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Abstract: Rosetta is a systems level design language that allows algebraic specifica-
tion of systems through facets. The usual approach to formally describe a specification
is to define an algebra that satisfies the specification. Although it is possible to for-
mally describe Rosetta facets with the use of algebras, we choose to use the dual of
algebra, i.e. coalgebra, to do so. Coalgebras are particularly suited for describing state-
based systems. This makes formally defining state-based Rosetta quite straightforward.
For non-state-based Rosetta, the formalization is not as direct, but can still be done
with coalgebras by focusing on the behaviors of systems specified. We use denota-
tional semantics to map Rosetta syntactic constructs into a language understood by
the coalgebras.
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1 Introduction

An important part in the development of a new language is to formally define
what the language denotes. This is especially true for specification languages. For
most algebraic specification languages, the formalization of the language consists
of describing the algebras that satisfy a specification [Ehrig and Mahr 1985]. A
similar approach is used in the formal definition of the Rosetta system level de-
sign language. However, instead of defining algebras, coalgebras, the duals of al-
gebras, are defined. Coalgebras are particularly suited for describing state-based
systems, consequently for describing state-based domains in Rosetta. However,
Rosetta is not restricted to state-based computation. Indeed, one of the major
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benefits of Rosetta is its flexibility in allowing different models of computation,
such as trace-based, event-based, graph-based and the like. The semantics of
systems from these different models of computation can still be expressed with
coalgebras that represent their behaviors.

The link between coalgebras and transition systems is clearly defined by
Alexander Kurz [Kurz 2001]. He first defines a theory of systems describing re-
lations between different systems, and then demonstrates how certain systems
give rise to coalgebras. Our use of coalgebras in formally defining Rosetta spec-
ifications is founded on his work. Other insights to the relation between state-
based dynamical systems and coalgebras are given in several papers. Jacobs
and Rutten [Jacobs and Rutten 1997] cite several of them in their tutorial on
(co)algebras and (co)induction. Of special interest to us, that tutorial describes
how a function can be coinductively defined over coalgebras. We use the same
approach to define extension relations between Rosetta units of specification.

Rosetta [Alexander et al. 1999, Alexander and Kong 2001] is a systems level
design language that uses facets as units of specification. A facet is a signature,
consisting of operators, functions and variables, as well as a set of terms that
define constraints over the signature. It is used to specify a view of a system or
component in terms of some model of computation. The semantics of a model
of computation is defined in a special facet, called domain. A facet is said to
extend a domain when it consistently uses, adds to or constrains the definitions
of that domain. The facet signature is also augmented by the domain signature.
A domain can be an extension of another one similarly to a facet. The formal
definition of facets and domains consists of describing coalgebras for them. We
use denotational functions to map Rosetta syntax to coalgebra semantics. Then,
extensions are defined by coinduction over the coalgebraic structures of facets
and domains.

In the next sections, we elaborate on the formalization of the semantics of
Rosetta facets and domains. We first present some coalgebraic definitions in the
background section, derived from both Kurz [Kurz 2001] and Jacobs and Rut-
ten’s [Jacobs and Rutten 1997] papers. We then provide a general approach to
the denotation of Rosetta facets to coalgebras. The denotation is called α and is
divided into two parts. The first part involves representing a facet as a coalgebra
and the second consists of denoting Rosetta terms into a language understood
by the coalgebra. We then describe the formalization of some specific Rosetta
domains and relations into coalgebraic structures. Following this, an example of
formally defining a Rosetta domain and facet is given. The next section then
describes how commuting diagrams are used to define special functions across
domains that are then used to define interactions. The conclusion section finally
completes this paper with a description of future work.
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2 Coalgebraic Background

This section provides an overview of coalgebras and the use of coalgebras in
the semantics of systems. The definitions are summarized from Kurz’s lecture
notes [Kurz 2001] and Jacobs and Rutten’s tutorial [Jacobs and Rutten 1997]
in Section 2.1 and Section 2.2 respectively. Kurz defines a theory of systems
and describes the semantics of some systems as coalgebras. Jacobs and Rutten
define coalgebras for functors and uses special relationships between coalgebras
to coinductively define functions. Our definition of Rosetta semantics uses Kurz,
and Jacobs and Rutten’s work as a basis.

2.1 Modeling systems by coalgebras

2.1.1 Theory of systems

A theory of systems describes the relation of systems and their behaviors in terms
of a given interface. Systems are reactive and communicate with other systems
and the environment through interfaces. A system is considered to be a set of
states X and a transition-function ξ describing for every state x ∈ X the effect
ξ(x) of taking an observable transition in state x. A system is thus a function:

X
ξ→ ΣX , where the notation ΣX indicates the set of possible outcomes of

taking a transition. Σ is called the type or signature, X is called the carrier or
set of states of the system, and ξ is called the structure or transition-function of
the system. A process is a system together with a given state (usually the initial
state) and is denoted by ((X, ξ), x0) or shorter (X, ξ, x0). A process (X, ξ, x0) is
called a stream when the associate system can output elements of a fixed set
A forever. Such a system can be represented by a function:X

ξ→ A × X .
A signature Σ for systems is an operation mapping a set (of states) to a set

ΣX containing the possible effects of an observable transition. As an interface is
to specify the “observable effect” of a transition, Σ itself provides an appropriate
notion of interface. The behavior of the process ((X, ξ), x0) is given by:

Beh(x0) = (a0, a1, a2 . . .)

This type of behavior thus describes what can be observed of the system (X
ξ→

A×X) when it produces an infinite list (x0, (a0, x1), (a1, x2), . . .), starting from
x0 and taking a transition ξ(x0) = (a0, x1) then continuing with ξ(x1) = (a1, x2)
and so on.

Given a process is state dependent, a system has as many processes as states
and therefore has a behavior assigned to everyone of its states. The behavior of
a system is the set of all these behaviors. A fundamental observation is that the
behavior of a system is itself a system, i.e. it can be described as a set of states and
a transition-function. Let (X, ξ) be a system and Beh(X) = {Beh(x) : x ∈ X}
the set of all behaviors of X . For Beh(X) to be considered as a system, we have
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to exhibit a transition-function β : Beh(X) → A × Beh(X). β has to map an
infinite list l = (a0, a1, a2, . . .) into A × Beh(X). An obvious candidate is:

β : Beh(X) → A × Beh(X)
(a0, a1, a2, . . .) �→ 〈a0, (a1, a2, . . .)〉

Note that the behavior of some l ∈ Beh(X) is l and that the behavior of system
(Beh(X), β) is (Beh(X), β).

The interest in a general theory of systems lies in the relationships between
different systems or in structural properties of collections of systems. System
relationships are investigated by using structure preserving mappings between
systems. Given head(x) represents the first value a and tail(x) the remainder
x′ of a stream (X, ξ, x) with ξ(x) = (a, x′), a homomorphism, or morphism

for short, between two systems X
ξ→ A × X and X ′ ξ′

→ A × X ′ is a function
f : X → X ′ such that

head(f(x)) = head(x) and tail(f(x)) = f(tail(x))
The precise definition of behavior of a system X → A×X at state x0 ∈ X is then
defined as Beh(x0) = (head(tailn(x0)))n∈N where tailn is defined inductively
via tail0(x) = x, tailn+1(x) = tail(tailn(x)). Behaviors are invariant under mor-
phism and Beh : X → Beh(X) is the unique morphism (X, ξ) → (Beh(X), β).
Therefore, two states have the same behavior if and only if these states are
identified by some morphisms.

Much of the power of a general theory of systems comes from the observation
that all behaviors of all systems constitute themselves a system. For any process
(X, ξ, x), the behavior is an infinite list (ai)i∈N. The set of all behaviors of all
processes is thus given by AN = {f : N → A} = {(ai)i∈N, ai ∈ A}. As for the
behavior of a process, this set of all behaviors of all processes can be made into
a system with transition structure:

ζ : AN → A × AN (1)

(a0, a1, a2, . . .) �→ 〈a0, (a1, a2, . . .)〉
Since the mapping from a system to its behavior is a morphism, we know that,
for any system, there must exist a morphism into the system of all behaviors
(namely the one mapping each process to its behavior). And, since morphisms
preserve behaviors, for any system, there can be at most one morphism into the
system of all behaviors. Thus, the system of all behaviors is a final system. A
system (Z, ζ) is called final (or terminal) if and only if for all systems (X, ξ)
there is a unique morphism (X, ξ) → (Z, ζ).

Two processes/systems are behaviorally equivalent if and only if they have
the same behavior. Formally, given two systems, (X, ξ) and (X ′, ξ′), and Beh

and Beh′ the two corresponding unique morphisms into the final system.

1. Two processes (X, ξ, x) and (X ′, ξ′, x′) are behaviorally equivalent iff
Beh(x) = Beh′(x′).
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Σ ΣX Process System

1 1 stop X
ξ→ 1

A A output a ∈ A once X
ξ→ A

Id X metronome (running forever) X
ξ→ X

A ×− A × X stream over A X
ξ→ A × X

A × X − +1 A × X + 1 finite or infinite list over A X
ξ→ A × X + 1

Table 1: Some systems and their signatures

2. Two systems (X, ξ) and (X ′, ξ′) are behaviorally equivalent iff
Beh(X) = Beh′(X ′).

R ⊂ X ×X ′ is a bisimulation over two systems of streams (X, ξ) and (X ′, ξ′) iff
x R x′ ⇒ head(x) = head(x′) and x R x′ ⇒ tail(x) R tail(x′)

In other words, x R x′ implies that a transition x �→ 〈head(x), tail(x)〉 can be
simulated by a transition x′ �→ 〈head(x′), tail(x′)〉 and vice versa. Two processes
are behaviorally equivalent if and only if they are bisimilar.

Since one is usually interested in processes only up to behavioral equivalence,
it is therefore sensible to consider behavioral equivalence as equality on processes.
In the final system, two processes are behaviorally equivalent iff they are equal.
The principle of definition by coinduction can then be used. Since for any
system X

ξ→ ΣX there is a unique morphism into the final system (Z, ζ), we
can define a function f : X → Z just by giving an appropriate structure:

for all X
ξ→ ΣX there is a unique morphism (X, ξ)

f→ (Z, ζ).
We say that function f is defined by coinduction if it arises in such a way from
a ξ : X → ΣX .

Systems with inputs are modeled as X × I → X . However, as mentioned
previously, a system is a function X

ξ→ ΣX , i.e. of the kind (X → . . .) and not
(. . . → X). Currying is therefore used to write functions representing systems
with inputs in the correct form. Given f : X × I → X , f(x, ) is a function
I → X for each x ∈ X . It follows that f( , ) is a function from X to the
functions I → X . Therefore, given sets I and X , and denoting XI to be the set
of functions from I → X , systems with inputs (X × I → X) can now be written
as (X → XI).

Table 1 describes the signatures for some processes. 1 denotes a one-element
set and Id denotes the identity operator.
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Σ ΣX Σf

C C idc : C → C

Id X f
(−)C XC fC : XC → Y C

g �→ f ◦ g

Table 2: System signatures that are functors

2.1.2 Coalgebra of systems

The theory of systems is almost uniform in all signatures, except for the notion
of morphism that has to be created separately for each new signature. The idea
is thus to define the signature such that it includes, in a natural way, the right
notion of morphism. This is done by requiring the signature to be a functor.

Given a category χ, called the base category, and a functor Σ : χ → χ, a Σ-
coalgebra (X, ξ) is given by an arrow ξ : X → ΣX in χ. A morphism between
two coalgebras f : (X, ξ) → (X ′, ξ′) is an arrow f in χ such that ξ′ ◦ f = Σf ◦ ξ:

XΣ

X’Σ

Σ f

’ξ

X
ξ

X’

f

Assume χ = Set where Set is the category of sets, i.e. the objects of the
category are sets. Some signatures can be extended to functors as shown in
Table 2 (let C ∈ Set and f : X → Y ∈ Set). idC denotes the identity map on C

and XC is function space.
As the signatures of systems in Table 1 give rise to functors, these systems

can be represented as coalgebras. In particular, the general theory of systems
outlined previously is now uniformly available to all categories of coalgebras over
sets.

2.2 Coalgebras of functors

A functor is an operator on sets that also act on functions between sets while
preserving identity functions and composition functions. A “polynomial” functor
T is a functor built up with constants, identity functors, products and coproducts
and also (finite) powersets. For example, T (X) = X + (C × X) where C is a
constant set and X a set. For a functor T , a coalgebra (or a T-coalgebra) is a
pair (U, c) consisting of a set U and a function c : U → T (U). The set U is called
the carrier and the function c is the structure or operation of the coalgebra
(U, c). The carrier set is also called the state space.
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A homomorphism of coalgebras from a T -coalgebra U1
c1→ T (U1) to another

T -coalgebra U2
c2→ T (U2) consists of a function f : U1 → U2 between the carrier

sets which commutes with the operations: c2 ◦ f = T (f) ◦ c1. A final coalgebra
d : W → T (W ) is a coalgebra such that for every coalgebra c : U → T (U) there
is a unique map of coalgebras (U, c) → (W, d).1

A map can be defined with the use of a finality diagram (Figure 1). The map
“and-so-forth” applies the “next step” operations repeatedly to the “base step”.
The technique for defining a function f : V → U by finality is thus: describe
the direct observations together with the single next steps of f as a coalgebra
structure on V . The function f then arises by repetition.

V U

T(V) T(U)

observe
plus
next step

"and−so−forth"

final
coalgebra

≅

Figure 1: Coinductive definition of a function

Example 1. Co-inductive definition of the merge function.

As an example, the function merge is coinductively defined. Given a functor
T (X) = A×X where A is a fixed set, its final coalgebra is the set AN of infinite
lists of elements from A, with coalgebra structure

〈head, tail〉 : AN → A × AN

given by
head(α) = α(0) and tail(α) = λx.α(x + 1)

For an arbitrary coalgebra 〈value, next〉 : U → A × U there is a unique homo-
morphism of coalgebras f : U → AN; it is given for u ∈ U and n ∈ N by

f(u)(n) = value(next(n)(u))
What can be observed about an element u ∈ U is an infinite list of elements of
A arising as value(u), value(next(u)), value(next(next(u))), . . . This observable
behavior of u is precisely the outcome f(u) ∈ AN at u of the unique map f to
the final coalgebra. Hence the elements of the final coalgebra give the observable
behavior. This is typical for final coalgebras.

Once it is known that AN carries a final coalgebra structure, this finality
can be used to define functions into AN. For instance, the function merge :
1 Note the similarity with the definitions in Kurz’s theory of systems (Section 2.1.1).
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AN × AN → AN which merges two infinite lists into a single one arises as a
unique function to the final coalgebra AN in:2

A × (A  × A  )Ν Ν

A  × AΝ Ν

A  × AΝ

AΝ

head, tail〈 〉

merge

id × merge

≅
(head(    ),(    , tail(   )))λ(α,β). α αβ

3 Formal denotation of Rosetta specifications into coalgebras

3.1 Formal denotation of facets

We call the formal denotation of a Rosetta specification into a coalgebra an
α-denotation. In this section, we define the function for the α-denotation of a
facet. Note that by facet, we intend a consistent facet. Although we do not
prove the consistency of any facet described in this work, we assume that it
is consistent. It automatically follows that if a facet is inconsistent, then the
coalgebra denotation and the theory presented in this paper do not hold for that
facet.

A facet, F , can be considered as a 4-tuple:
〈l , O , D , T 〉

where l is the label, O is composed of all the parameters and variables (i.e. all the
observers of the facet), D is the domain that the facet extends, and T contains
the terms of the facet. Whatever the domain the facet extends, the behavior is
defined by observing the parameters and variables of the facet, O , as well as the
parameters and variables defined in the extended domain OD .3

The coalgebraic structure of the facet can be defined by using its domain
coalgebra. Given the coalgebraic structure of the domain is X�

ζ→ X × X�,
where � is some number, then the coalgebra of the facet (left of diagram) is given
such that the following diagram (Figure 2) commutes. The domain coalgebra
describes the behaviors of all facets extending D. Consequently, the carrier set
X represents a set of tuples of different sizes, with each tuple containing at least
the variables defined in D, i.e. each element of X will be a tuple containing OD

2 Note that the coalgebra on the left expresses the direct observation after a merge,
together with the next state (about which a next direct observation is made).

3 The parameters and variables of any parent domain of the extended domain are also
observed at the facet level, i.e. observation of parameters and variables is recursive
on the extension of domains.
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and variables defined in facets extending D. In this diagram the extn morphism
only involves the subset of X consisting of tuples of 〈O, OD〉. As extn describes
the map from the behaviors of facet F to the system of all behaviors as defined
by D, it is similar to an identity function. It will map a specific tuple to the same
tuple and a sequence of tuples to the same sequence of tuples. Although extn

has the properties of a coalgebraic morphism, it is not of much interest as an
“identity” function. However, it is the unique map between each facet coalgebra
and its domain coalgebra, thus resulting in the domain coalgebra being final.

D
α

OX
α

ξ

O × OD( )
α

O × OD

O × OD( )
α

× X × X
α f × map(f)

domain Dfacet F

ζ

O  × D DO
α

map(f)

ζ ’

extn

id × extn

abstracted D’

where

{
f : O × OD → OD i.e. describes an abstraction of variables)
ξ : (O × OD)� → O × OD × (O × OD)� such that T holds

Figure 2: Coalgebra of a facet

As all facets extending the same domain D observe the variables defined
in that domain, it is of more interest to see how facets affect these variables.
The move from domain D to abstraced D′ in Figure 2 (represented by map(f)
and f × map(f)) can be considered as restricting the observed behavior to the
variables of the domain. In some ways, this can be viewed as an abstraction

of the observed behavior of a facet. From here onward, the behavior forming the
facet coalgebra consists of observing all variables (including parameters) of the
facet and of the domain the facet extends. The behavior forming the domain
coalgebra consists of observing only the variables from the domain.4

3.2 Formal denotation of Rosetta terms into λ-expressions of
coalgebras

In the previous section, the function ξ of the coalgebraic structure of the facet
depends on the terms defined in the facet. It is therefore necessary to under-
4 It is understood that in truth, all variables observed in a facet are also present in

the domain coalgebra. To analyze the effects of extension, we choose to look at the
domain variables isolated from facet variables.
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stand what a Rosetta term denotes. We thus provide denotational functions for
such terms. We use the phrase “denotation” in the sense of The Scott-Strachey
Approach to Programming Language Theory [Stoy 1977]. We provide “semantic
valuation functions” that map syntactic constructs in the program to the ab-
stract values that they denote in the λ-language understood by the coalgebra.
However, because the semantics of some syntactic constructs is dependent on
domains, the valuation functions may vary from one domain to another. We
therefore start by defining three basic valuation functions that are used in the
prelude of the language (defines the static domain). We then modify these func-
tions to make them match the semantics defined within each domain.

3.2.1 Formal denotation of prelude terms

We define three basic semantic valuation functions: one for expression, one for
constants and literals, and one for operators. The expression valuation function
is defined as E[[ε]] : Environment → V alues such that, given an environment
envt, it evaluates an expression to its value ([[]] indicates semantic brackets). An
envt contains known mappings between identifiers and values as well as between
functions and values/body of these functions. E can also be applied to undefined
functions in some cases. Given values of an undefined function are known in envt

for specific tuples of parameter values, the value of such a function applied to
a particular tuple of parameters can be obtained. Something similar to pattern
matching can be used to determine the function value. V alues refer to any kind
of value and is the universal5 type in Rosetta. Universal is the set of all values,
including function values (i.e. lambda expressions). Function V : Constants →
V alues is the valuation function for constants/literals. Valuation functions for
operators are in the form O[[Ω]] : universal → universal → universal, where Ω

is an operator.
Following are some case by case definitions of the valuation functions as well

as some examples of their applications.

– E[[ξ]] (envt) ≡ (envt value (ξ))
– E[[v]] (envt) ≡ V [[v]]
– E[[εΩε′]] (envt) ≡ O[[Ω]]〈E[[ε]] (envt), E[[ε′]] (envt)〉
– O[[=]] ≡ λ〈v1, v2〉.if v1 = v2 then True else False

: universal → universal → bool

5 We use V alues and universal interchangeably.
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where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε is an expression
envt represents the environment

Ω is a binary operator
λ〈parameters lmbd fnctn〉.body lmbd fnctn : type lmbd fnctn

is a lambda expression of type type lmbd fnctn

ξ represents identifiers
v represents constants
(evnt value (x)) is a shortcut for saying the value of x in the

environment

The interpretation of a term may result in a specific true or false value,
or in an equation with unknowns. If the values of all the variable identifiers in
the denoted equation are known, then the equation can be evaluated to a true

or false value. However, if one or more variable identifiers are unknown (an
undefined function with known parameters can be considered as an unknown
identifier), then, it may not always be possible to evaluate the equation to a
specific boolean value. In this case, a system of equations will be obtained and a
constraint solver may be used to try to solve the unknowns. It is always assumed
that all equations with unknowns are evaluated to true for consistency of a facet.

The valuation function for terms is T : Terms → Environment → boolFnc,
where boolFnc is a function V ars → Boolean with V ars representing any num-
ber of variables, i.e. a term can be evaluated to a boolean value, or to a boolean
function of one parameter, or to a boolean function of two parameters, and so
on. The resulting function of evaluating a term depends on the term and on the
environment. For example, an evaluation results in a boolean function of one
parameter when an item in the term is undefined, i.e. is of unknown value.

Some simple examples of term evaluations are given below. Assume that the
environment envt contains the following mappings:

– x ≡ 2
– myFnc ≡ λx : int . x + 1

then, the following terms are evaluated as follows (not all the steps of the eval-
uations are shown):

– T [[x = 2]] (envt) ≡ O[[=]](E[[x]] (envt))(V [[2]]) ≡
if (2 = 2) then True else False ≡ True

– T [[(myFnc 1) = 2]] (envt) ≡ O[[=]] ((λx : int . x + 1) (1), 2) ≡ True

– T [[(undefFnc x) = 2]] (envt) ≡ (undefFnc (2)) = 2
where (undefFnc (2)) = 2 is a boolean equation with one unknown

3.2.2 Formal denotation of state-based terms

We use the notion of a unit of semantics to describe a unifying semantic do-
main. A unit of semantics provides a domain of discourse with a vocabulary and
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a semantics for that vocabulary. The underlying semantics defines the rules that
provide meaning to the vocabulary. A model of computation can often be ex-
pressed using different representation. For example, a Kahn process is naturally
represented by functions over streams of values. However, it can also be repre-
sented as a state machine that simulates its behavior [Burch et al. 2001]. The
vocabulary contains the objects that are needed to describe a model of compu-
tation. The semantics describes what they mean and the rules that govern how
they interact.

As shown in Figure 3, we originally propose two units of semantics, the
signal based domain based on the Tagged Signal Model [Lee 1998], and the
state based domain for state-based models of computation. Signal-based do-
mains specify models with the use of events and signals, with a signal being a
set of events and an event a pair of tag and value. The underlying semantics
defines what the values and tags are, and describes the meaning of a process and
the rules that govern how processes behave (firing rules and communication pro-
tocols). In the case of state-based, models are specified with the notion of states
and state transitions. In this case, the semantics describes states with respect
to the inputs, outputs and transition functions. Due to the difference in seman-
tics for these two domains, each has slightly different denotational valuation
functions. In this paper, we only show the denotation of state-based terms.

We identify the vocabulary of a state based model to consist of a set of states,
K (finite or infinite, denumerable or nondenumerable), a finite set of inputs and
outputs, Γ , and a transition relation that given a state returns a next state or
a set of next states, K × Γ → K. The semantics of a state based model can be
associated with the transition relation as the latter provides the rule describing
how the state transformations occur.

The definition of this semantics is achieved in two steps. The first step is
to define what a state denotes. Allison [Allison 1986] defines a state to be the
values of variable identifiers in the sequential execution of a program. The set
of states, S = {V ar → V alues}, thus represents the set or data-type of func-
tions from identifiers (V ar) to values (V alues). A particular state σ : S is a
particular function from variables to values. The second step is in denoting a
state transformation function. Allison defines a command to denote a relation
(S → S), with the valuation function for commands being C : Cmd → (S → S).
He also describes the notion of expressions along with a function that evalu-
ates the expression in a given state (E[[ε]] : S → V alue). A command differs
from an expression in that it does not have an intrinsic value as does an ex-
pression. It also causes a state transformation whereas evaluating an expression
does not (assuming no side effects). However, if expressions have side-effects,
another expression valuation function is used: E : Exp → S → V alue×S giving
E[[ε]] : S → V alue × S.
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Vocabulary Semantics
Item Description Denotation Description
States Set of states Set Set of states
V ar Set of variables {States → V alues} Set of functions from

states to values
σ Current state σ ∈ States current state
v ∈ V ar Example of a vari-

able
States → V alues Particular function

next State transforma-
tion relation

States → States Transformation function

@ apply function for
dereferencing labels

(States → V alues) →
States → V alues

Similar to apply func-
tion in Lisp - applies a
v ∈ V ar function to state
and returns the value of
the application

Table 3: Vocabulary and semantics of state based

Although our state based model is not restricted to defining sequential pro-
gram execution, we can still mirror its semantics on Allison’s definitions. Instead
of having a state be a function from variable to value, we take a dual approach,
where each variable is a function of a state to a value, i.e. V ar = S → V alues

(see Appendix A for demonstration of duality). Another deviation from Alli-
son’s work is based on the absence of a command in our declarative language.
There is no notion of assignment or side-effects in Rosetta. The side-effect of a
command has to be explicitly defined such that the change of state is no longer
hidden within the command, but made explicit. It is therefore understood that
the same identifier in two different states denotes two different instances of a
variable.

The vocabulary and semantics associated with the state-based unit of seman-
tics are that of a state machine as shown in Table 3. The valuation functions, T

and E, defined in the prelude (Section 3.2.1) are also used here. As mentioned
previously, terms are used to define properties over elements of a vocabulary. For
example, in sequential execution, with x := x + 1, it is understood that there
is a state change such that x in the new state is equal to the value of x in the
previous state plus one. In Rosetta, there is no sequential execution. To achieve
the same idea, we have to clearly express x@next(s) = x@s+1 where x@next(s)
means x in next state since s is the current state. For this reason, elements of the
vocabulary are visible in the language. Following this, the denotational semantic
functions can be considered to interpret rather than to evaluate.
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We define some of the valuation functions as follows (we use the same nota-
tions as in Section 3.2.1):

O[[@]] ≡ λ〈fnc, s〉.fnc(s) : (States → universal) → States → universal

E[[y@σ]] (envt) ≡ E[[y]] (envt, σ) ≡ (envt value (y)) (envt value (σ))
E[[y@next(σ)]] (envt) ≡

(envt value (y)) ((envt value (next)) (envt value (σ)))
Each function v ∈ V ar may not have a complete direct definition. In such cases,
the function is either defined as a set of pairs (States, V alues) with the pairs
listed in envt when known, or as an abstract function for which certain conditions
must hold (these conditions are defined by the terms of the facet). Due to the
way the next state is defined over the transformation of a variable, although
the next relation may be undefined, the value of a variable in the next state
may still be known. For example, if the value of x@s is known, then the value
of x@next(s) where x@next(s) = x@s + 1 is also known without knowing the
exact definition of next.

4 Coalgebras of domains

The coalgebras of domains are represented with the use of coalgebraic structures
that define the behaviors of systems represented in each domain. Figure 3 pro-
vides some basic domains in Rosetta, as well as the “extension” relations6 that
exist between them. As the nodes of the tree represent coalgebras, the arrows
go from a less abstract domain to a more abstract one. A domain is said to be
more abstract when it defines less constraints. A more abstract domain allows
for more observations (cf. Appendix B). The root of the tree is the null do-
main where there is no restriction on observations made. The next domain is the
static domain where at least constants have to be observed over all behaviors,
i.e. all observations will include some items that do not change values whatever
the behavior. In the state based domain, at least a variable representing state
identifier is observed over the behaviors of systems. These behaviors are obtained
by following some transition function. As for any domain, the state based do-
main also covers all observations that can be made by its extending domains.
These extending domains all have observations of a state identifier variable in
common. However, where the state variable is of some abstract States type in
state based, in domains extending the latter, its type can be more concretely de-
fined as long as properties of States hold for the new type. For example, in the
discrete time domain, state transformation is correlated with time that varies
discretely. Therefore, the type, States, can be equated to the set of natural num-
bers, and any observation of the state variable gives a natural number. In the
6 In Rosetta, domain “extension” means adding items and constraints to an existing

domain.
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Extensions

continuous−time

continuous

finite−statefrequency

discrete−time

discrete

digital sequential−machine synchronousRF

Computation

Engineering

Model of 

Unit of
Semantics

Modeling

static

null

state−based signal−based

CSP 

Figure 3: Domain structure

signal based domain, observations can be made on the events currently seen by
a process. The domains extending signal based add constraints to what can be
observed.

The relation between two domains, or a domain and a facet can be defined
coinductively with the use of the finality of coalgebras [Jacobs and Rutten 1997].
The finality of a domain coalgebra is given by the fact that a domain coalgebra
describes all possible behaviors (observable or not) of systems specified within
that domain. Assume domain D contains an observable variable v :: I. In facet
f1 extending D, v is defined as evolving according to vn+1 = vn +1. A behavior
of the facet (with respect to v) is therefore (vn, vn+1, vn+2, . . .). In another facet
f2 also extending D, v evolves as vn+1 = vn + 2. The corresponding behavior
is thus (vn, vn + 2, vn + 4, . . .). The system of behaviors according to domain D

is IN
ζ→ I × IN. Since IN = {(ij)j∈N, ij ∈ I}, the domain’s system of behaviors

includes the behaviors of v from both facets (similar to equation 1): (vn, vn +
1, vn +2, . . .) �→ 〈vn, (vn +1, vn +2, . . .)〉 and (vn, vn +2, vn +4, . . .) �→ 〈vn, (vn +
2, vn +4, . . .)〉. Consequently, there exists a unique morphism from the system of
behaviors of each facet to the system of behaviors of the domain (the morphism
can be described as a case of application or as “a subset of”), thus making the
domain coalgebra final. As the coalgebra of a domain is terminal, we can define
the “extension” relations to that domain coinductively. A commuting diagram
mapping the coalgebra structure of the extending facet to the coalgebra structure
of the extended domain is used. In Figure 4, several commuting diagrams are
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combined to show how these extensions work.7 With each domain D we associate
a set of coalgebras corresponding to the facets and domains extending D.8

〈curStateD, possNextD 〉

…

C  × IdS

cstObs,possNext〈 〉

C   × IdSt

〈curState, possNext 〉

〈curState, possNext 〉

noObs, possNext 〉〈

…

(X × bit × bit × bit × bit) × (X × bit × bit × bit × bit)

D→ S
e

F → D
e( ) D→ S

e( )

Discrete

…

…

obs_fnc

State−based

X × {*}× {}×

X ×X ×

X
State−based

X
Static Null

X

XXX

X X

XX

R R R

RRR

R

RN

Flipflop
NN

N

(X × bit × bit × bit × bit)

e
S → St

( )map e
St→ N

( )

D→ S
e( )e

F → D
( )

×
F → D

e × map

map

map map

map

Figure 4: State based extension

The coalgebraic structure for the null domain is given by
N = 〈noObs, possNext〉 :: XR → {} × XR.

The null domain is thus represented as one where no restriction is made on
observations although its system may run continuously to infinity. While XR =
{(xi)i∈R, xi ∈ X} represents the set of behaviors of something of type X (a
behavior can be a continuous sequence of values from X), {} indicates that the
observations over the behavior are not constrained. Although {}×S = {} where
S is any set, in the diagram we use the expanded form so that the diagram
commutes. Also, we use R instead of N for the behaviors to indicate that the
sequence can be continuous as well as discrete (N is a subtype of R).

The static domain extends the null domain by constraining all the behaviors
to at least contain constant observations. As for null, the behaviors of systems
represented in static can be given as sequences of values of X . However, all
behaviors need to involve constant observations. The coalgebra structure for the
7 Note that we work directly on the system of behaviors for each domain. We do not

show the relation between the domain system and its behavior system (see Section 5)
because we are mainly interested in the coinductive relations between coalgebras.
Furthermore, for non state-based domains, we cannot always describe the systems

in the form X
ξ→ ΣX.

8 In Figure 4, for each of the domain, the coalgebra shown describes the minimum
observations allowed for all behaviors of that domain.
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static domain is therefore St = 〈cstObs, possNext〉 :: XR → {∗} × XR, where
{∗} indicates a singleton set.9 Whatever the behavior, the constant observation
is always the one member of the singleton set.10 An observation is constant when
what is being observed does not change.

The state based domain’s coalgebra indicates that elements of a state can
be observed, S = 〈curState, possNext〉 :: XR → X × XR. At this domain’s
level, the observations are abstract in that we observe a variable of type, X ,
but no constraint is put on it.11 12 In Figure 4, note how X appears in any
coalgebra extending state based. Several domains extend state based, one being
continuous while another is discrete. The coalgebra structure for the continuous

domain is very similar to that of state based, except for the mapping function,
〈curStateC, possNextC〉 :: XR → X×XR.13 However the coalgebra for discrete

differs in a characteristic way, the sequences can still be infinite, but are discrete,
D = 〈curStateD, possNextD〉 :: XN → X × XN .

In the signal based domain, events and their effects can be observed from a
specification. The behaviors of a process are thus represented by traces of events
as seen by the process. The coalgebra structure is given by:

({E})R → {E} × ({E})R.
An observation involves a set of events, {E}, where E indicates an event. ({E})R

indicates the sequence of observations where each observation consists of a set
of events. As a signal is a set of events, ({E})R indicates a sequence of signal
values. The extension from the static domain to the signal based domain is given
below. As can be observed the section of the diagram indicating extension from
null to static is identical to the previous domain extension diagram (Figure 4).

cstObs,possNext〈 〉

C   × IdSt

noObs, possNext 〉〈

…

…

→ StSg

SgC   × Id

R({E})

{*}× {}×

X
Static Null

X

XX

R R

RR

e(map e
St→ N

( )map)

R({E}){E} ×

Signal−based

〉curEvents, futEvents〈

The csp domain is an example of a domain extending the signal based do-
9 Theoretically, all domains/facets extending static should also be observing these

constants. However, we do not show them in the coalgebras so as not to clutter the
coalgebras.

10 {∗} also represents more than one constant values, i.e. it is possible to observe more
than one constant values.

11 This state identifier variable is often referred to as the state as it identifies a state.
12 Once again, although only X is shown in the state based coalgebra, it is understood

that X is just a member of a tuple (cf. Section 3.1).
13 The difference in the structure function results from additional terms defined in

continuous. Terms are used to add constraints or properties to variables.

1338 Kong C., Alexander P., Menon C.: Defining a Formal Coalgebraic Semantics ...



main. In the Tagged Signal Model [Lee 1998], a loop signal is used to model a
sequential process. Similarly, in a Rosetta csp-like specification, a control sig-
nal is used to keep track of events. A control signal is one that can be read or
modified only by the same process (loop back signal). By defining a local signal
variable in the csp domain in Rosetta, we constrain all facets extending csp to
have a local signal variable that only they can read.

R({E})

〉curEvents, futEvents〈

R({E}){E} ×

SgCsp→

SgCsp→
e           

SgCsp→

Signal−basedCSP
…

…N×(E    {E})E × {E} ×

map(e           )

×

ctrlObsC × curEvtsC〈 〉〈
, futEvtsC 〉

N×(E    {E})

map(e           )

The coalgebra structure for csp is given above. Due to the specific identifi-
cation of a control signal, we make the observation of the events in that signal
explicit. Therefore, although the coalgebraic function is still composed of two
functions as for other domains, the current observation function is a product of
two functions:

CSP = 〈(ctrlObsC × curEvtsC), futEvtsC〉 ::
(E × {E})R → (E × {E}) × (E × {E})R

ctrlObsC provides the observation of the current event from the control signal.
curEvtsC observes other events that happen at the same time (or within a δ

delay) as the event from ctrlObsC. After a process reads a specific event from
the control signal, it may read further events from other signals, process them
and add new events to some signals. curEvtsC gives all these other events that
are processed as well as created. futEvtsC gives the rest of the sequence of
events that describes the behavior of the process.

5 An example in Rosetta

As an example of α-denoting Rosetta, we look at the specification of a discrete
flip-flop. We provide the formal semantics, giving the ratiocination behind each
step, starting with the discrete domain. The Rosetta specification of discrete

is given below. It expresses that the set of states consists of distinct, countable
elements.

domain discrete :: state_based is

begin

d1: exists (fnc::<*(st::States)::natural*> |
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forall(s1,s2::States|

(s1 /= s2) implies (fnc(s1) /= fnc(s2))))

end domain discrete;

A facet represents an aspect of a system (X, ξ) and therefore can be ex-

pressed in the form X
ξ→ ΣX where Σ is called signature as in Section 2.1. The

behavior of a facet can also be represented as a system, Beh(X)
β→ A×Beh(X)

(again cf. Section 2.1). A domain is a special facet whose behaviors are similarly
represented as a system (Z, ζ).14 However, the system of behaviors represented
by a domain is final because for all systems represented by facets extending
that domain, there is a unique morphism (Beh(X), β) → (Z, ζ) defined by “is
a subset of”. The discrete domain is also considered to represent the system of
all behaviors of all discrete systems. Following the definition in Section 2.1, the
system of all behaviors is a final system, thus the discrete domain is final by
definition as well.

Having shown that facets and domains can be represented by system func-
tions, the next step is to demonstrate that these functions are in fact functors.
Each facet represents a system (X, ξ) and is a function X

ξ→ ΣX . Table 2 pro-
vides some system signatures that are also functors. The signature of the system
of behaviors of a facet is indeed a functor, T , over the sequence of observations,
as Σ = O×− for any facet where O consists of every observable variables (can be
input, output or state variables). The T-coalgebra is given by (X, fnc) where X

consists of the observable variables (or state descriptors), and fnc :: X → T (X)
is the coalgebraic structure.

We claim that the final coalgebra of the discrete domain has the following
coalgebra structure:15

fnc = 〈curStateD, possNextD〉 :: StatesN → States× StatesN

where StatesN indicates the set of discrete sequences of values from States.
As stated previously and as in Example 1, the elements of the final coalgebra
give the observable behaviors of all discrete systems. For any discrete process16,
(X, ξ, x), the behavior is an infinite list of observable variables, i.e. (xi)i∈N

where xi represents all observable variables. It is important to mention here
that s(∈ States) is one of the observable variables of xi. Also note that we
overload our notation to have X both represent a state descriptor17 or val-
14 In the case of the discrete domain, both system representations (direct or behavioral)

are possible because discrete is state-based. However, when a domain is not state-
based, direct representation with a system signature may not be possible. For this
reason, for domains, we automatically use the behavioral system without trying to
represent the domain as a system directly.

15 This coalgebraic structure is the abstracted one, i.e. where only the variables that
must be present in all observations are shown.

16 See definition of process in Section 2.1.1.
17 A state descriptor does not give specific values, but conditions that hold for a set of

values.
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ues of observed variables. The set of all behaviors of all discrete processes
with respect to domain variables, i.e. s, is therefore StatesN = {f : N →
States} = {(si)i∈N, si ∈ States}. The system of all discrete behaviors is given
by ζ : StatesN → States × StatesN. In Rosetta, since in the discrete do-
main, s ∈ States must always be observed, the system is therefore defined as
ζ : StatesN → States × StatesN with ζ = fnc = 〈curStateD, possNextD〉 as
defined above. In other words, the discrete domain minimally defines a function
that gives the current value of the observable variable s of a discrete system
as well as the sequence of following values of s. This sequence represents the
next state of the system of all behaviors. curStateD provides the descriptor for
what can currently be observed (the value of s from the extending facet instan-
tiated with currently known values), while possNextD describes the remaining
sequence of observations. It is interesting to note that a state descriptor can be
used to describe the list of future observations, as the latter is the next state of
the system of all behaviors described by the discrete domain.

Consider the following model of a flip-flop. It has three parameters, choice,
input and output. As their names indicate, input and output represent the input
to the flip-flop and the output of the flip-flop respectively. Choice provides the
control that decides whether the output is the current input or the value of the
previous state. Internal stores the value of the input when choice was last true.

facet flipflop(choice::in bit;input::in bit;

output::out bit) :: discrete is

internal::bit;

begin

t1: internal’ = if choice then input

else internal

end if;

t2: output’ = internal’;

end facet flipflop;

The system defined by the flipflop facet is the function
S

ξ→ 〈States, bit, bit, bit, bit〉 × S,
where S represents the set of states. In other words, the flipflop facet defines a
stream system, i.e. a system that on taking a transition yields observations of an
element of type States (s), four elements of type bit (choice, input, output and
internal) and a next state. We distinguish between the set of abstract states
of the system S and the set of states States used in the specification of the
system. Abstractly, we can think of using the elements of States to identify some
abstract states. Note also that although we use the modes “in” and “out” with
parameters, all parameters are observers of the state. “In” and “out” simply add
a condition to the parameters they decorate. In this example, nothing proscribes
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from including input and output parameters as observers of state.
The behavior of a specific process of the flipflop, for example (S, ξ, s0) is

given by:
(〈s0, choice0, input0, output0, internal0〉,
〈s1, choice1, input1, output1, internal1〉,
〈s2, choice2, input2, output2, internal2〉, . . .)

Therefore the behavior of the flipflop system is the following system:
(〈States, bit, bit, bit, bit〉)N

ζ→
〈States, bit, bit, bit, bit〉 × (〈States, bit, bit, bit, bit〉)N

The coalgebraic structure for the behavior of the flipflop model is given as:
(States× bit × bit × bit× bit)N →

(States × bit× bit × bit × bit) × (States × bit× bit × bit × bit)N

We use the diagram in Figure 5 to define the extension that is expressed in
the flipflop model as well as the morphism from the system to its behaviors.
The function f represents the abstraction from an observable behavior in the
flipflop facet to the observation of discrete domain variables only. The function
map applies function f recursively to each member of the sequence (States ×
bit× bit× bit× bit)N to obtain the sequence StatesN. Note that the States type
is found both on the left and on the right of the diagram. This indicates that the
same observations of the domain variable are made at the facet level as at the
domain level. The function obs fnc describes the first observation of a behavior
as well as one single next step that gives us the rest of the observations of the
behavior. It is indeed a pair of functions:

curStateF :: (States × bit × bit× bit × bit)N →
States × bit× bit × bit × bit

possNextF : (States × bit × bit × bit× bit)N →
(States × bit × bit× bit × bit)N

(States × bit × bit × bit × bit)N

(States × bit × bit × bit × bit)N

States,bit,bit,bit,bit  × X〈 〉

〉〈curStateD, possNextD

X

f × map(f)

States
map(f)

×(States × bit × bit × bit × bit)

obs_fnc

Beh

ξ

Beh
id ×

N

States × StatesN

Figure 5: Commuting diagram: facet system to system of behaviors to domain

The properties of both functions composing obs fnc are derived from the
flipflop facet. Using the α-denotation for terms (Section 3.2), the denotation
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t1 T [[internal′ = if choice then input else internal endif ]] envt ≡
if

((
envt value(internal)

) ((
envt value(next)

) (
envt value(α)

))

=
(
if

(
envt value(choice)

) (
envt value(α)

)
then

(
envt value(input)

) (
envt value(α)

)
else

(
envt value(internal)

) (
envt value(α)

)))

then True else False

Simplified internal(next(α)) = if choice(α) then input(α) else internal(α)
Result
t2 T [[output′ = internal′]] st ≡

if

((
envt value(output)

) ((
envt value(next)

) (
envt value(α)

))

=
(
envt value(internal)

)((
envt value(next)

)(
envt value(α)

))
then True else False

Simplified output(next(α)) = internal(next(α))
Result

Table 4: Denotation of terms from the flipflop facet

of terms t1 and t2 are given18 in Table 4. The “Simplified Result”19 gives the
final value of the denotation. For a facet to be consistent, all of its terms must
be true. This implies that the if -function needs to evaluate to True. This case
only happens when the condition of the if -function is true. Thus, the simplified
result, i.e. what the term denotes, is the condition of the if -function.

Although we now know exactly what a term denotes, we still cannot give a
direct definition of the function obs fnc. We can however use the result of the
denotation to define properties of obs fnc. Applying currStateF to a sequence
of states may have the following values:
Assuming Seq is a sequence of state descriptors or observable variables,

currStateF (Seq) = s0 where s0 indicates an initial state or a state independent
of previous states, i.e. all variables of previous states have known values.

currStateF (Seq) = sn where n ∈ N and sn carries information from the previ-
ous state.

18
(
envt value(next)

) (
envt value(α)

)
applies the environment

value of the next relation to the environment value of α.(
envt value(variable name)

) ((
envt value(next)

) (
envt value(α)

))
gets the

function, corresponding to variable name, that maps a state to a value, from the
environment, and applies it to the result of applying next to α.

19 The following shortcut is used: variable name represents
envt value(variable name).
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Each sequence (∈ Seq) represents a behavior of the flip-flop system. Although
the exact values of the variables in the flipflop facet may not be known, with
the help of the terms, it is still possible to represent a behavior of the facet. We
therefore talk about state descriptors and about instantiated facets. A facet is
completely instantiated when all of its variables20 have known values. A facet is
partially instantiated when the values of only some of its variables are known.
Going back to the coalgebra structure, (States×bit×bit×bit×bit)N represents the
set of all sequences of the 5-tuple. The function obs fnc then gives an observation
of the facet and the rest of the behavior from that observation point. It can be
said that the function obs fnc selects only the sequences that represent behaviors
of the flip-flop system.

Assuming we know the following sequence of observations for the “input”
parameters 〈choice, input〉:

〈1, 1〉, 〈0, 0〉, 〈1, 0〉, 〈0, 1〉, 〈1, 1〉, 〈1, 0〉.
Then currStateF is defined as:

currStateF (Seq) = s0 where the following properties of s0 hold:
s(s0) = s0, Note that in future s may have a specific value - for example 0

choice(s0) = 1,

input(s0) = 1,

internal(s0) = X,

And output(s0) = X, where X represents an unknown value.
Or,

currStateF (Seq) = s3 where the following properties of s3 hold:21

s(s3) = s3,

choice(s3) = 0,

input(s0) = 1,

internal(s3) = 0,

And output(s3) = 0.

With the same sequence as above, when currStateD = s0,
possNextD =

〈choice(s1), input(s1), 1, 1〉,
〈choice(s2), input(s2), output(s2), internal(s2)〉

where output(s2) = internal(s2)
and internal(s2) = if choice(s1) then input(s1)else 1,

〈choice(s3), input(s3), output(s3), internal(s3)〉
where output(s3) = internal(s3)
and internal(s3) = if choice(s2) then input(s2) else internal(s2),

= if choice(s2) then input(s2) else

20 We consider the parameters to a facet to be variables of the facet.
21 As s3 is in the sequence representing the behavior of the system starting at s0, then

there exists a sequence representing the behavior of the system starting at s3. Thus
currStateF (Seq) can give s3 as result.
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if choice(s1) then input(s1)else 1,

. . .

6 Coalgebras of interaction

A Rosetta interaction is a special construct that allows specifying domain inter-
action with the help of special functions. It takes two facets and produces a third
facet, typically in the domain of one of the original facets. The conceptual idea is
that starting with facets F :: T and G :: R, a Rosetta interaction could be used
to generate F ′ :: T and G′ :: R such that both F ′ and G′ contain the original F

and G respectively as well as information resulting from any interaction between
F and G. In Figure 6, a visual representation of an interaction is given on the
left. On the right, an equivalent approach to getting F ′ and G′ is shown. Apply
the R to T function on G to obtain the T image of G (if it exists) and then
compose this image with F to get F ′. G′ can be obtained similarly.

F::T G::R

G’::R

interaction(F, G)

F’::T

≡

F::T G::R

func(G)::T gfunc(F)::R

compose(gfunc(F),G)compose(F,func(G))
= F’::T = G’::R

Figure 6: Interaction

To achieve a Rosetta interaction, we define functions on sets and relations
between sets. We use such functions to map a facet from one domain to a facet
in some other domain. Assuming objects A1, A2 are in set C1 with map f :
A1 �→ A2, objects B1, B2 are in set C2 with map g : B1 �→ B2, then function F

mapping A1 to B1 and A2 to B2 can also be applied to function f to get g. If
such a function is present between the sets associated with two domains, then
a commuting diagram can be formed between the coalgebraic structures of each
domain. Figure 7 gives an example of defining a function from a CSP coalgebra
structure to a discrete one.

Assuming there exists a function between two domains, then there exists a
map between the coalgebra of any facet from the one domain to a coalgebra of
a facet in the other domain. The two commuting coalgebraic diagrams of the
extensions of the two domains by the two facets can thus be composed to form
a cube (Figure 8). The domain function provides the “glue” between the two
commuting diagrams.
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CSP
N(E × {E})

NE × {E} × (E × {E})

NX
Discrete

X × XN

F’R

〈 〉curStateD, possNextD〈 〉〈 ctrlObsC × curEvtsC
, futEvtsC〉

FR

Figure 7: Functions between csp and discrete domains

NX

D → VMe

map(eD → VM )

×

Csp → VMe

Csp → VMmap(e )

×

D → VMmap(e )

X × XN

F’R

FR

G’R

GR

Csp → VMmap(e )

〈 〉〈 ctrlObsC × curEvtsC

CtrlValue × [VendValue]

Vending Machine − Discrete Discrete

CSPVending Machine − CSP

〈〈 ctrlObsV × curEvtsV 〉
, futEvtsV 〉 , futEvtsC〉

× (CtrlValue × [VendValue])N

〈 〉curStateV, possNextV 〈 〉curStateD, possNextD

N

NCtrlEvent × {VendEvent}

(CtrlEvent × {VendEvent}) (E × {E})N

E × {E} × (E × {E})

N(CtrlValue × [VendValue])

× (CtrlEvent x {VendEvent})N

Figure 8: Cube: composition of two commuting diagrams

The top square represents the commuting diagram mapping the coalgebra
of a csp vending machine facet to that of the csp domain. The bottom square
also represents a commutative diagram, but for the relation between a discrete
vending machine facet and the discrete domain. The vertical arrows represent
special functions that map elements across domains. As the cube commutes, it
is possible to express the function GR (over facet) in terms of the function FR

(over domains).
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7 Conclusion

Rosetta is a systems level design language that uses facets as units of specifica-
tion. To formalize the semantics of facets, we define a relationship between facets
and coalgebras, with the help of denotational functions. We call this definition
α-denotation and it is composed of two parts. The first part consists of map-
ping the behaviors of a facet to a coalgebra structure of the form X

ξ→ O × X

where X is the sequence of observations of the facet (representing behaviors of
the facet) and O represents some specific values of its observable variables. The
second part of the denotation defines valuation functions that map a syntactic
construct in Rosetta into the corresponding value in the λ-language understood
by the coalgebra. The valuation functions are used on the terms of a facet to
give functions in the λ-language that define properties of the function ξ. Given
the coalgebra of a domain D is final, the “extension” relations between that D

and facets extending it, or between D and domains extending it are defined coin-
ductively with the help of commuting diagrams. Commuting diagrams are also
used to define functions between facets, given functions between the domains
the facets extend exist.

In the past, algebras were mostly used for representing the semantics of speci-
fications. Ehrig and Mahr [Ehrig and Mahr 1985] define the relationship between
algebras and specifications. Van Horebeek and Lewi [Van Horebeek 1989] define
algebras for abstract data types and talk about term algebras as well as word
algebras. Although the formal semantics of most specification languages is de-
fined with algebras, for Rosetta, we use coalgebras, which are the duals of alge-
bras. Coalgebras are well suited for representing state-based systems. Although
Rosetta is not completely state-based, the use of coalgebras does help in the
formalization of the language. Furthermore, coalgebras work even for non-state-
based Rosetta when we focus on the behaviors of systems instead of the systems
directly. The use of coalgebras as semantics is not new to our work. The main
semantic properties of final coalgebras were introduced from Aczel’s [Aczel 1988]
work on “non-well-founded set”. Turi [Turi 1996] uses coalgebras in defining se-
mantics. More specifically, he defines a functorial operational semantics for a
syntax T and a behavior B by using a monad that “lifts” the syntactical monad
T to the coalgebras of the behavior endofunctor B.

In this paper, we briefly describe how commuting diagrams can be used to
define functions between facets and domains. These functions are needed in the
definition of interactions between facets. Different types of interactions can exist
between two system facets and some may be quite complex. Our work on defining
some of these interactions with coalgebras is ongoing.
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A Duality: state functions or variable functions

In Allison’s denotational semantics [Allison 1986], a state is a function of vari-
ables to values, with the set of states being a set of functions.

a state = V ar → V alues and States = {V ar → V alues}
Let V ar = {x, y, z}, V alues = {v1, v2, v3} and States = {V ar → V alues} =
{s0, s1, s2}. Assume the following mappings:

s0(x) = v1 s0(y) = v2 s0(z) = v3

s1(x) = v3 s1(y) = v2 s1(z) = v2

s2(x) = v2 s2(y) = v2 s2(z) = v3

s2(x) = v3

Analysis of the above example shows that a dual set of functions to the
state functions can be defined. The dual set is the set of variables V ar, with
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each variable now being a function of States → V alues. Therefore, with V ar =
{States → V alues} = {x, y, z}, V alues = {v1, v2, v3} and States = {s0, s1, s2},
the duals to the above functions are:

x(s0) = v1 x(s1) = v3 x(s2) = v2

x(s2) = v3

y(s0) = v2 y(s1) = v2 y(s2) = v2

z(s0) = v3 z(s1) = v2 z(s2) = v3

B Abstractness of domains

A domain D is said to be more abstract than a domain F if domain D de-
fines less constraints. Observations are inversely proportional to constraints in
that the lesser the constraints, the more can be observed. Assume D is a tu-
ple 〈lD , OD , DD , TD 〉 and F is a tuple 〈lF , OF , D , TF 〉.22 Since domain F

extends D, all observations made in F are also made in D. However, there are
observations made in D that are not made in F . If variable var is declared in F

and not in D, then all observations made in F or in facets extending F contain
var. D has all the observations of F , as well as other observations that do not
involve var.

22 Each domain/facet is a tuple 〈label, observed variables, domain, terms〉.
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