speed$ {!cruiseIncr}
)}=> {…} // user actions

In this example the temporal data variable speed is sampled upon the cruiseIncr
event, and is compared to the current value (speed’) every cycle. The latest speed
value is then saved as the pivot for next cycle’s comparison.

The following example consists of a temporal averaging and min/max
requirement for the cruise control system, requiring that while cruise is set and
unchanged, the difference between average speed and minimum speed is always less
than 1% of speed.

 TRAssert {Always ({cruiseSet}Implies
 {(n++ >=0)&& ((sum+=speed’) >= 0) &&
 ((average=sum/n) >=0) &&
 ((min=(speed’<min?speed’:min) >=0) &&
 (average-min < speed’/100)
 }
 Until
 $speed,min=1000,n=0,average=0,sum=0$
 {cruiseChange || cruiseOff}
)}=> {…} // user actions

In this example the only data value that is sampled from the environment (the
cruise method/function) is speed. All other pivots (i.e., for min, n, average, and sum)
are initialized upon the construction of the Until object. Likewise, the only prime
value that is sampled from the environment is speed’, whereas all other primed
variables are assigned as specified in the assignment statements (e.g. as
average’=sum’/n’). The Temporal Rover makes this distinction when is recognizes an
assignment in the declaration statement, such as sum=0 above.

1265Drusinsky D., Shing M.-T.: Monitoring Temporal Logic Specifications ...

4 Verifying Timing Properties in Rapid System Prototyping

Real-time systems are those whose correct behavior depends not only on the logical
result of the computation but also on the time at which the result is produced.
Traditionally, these temporal requirements are expressed as hard and soft timing
constraints. It is imperative for real-time systems to meet all deadlines in hard timing
constraints but acceptable to miss the deadlines of the soft timing constraints
occasionally [Liu 00]. There are currently two complementary approaches to
evaluating the correctness of real-time systems: static analysis of its behavior
according to a set of metrics (e.g. schedulability analysis to establish the feasibility of
the timing constraints) and run-time monitoring of real-time systems to study its
behavior according to a set of metrics (e.g. release jitter, frequency and degree of
tardiness, etc.). While the static analytic approach plays a very important role in
helping system designers set time budgets and allocate resources in their designs, they
are only effective if correct timing constraints can be determined during the
requirements analysis phase. Feasible requirements for large dynamic systems are
difficult to formulate, understand, and meet without extensive prototyping. Moreover,
traditional analytical techniques are not effective in evaluating time-series temporal
behaviors. These requirements are best evaluated through a hybrid approach that
combines the static schedulability analysis of the design and the run-time monitoring
of the prototype execution based on TLS. The approach is supported by an
environment made up of the Software Engineering Automation Tools (SEATools)
and the DBRover.

Figure 2: The SEATools Environment

SEATools is based on the Prototyping System Description Language (PSDL)
[Luqi et al. 88] [Luqi 93], which is a high-level language designed specifically to
support the conceptual modeling of real-time embedded systems. Real-time
requirements in the system development are modeled as PSDL specifications, which
are dataflow graphs augmented with non-procedural timing and control constraints
(Figure 3). PSDL allows the specification of both input and output guards to provide

1266 Drusinsky D., Shing M.-T.: Monitoring Temporal Logic Specifications ...

conditional execution of an operator and conditional output of data. Guards can
include conditions on timers that measure duration of system states, and can allow
operators to execute only when fresh data has been written to an input stream. Each
time critical operator has a maximum execution time (MET) constraint, representing
the maximum time the operator may need to complete execution after it is fired, given
access to all required resources. In addition, each periodic operator has a period and a
deadline (FW). The period is the interval between triggering times for the operator
and the deadline is the maximum duration from the triggering of the operator to the
completion of its operation. Each sporadic operator has a maximum response time
(MRT) and a minimum calling period (MCP). The minimum calling period is the
smallest interval allowed between two successive triggering of a sporadic operator.
The maximum response time is the maximum duration allowed from the triggering of
the sporadic operator to the completion of its operation. An operator can be
implemented in either a target programming language or PSDL. An operator with an
implementation in the target programming language is called an atomic operator. An
operator that is decomposed into a PSDL implementation is called a composite
operator. For example, the monitor_environment operator in Figure 3 may be modeled
as the graph shown in Figure 4.

Figure 3: PSDL specification

Figure 4: Decomposition of the monitor_environment operator

MET = 100 ms
PERIOD = 500 ms

speed : km_per_hour
LATENCY = 100 ms

MET = 200 ms
MRT = 1000 ms
MCP = 500 ms
TRIGGERED

 BY
 ALL speed

OUTPUT
 throttle_adjustment

 IF | throttle_adjustment | > 0.01

throttle_adjustment : real
LATENCY = 50 ms

MET
 = 1000 ms MRT
 = 5000 ms MCP
 = 100 ms

TRIGGERED
 BY

 ALL
 throttle_adjustment

crusing_speed :
 km_per_hour

monitor_
environment

speed_
control

throttle_
control boolean brake_on :

LATENCY = 100 ms

MET = 50 ms
PERIOD = 500 ms

monitor_
speed speed : km_per_hour

LATENCY = 100 ms

monitor_
brake

MET = 50 ms
PERIOD = 500 ms

external

external

brake_on : boolean
LATENCY = 100 ms

1267Drusinsky D., Shing M.-T.: Monitoring Temporal Logic Specifications ...

PSDL’s declarative timing and control constraints help de-couple the behavioral
aspects of a system from its timing properties to allow independent analysis of these
two aspects, and organize timing constraints in a hierarchical fashion, to allow
independent consideration of smaller subsets of timing constraints.

5 The Fish Farm Control System (FFCS)

In this section, we shall illustrate the hybrid approach with a fish farm control system
prototype. The FFCS will control the fish food dispenser and water quality in a fish
tank. The tank has a mechanical feeder that drops pellets of fish food from a feeder
tube suspended above the tank. The feeder can be turned on and off by the computer.
The tank also has a water inlet pipe and a drain pipe with valves controlled by the
computer, and sensors that measure the water level (millimeters above the bottom),
the oxygen level in the water (parts per million), and the ammonia level in the water
(parts per million). The FFCS must deliver fish food at scheduled feeding times,
repeated every day. The times when each feeding starts and stops are displayed on the
console of the FFCS and can be adjusted from the keyboard. The FFCS must keep the
oxygen level at least 8 parts-per-million (ppm), and the ammonia level at most 9 ppm.
Fish will die if left in an environment with low oxygen or high ammonia for 1 minute
or more. The fish tank is 1 meter wide, 2 meters long, and 1 meter deep (1mm level =
2 liters volume). The FFCS must keep the water level between 60 and 90 cm at all
time. The fill/drain valves allow a maximum flow of 0.5 liters per second when valve
is fully open. The fresh water coming in the inlet valve contains 30 ppm of oxygen
and contains no ammonia. The fish in the tank consumes oxygen at a rate of 0.1
ml/sec and generates ammonia at a rate of 0.0015 ml/sec while resting and at a rate of
0.003 ml/sec while they are eating. The FFCS should minimize water flow subject to
the above constraints. In addition, we add another requirement that “when water level
is below 88 cm for at least three minutes, the drain valve settings should be limited to
be at most 10% of the maximum setting” to illustration the expressive power of the
temporal logic.

Figure 5 shows the PSDL model for the FFCS. In the interest of brevity, we shall
only discuss the water quality control portion of the prototype in this paper, which is
made up of six atomic operators: monitor_h2o, monitor_o2, monitor_nh3,
control_water_flow, adjust_inlet and adjust_drain, with the associated control and
timing constraints shown in Table 1.

1268 Drusinsky D., Shing M.-T.: Monitoring Temporal Logic Specifications ...

Figure 5: The PSDL model for the Fish Farm Control System

Operator Control
Constraints

Timing
Constraints

monitor_h2o −
Period = 2000 ms

FW = 200 ms
MET = 80 ms

monitor_o2 −
Period = 2000 ms

FW = 200 ms
MET = 80 ms

monitor_nh3 −
Period = 2000 ms

FW = 200 ms
MET = 80 ms

control_water_flow −
Period = 1000 ms

FW = 200 ms
MET = 100 ms

Adjust_inlet
Triggered by SOME

activate_inlet

MCP = 2000 ms
MRT = 2500 ms

MET = 80 ms

adjust_drain
Triggered by SOME

activate_drain

MCP = 2000 ms
MRT = 2500 ms

MET = 80 ms

Table 1: The control and timing constraints of the water quality control operators

1269Drusinsky D., Shing M.-T.: Monitoring Temporal Logic Specifications ...

Central to the design is the control_water_flow operator, which controls the inlet
and drain water flow based on the following decision table.

Water
Level

< 65 cm ≥ 65 cm, ≤ 85 cm > 85 cm

Oxygen
(O2) &

Ammoni
a (NH3)

Level

−

O2 < 8
ppm or

NH3 > 9
ppm

O2 ≥ 8
ppm and
NH3 ≤ 9

ppm

O2 < 8
ppm or

NH3 > 9
ppm

O2 ≥ 8
ppm or

NH3 ≤ 9
ppm

Inlet
Valve

Setting
open open close open close

Drain
Valve

Setting
close close close open open

Table 2: Decision table for the control water flow logic

To find out if the prototype meets all the requirements using the DBRover
System, we formally specify the following temporal rules using TLS:

Rule 1: The water level must be between 60 and 90 cm at all time, formally written as:
 Always {h2o >= 60 && h2o <=90}.

Rule 2: The oxygen level cannot be less than 8 ppm for more than 60 seconds,
formally written as:
 Always {o2<8} Implies Eventually <=60 {o2>=8}.

Rule 3: The ammonia level cannot be more than 9 ppm for more than 60 seconds,
formally written as:
 Always {nh3>9} Implies Eventually <=60 {nh3<=9}.

Rule 4: If water level has been below 88 cm for 180 seconds, then the change of the
drain valve setting must be less than or equal to 10% of the maximum setting (100)
per second, formally written as:
 Always(Always >=180 {h2o<=88} Implies
 Eventually $dv, ffcs_timer$
 { ffcs_timer’==ffcs_timer ||
 abs(dv’ – dv)/(ffcs_timer’-ffcs_timer) <= 10}.

We also add four operators (check_h2o_level, check_o2_level, check_nh3_level,

check_drain_setting) to the PDSL model (Figure 6). These operators, when triggered
respectively by new data values in the h20, o2, nh3 and drain_setting streams, will
send the updated values to the DBRover for temporal property verification during

1270 Drusinsky D., Shing M.-T.: Monitoring Temporal Logic Specifications ...

prototype execution (Figure 7). The control and timing constraints of these operators
are shown in Table 3.

Figure 7: The enhanced PSDL model with additional operators

Figure 6: The enhanced PSDL model with additional operators
 to invoke the DBRover runtime monitor

Figure 7: Architecture of the integrated SEATools / DBRover
Runtime Monitor System

DBRover generates
true/false notification
every cycle, and a
potential action to be
performed upon success
and/or failure.

FFCS Rules

SEATools

Diagnostic Info
Viewer

FFCS
Prototype

Static
Scheduler

check_h2o
_level

module

check_o2
_level

check_nh3
_level

check_drain
_setting

DBRover

Verification Result
Viewer

Rule 1
implementation

Rule 2
implementation

Rule 3
implementation

Rule 4
implementation

1
2

3

DBRover applies the current
cycle value of the ammonia level
to Rule 3: Always {nh3>9}
Eventually <=60 {nh3<=9}

Sockets communication
of values of the Boolean
propositions {nh3>9}
used by Rule 3.

1271Drusinsky D., Shing M.-T.: Monitoring Temporal Logic Specifications ...

Operator Control
Constraints

Timing
Constraints

check_h2o_level
Triggered by SOME

h2o

MCP = 1000 ms
MRT = 1500 ms

MET = 80 ms

check_o2_level
Triggered by SOME

o2

MCP = 1000 ms
MRT = 1500 ms

MET = 80 ms

check_nh3_level
Triggered by SOME

nh3

MCP = 1000 ms
MRT = 1500 ms

MET = 80 ms

check_drain_setting
Triggered by SOME
h2o, drain_setting

MCP = 2000 ms
MRT = 2500 ms

MET = 80 ms

Table 3: The control and timing of the new operators

Figure 8 shows a snapshot of the Temporal Rule Monitor panel of the DBRover
system, showing the status of Rule 2 during prototype execution. Each line in the
panel represents a new evaluation of the rule, where the top most line represents the
latest evaluation. The output from the Temporal Rule Monitor indicated that Rule 2
was invoked by the check_o2_level operator of the FFCS prototype once every 2
seconds (as expected). The timing and logic of the control_water_flow operator
(Tables 1 and 2) has caused the oxygen level in the fishpond to fall below 8 ppm
roughly once every 10 seconds, but only for a brief duration of at most 2 seconds each
time. Output for the other 3 rules (not shown) indicated that the water level, ammonia
level and drain valve setting always stayed within the desired limits.

Although the current design satisfied Rule 2, it caused the inlet valve to be turned
on (for a duration of 2 seconds) once every 10 seconds, which is bad for the long-term
health of the mechanical valve. One way to avoid frequent switching of the valve is
by setting the frequency of the control_water_flow operator to longer periods.
Through the use of SEATools, we were able to go through the cycle of changing the
timing constraints of the operators, translating the PSDL specification into Ada code,
compiling the Ada code and executing the prototype in less than 5 minutes. Figure 9
shows a snapshot of the status of Rule 2 when the period of the control_water_flow
operator was set to 30 seconds. The new period has caused the oxygen level in the
fishpond to fall below 8 ppm roughly once every 2.5 minutes, and for a duration that
varied from 3 seconds to 37 seconds. This caused the inlet valve to be turned on (for
a duration of 30 seconds) roughly once every 2.5 minutes.

1272 Drusinsky D., Shing M.-T.: Monitoring Temporal Logic Specifications ...

Figure 8: The Temporal Rule Monitor Panel

Figure 9: The status of Rule 2 when the control_water_flow operator
fires once every 30 seconds

1273Drusinsky D., Shing M.-T.: Monitoring Temporal Logic Specifications ...

To illustrate the ability for the DBRover Monitor to catch permanent rule violations,
we regenerated the executable prototype with the period of the control_water_flow
operator set to 60 seconds. Figure 10 showed a snap shot of the status of Rule 2 after
executing the prototype for 14 minutes and 17 seconds. The Temporal Rule Monitor
detected that the oxygen level fell below 8ppm for more than 1 minute (from 5:07:43
through 5:08:46) and declared a permanent violation (the Done message) of Rule 2 at
5:08:46.

6 Conclusion

While temporal logic specifications and monitoring have been successfully used for
the verification of complex reactive systems such as NASA’s Deep Impact flight code
[Drusinsky and Watney 02], it was found that requirements with time-series
constraints such as stability constraints, monotonicity constraints, average-value and
expected-value constraints, and sum and product constraints, are all difficult to
express in LTL. We have shown an extension of LTL and MTL, named TLS, capable
of capturing such requirements. TLS specifications are supported by the Temporal
Rover V8.0 and by its remote monitoring counterpart, the DBRover V2.0. The
DBRover also includes a graphical simulator for TLS enabling the simulation and
debugging of temporal requirements before deploying them on the monitor.

We also show that run-time monitoring, in tandem with rapid prototyping, can be
used in verifying temporal properties in the very early stage of the design process.
This approach helps identify errors earlier in the design process and also helps debug
the requirements themselves. Code generation support by SEATools and Temporal
Rover is vital for such approach to be practical. The executable prototype consists
3968 lines of source code, 2048 of which are Ada and C codes generated by the
SEATools and the DBRover. The use of socket communication provides a very
simple interface between the SEATools runtime environment and the DBRover
System. We only need to create one atomic operator in the PSDL model for each
temporal rule. The Ada implementation of each of these atomic operators consists of a
one-line procedure call to invoke the corresponding C routine implementing the
temporal rule. The mapping between the Ada and C code is very straightforward and
can be automatically generated easily. Although the use of socket communication

Figure 10: Output of the Temporal Rule Monitor showing the
permanent violation of Rule 2

1274 Drusinsky D., Shing M.-T.: Monitoring Temporal Logic Specifications ...

introduces additional time delay between the detection of events during the prototype
execution and the checking of the affected temporal properties by the DBRover, it has
negligible effect on the accuracy of the verification result because DBRover allows
user to specify time based on the client’s clock. All events detected during prototype
execution are stamped with the local clock before sending to the DBRover for
verification.

Acknowledgements

Work done by the first author was supported in part by Naval Postgraduate School
Research Initiation Program. Work done by the second author was supported in part
by the U.S. Army Research Office under grant number 40473-MA-SP and the U.S.
Navy SPAWAR Command under grant number N0003903WRHF02D.

References

[Chang et al. 94] Chang, E., Pnueli, A., Manna, Z.: “Compositional Verification of Real-Time
Systems”; Proc. 9th IEEE Symp. on Logic in Computer Science (1994), 458-465.

[Drusinsky 00] Drusinsky, D.: “The Temporal Rover and ATG Rover”; Proc. Spin2000
Workshop, Springer LNCS, 1885 (2000), 323-329.

[Drusinsky 01] Drusinsky, D.: “Formal Specs Can Handle Exceptions”; CMP Embedded
Developers Journal (Nov. 2001), 10-14.

[Drusinsky 03] Drusinsky, D.: “On-line Efficient Monitoring of Metric Temporal Logic
Specifications using Alternating Automata”; manuscript (2003), submitted for publication.

[Drusinsky and Fobes 03] Drusinsky, D., Fobes, J.: “Real-time, On-line, Low Impact,
Temporal Pattern Matching”; Proc. 7th World Multiconference on Systemics, Cybernetics and
Informatics, Orlando FL (2003), accepted for publication.

[Drusinsky and Watney 02] Drusinsky, D., Watney, G.: “Applying Run-Time Monitoring to the
Deep-Impact Fault Protection Engine”; Proc. 27th IEEE/NASA ICECCS workshop (2002).

[Hailpern and Owicki 83] Hailpern, B., Owicki, S.: “Modular Verification of Communication
Protocols”; IEEE Trans of comm., 31, 1 (1983). 56-68.

[Havelund and Pressburger 00] Havelund, K., Pressburger, T.: “Model Checking Java
Programs Using Java PathFinder”; International Journal on Software Tools for Technology
Transfer (STTT), 2, 4 (2000), 366-381.

[Liu 00] Liu, J.: “Real-Time Systems”; Prentice Hall, 2000.

[Luqi 93] Luqi: “Real-Time Constraints in a Rapid Prototyping Language”; Journal of
Computer Languages, 18 (1993), 77-103.

[Luqi et al. 88] Luqi, Berzins, V., Yeh, R.: “A Prototyping Language for Real-Time Software”;
IEEE Trans. on Software Eng., 14, 10 (1988), 1409-1423.

[Luqi et al. 01] Luqi, Berzins, V., Ge, J., Shing, M., Auguston, M., Bryant, B., Kin, B.:
“DCAPS-architecture for distributed computer aided prototyping system”; Proc. 12th
International Workshop on Rapid System Prototyping (2001), 103-108.

1275Drusinsky D., Shing M.-T.: Monitoring Temporal Logic Specifications ...

[Manna and Pnueli 81] Manna, Z., Pnueli, A.: “Verification of Concurrent Programs: Temporal
Proof Principles”; Proc. Workshop on Logics of Programs, Springer LNCS, 131 (1981), 200-
252.

[Pnueli 77] Pnueli, A.: “The Temporal Logic of Programs”; Proc.18th IEEE Symp. on
Foundations of Computer Science (1977), 46-57.

[Sistla and Wolfson 95] Sistla, A., Wolfson, O.: “Temporal Conditions and Integrity
Constraints in Active Database Systems”; Proc. ACM-SIGMOD 1995 International Conference
on Management of Data, San Jose, CA (May 1995).

1276 Drusinsky D., Shing M.-T.: Monitoring Temporal Logic Specifications ...

