
An Information Flow Method to Detect Denial of Service

Vulnerabilities

Stéphane Lafrance
(École Polytechnique de Montréal, Canada)

stephane.lafrance@polymtl.ca

John Mullins
(École Polytechnique de Montréal, Canada)

john.mullins@polymtl.ca

Abstract: Meadows recently proposed a formal cost-based framework for the analysis
of denial of service, showing how to formalize some existing principles used to make
cryptographic protocols more resistant to denial of service by comparing the cost to
the defender against the cost to the attacker. The first contribution of this paper is
to introduce a new security property called impassivity designed to capture the abil-
ity of a protocol to achieve these goals in the framework of a generic value-passing
process algebra called Security Process Algebra (SPPA) extended with local function
calls, cryptographic primitives and special semantic features in order to handle cryp-
tographic protocols. Impassivity is defined as an information flow property founded on
bisimulation-based non-deterministic admissible interference. A sound and complete
proof method for impassivity is provided. The method extends previous results of the
authors on bisimulation-based non-deterministic admissible interference and its appli-
cation to the analysis of cryptographic protocols. It is illustrated by its application to
the TCP/IP protocol.

Key Words: Denial of service, Protocols, Admissible interference, Bisimulation,
Equivalence-checking.

Category: C.2.2, C.2.4

1 Introduction

The sudden expansion of electronic commerce has introduced an urgent need to
establish strong security policies for the design of security protocols. Formal val-
idation of security protocols has become one of the primary tasks in computer
science. In recent years, equivalence-checking has proved to be useful for the
verification of security protocols [Abadi and Gordon 1998, Boreale et al. 1999,
Cortier 2002, Lafrance and Mullins 2002a]. The main idea behind this approach
of formal verification is to verify a security property by testing whether the pro-
cess (specifying the protocol) is bisimilar to its intended behavior. The success of
these methods is based on two characteristics: process algebras are applicable to
the specification of such protocols, including cryptographic protocols; and bisim-
ulation offers an expressive semantics for process calculi. Many other methods

Journal of Universal Computer Science, vol. 9, no. 11 (2003), 1350-1369
submitted: 14/6/03, accepted: 5/9/03, appeared: 28/11/03 © J.UCS

from a wide range of approaches have been proposed in the literature to analyze
security protocols, but most are dedicated to the validation of confidentiality and
authentication policies. So far, little attention has been paid to denial of service
(DoS), even though the inability to clearly establish a formal characterization
for DoS has made this type of attack a growing concern for protocol designers.
This paper introduces a method based on equivalence-checking for the detection
of denial of service vulnerabilities in security protocols.

In recent years, several Internet sites have been subjected to DoS attacks.
One of the most famous DoS is the SYN flooding attack [Schuba et al. 1997]
on the TCP/IP protocol. Since 1996, this resource exhaustion attack has been
launched at several occasions by intruders who were able to initiate with little
effort a large number of protocol runs. This was possible because it is easy to
forge an identity, and so it is difficult for the victim to identify an intruder. Other
DoS attacks have targeted several e-commerce sites, including Yahoo, Ebay and
E*trade in February 2000, and Microsoft in January 2001.

Yu & Gligor [Yu and Gligor 1988] have proposed a formal specification and
verification method for the prevention of DoS. Using temporal logic, they in-
troduced fairness, simultaneity and finite-waiting-time policies, combined to a
general resource allocation model. Yu & Gligor argued that DoS may be viewed
as a liveness problem (some users prevent some other users from making progress
within the service for an arbitrary long time) and a safety problem (some users
make some other users receive incorrect service). Millen [Millen 1992] extended
the Yu-Gligor resource allocator model by explicitly representing time. By doing
so, Millen can support probabilistic policies, e.g. a maximum-waiting-time pol-
icy. Cuppens & Saurel [Cuppens and Saurel 1999] introduced a similar approach
using an availability policy formalized in temporal logic and deontic logic. The
approaches developed around Yu & Gligor’s frameworks rely essentially on an
access control policy called user agreement. They do not offer protection against
attacks which occur before parties are mutually authenticated, as is the case for
the SYN flooding attack and distributed DoS attacks. In such DoS attacks on
protocols which establish authenticated communication channels, the identity of
the intruder is generally unknown because authentication has not yet been com-
pleted. One way to prevent such attacks is the use of a sequence of authentication
mechanisms, arranged in order of increasing cost (to both parties) and increasing
security. With this approach, an intruder must be willing to complete the earlier
stages of the protocol before he can force a system to spend resources running the
later stages of the protocol. Recently, Meadows [Meadows 2001] has proposed
a cost-based method to analyse these protocols, based on Gong & Syverson’s
fail-stop protocol model [Gong and Syverson 1998]. Meadows interprets this fail-
stop model by requirements specification based on Lamport’s causally-precedes
relation, which states which events should causally precede others in a protocol:

1351Lafrance S., Mullins J.: An Information Flow Method ...

although an intruder is capable to break some of the (weak) authentication steps
of a protocol, it will cost him a dissuading effort. This approach prevents mul-
tiple exploitations of a single protocol flaw which could lead to DoS. The NRL
protocol analyzer [Meadows 1996] was used within this framework.

The basic idea in our own method is to prove that no intruder can use the
protocol to interfere with costly actions of the defender to cause resource exhaus-
tion DoS. Non-interference properties [Goguen and Meseguer 1982] capture any
causal dependencies between private actions and public behaviours which could
be used to infer private information from public channels. However, many prac-
tical secrecy problems go beyond the scope of non-interference. As an example,
cryptosystems permit classified or encrypted private information to flow safely
onto unprotected channels despite the obvious causal dependency between the
secret data m and encryption key k, and, on the other hand, the declassified data
{m}k (m encrypted by k). Indeed, any variation of m or k is reflected in {m}k.
In this case, the basic concern is to ensure that programs leak sensitive informa-
tion only through the cryptosystem or more generally, through the downgrad-
ing system. Admissible interference [Mullins 2000, Mullins and Yeddes 2001] is
such a property. In a previous paper [Lafrance and Mullins 2002a], the authors
have designed an equivalence-checking method based on admissible interference
to analyze cryptographic protocols. This bisimulation-based method consists in
proving that no intruder can interfere with the protocol unless the interference
occurs through a predetermined action. Admissible interference is expressed by
simply identifying admissible attacks corresponding to harmless enemy actions
which may occur in the protocol.

The main contribution of this paper is an admissible-interference-based se-
curity property and a bisimulation-based algorithm for the validation of security
protocols with respect to DoS robustness, called impassivity. Our method verifies
whether the behaviour of a principal (e.g. server) differ when we introduce an
intruder in the protocol. Roughly speaking, if the principal behaves differently
when it is being attacked, then we conclude that the protocol is unsafe. Our ro-
bustness against DoS, called impassivity, is then formalized by asking that any
costly behaviour (in terms of CPU or memory), which could lead to a resource
exhaustion DoS for the defender (server), must be independent of any attack.
Hence, robustness against DoS should be satisfied whenever the costly behaviour
of the server being attacked are bisimilar to the costly behaviours of the server
within a regular protocol run (not being attacked). This approach requires formal
specifications of both the protocol’s principals and the intruder’s attacks. There-
fore, we establish our theoretical framework by introducing a generic process
algebra with value-passing called Security Protocols Process Algebra (SPPA),
with extensions to monitor local function calls made by a principal (process) as
visible actions and using marker actions to keep track of information exchanges,

1352 Lafrance S., Mullins J.: An Information Flow Method ...

which would be lost otherwise during communication. Moreover, every action is
assocaited to a cost describing the quantity of resources used to execute it.

Although the cost-based framework of our method is inspired by Meadows’s,
we do not consider the accumulative cost of the intruder and other principals
throughout a protocol run. Instead, we simply observe the maximal cost actions
of behaviours. Intruder capabilities are explicitly captured in this paper by our
notion of enemy process. Enemy processes are regular SPPA processes which may
individually pursue a specific attack. Meadows’s procedure to evaluate whether
a protocol is vulnerable to DoS is primarily based on a tolerance relation which
determines the amount of resources the designer is willing to spend to provide
a given level of security.

The paper is organised as follows. Process algebra SPPA, which handles
the architecture of cryptographic protocols, is described in [Section 2]. In [Sec-
tion 3], a short introduction to the notions of non-interference and admissible
interference are given together with an unwinding theorem. Our information flow
method for the detection of potential resource exhaustion DoS is presented in
[Section 4], along with a sound and complete proof method [see Theorem 3] and
an application to the TCP protocol. In [Section 5], we discuss related and future
works.

1.1 The Transmission Control Protocol

The Transmission Control Protocol (TCP) provides a reliable connection-
oriented data stream delivery service for applications. The TCP connection pro-
tocol will serve as an illustration throughout this paper. A TCP connection
commonly uses memory structures to hold data related to the local end of the
communication link, the TCP state, the IP address, the port number, the timer,
the sequence number, the flow control status, etc. (A full description of the TCP
connection establishment process in terms of a state machine is given by Schuba
& al. [Schuba et al. 1997].) Before starting the transmission of data between a
source A and a destination B, TCP uses a connection establishment protocol
called the three-way handshake. The three-way handshake is achieved with the
following steps:

Message 1: A
SY Nn−→ B

Message 2: B
SY Nm,ACKn+1−→ A

Message 3: A
ACKm+1−→ B .

First, A initiates the connection by sending to B a SY Nn packet, containing
a fresh sequence number n along with the IP addresses of A and B. Next, B

acknowledges the first message and continues the handshake by sending packets
ACKn+1 and SY Nm to A. Finally, A acknowledges B’s packets by replying
ACKm+1. Whenever B receives a SYN packet, data structures are allocated.

1353Lafrance S., Mullins J.: An Information Flow Method ...

For instance, consider a SYN flooding resource exhaustion attack on the
TCP/IP protocol which is initiated as follows:

1. newid: the intruder generates a fake identifier (address) id;

2. newSY N(id): the intruder generates a random number n and creates a SYN
packet SY Nn containing the sequence number (in that case n) along with
the source and destination’s IP address (in that case, a fake address id and
the server’s address);

3. output(SY Nn): the intruder sends SY Nn to the server.

Upon receiving the intruder’s SYN packet, the server processes it as follows:

1. store(SY Nn): the server allocates data structures in which packet SY Nn is
stored;

2. makeACK(SY Nn): the server creates an acknowledgment packet
ACKn+1 for SY Nn;

3. newSY N(SY Nn): the server generates a random number m and creates a
SYN packet SY Nm;

4. output(SY Nm, ACKn+1): the server sends SY Nm and ACKn+1 to E.

The intruder then repeats this attack with different fake identifiers and differ-
ent SYN packets SY Nn, but without completing the protocol run. This attack is
possible because generating fake identifiers (addresses) and SYN packets requires
few resources. Resource exhaustion DoS occurs because the server allocates ex-
pensive data structures upon receiving a SYN packet (specified above as the
action store(SY Nn)). In order to analyze this DoS attack, we need to consider
both the cost for the intruder to launch its attack and the cost for the server to
process it. If the cost of the attack (cost(newid)+cost(newSY N)+cost(output))
is much less than the cost of processing it (cost(store) + cost(newACK) +
cost(newSY N) + cost(output)), then the protocol obviously has a flaw since
an intruder could launch, with very few resources, multiple attacks that can
waste a lot of the server’s resources. If this exceeds the server’s resource ca-
pacity, it must deny any new legitimate protocol run. Given an attack that is
within the intruder capacity, we verify whether the server is robust against re-
source exhaustion DoS by testing if the protocol in which the attack is launched
is bisimilar, in terms of the server’s costly behaviours, to the protocol in which
no attack is launched. In the case of the SYN flooding attack, the bisimulation is
not satisfied since the server’s costly behaviour (store−→ newACK−→ newSY N−→ output−→) is
a direct consequence of the intruder’s attack (newid−→ newSY N−→ output−→). Hence, this
server’s behavior cannot be simulated by the protocol with no intruder. Note
that a server’s costly behaviour may have been caused by some other (honest)
principal, in which case the property is satisfied.

1354 Lafrance S., Mullins J.: An Information Flow Method ...

2 A Process Algebra to Specify Security Protocols

Our first step for the validation of security protocols is to find a language able
to express both the protocols and the security policies we want to enforce. Pro-
cess algebra has been used for several years to specify protocols as a cluster of
concurrent processes (representing principals participating in the protocol) able
to communicate and exchange data. CSP was one of the first process algebras
successfully used for this purpose [Schneider 1996]. In this section we introduce
a generic process algebra à la CCS [Milner 1989] with value-passing called Secu-
rity Protocol Process Algebra (SPPA) with some extensions to handle security
protocols. SPPA allows the specification of local function calls and introduces
marker actions used to tag value exchanges between processes. Up to these ex-
tensions tailored just to fit the ideas presented here, SPPA is very similar to SPA
presented in [Durante et al. 1999]. Also, the purpose here is not to introduce a
new process algebra but just to define a generic process algebraic framework as
well-suited as possible to analyze cryptographic protocols. In the following, we
give a brief description of SPPA’s syntax and operational semantics.

2.1 The Syntax of SPPA

SPPA uses a message algebra that relies on disjoint syntactic categories of prin-
cipal identifiers, variables and numbers respectively ranging over sets I,V and
N . The set of terms T is constructed as follows:

t ::= n (number) | id (identifier) | x (variable)
| (t, . . . , t) (n-tuple) | {t}t (encryption) | [t]t (signature)
| h(t) (hashing)

For any term t, we denote fv(t) the set of variables occurring in t and we say
that t is a message whenever it contains no variable. The set of all messages is
denoted by M.

For the sake of clarity, we will discriminate a subset K ⊆ M of messages that
may be used as encryption keys. Note that the definition of the set K usually
depends on the cryptosystems used by the protocol. Moreover, in order to deal
with public-key encryption, we use an idempotent operator [−]−1 : K → K
such that a−1 denotes the private decryption key corresponding to the public
encryption key a, or vice versa. For symmetrical encryption, we set a−1 = a.
One assumes perfect encryption and hashing.

We consider a finite set F of private functions which range over messages and
create new messages using the grammar rules above. dom(f) denotes the domain
of messages of the private function f . Moreover, we assume disjoint sets Fid of
private functions, for every identifier id, such that F =

⋃
id∈I

Fid. Intuitively, the

1355Lafrance S., Mullins J.: An Information Flow Method ...

principal assigned to the identifier id has only access to functions from Fid, which
usually includes the following:

– extractn,i
id ((a1, . . . , an)) = ai (extraction function for i = 1, 2 with domain

{(a1, . . . , an) | a1, . . . , an ∈ M});

– encid(k, a) = {a}k (encryption function with domain K ×M);

– decid(k−1, {a}k) = a (decryption function with domain {(k−1, {a}k) |
k ∈ K and a ∈ M});

– hashid(a) = h(a) (hash function with domain M);

– signid(k, a) = [a]k (signature function with domain K ×M);

– checksignid(k−1, a, [a]k) (signature verification function with domain
{(k−1, a, [a]k) | k ∈ K and a ∈ M}).

Note that the checksign function does not produce any new term since its pri-
mary task is to verify whether its input term is within its domain. Such a veri-
fication function is treated as a function whose only output term is the Boolean
“(k−1, a, [a]k) ∈ dom(checksignid)”.

We consider a finite set C of public channels . Public channels are commonly
used to specify message exchanges between principals. Every public channel c

has a predetermined domain dom(c) of messages which can be sent and received
over c. In this paper, we shall assume that dom(c) = M for every c. The prefixes
of SPPA are obtained as follows:

µ ::= c(t) (output prefix) | c(x) (input prefix)
| x := f(t) (functional prefix)

where t is any term such that x �∈ fv(t). For a verification function f , we
often write f(t) instead of x := f(t) since f has no output. Moreover, we write
fail := f(a) whenever a �∈ dom(f).

Let µ be a prefix and let t, t′ be terms. The agents of SPPA are constructed
from the following grammar:

S ::= 0 (empty agent) | µ.S (prefix agent)
| [t = t′] S (match) | S + S (sum)
| S|S (parallel composition) | S/O (O-observation)
| S\L (restriction)

where L is a set and O is a partial mapping (both to be clarified in [Section 2.2]).
In this syntax, recursion is handled using agent names (e.g. by writing S =
µ1.µ2.S). Given an agent S, we define its set of free variables , denoted by fv(S),
as the set of variables x appearing in S which are not in the scope of an input
prefix c(x) or a functional prefix x := f(t); otherwise the variable x is said to be

1356 Lafrance S., Mullins J.: An Information Flow Method ...

bound . Given a free variable x ∈ fv(S) and a term t, we consider the substitution
operator S[t/x] where every free occurrence of x in S is set to t. A closed agent
is an agent S such that fv(S) = ∅.

Intuitively, closed agents are used to specify the principals of security proto-
cols. More specifically, an SPPA principal is a couple (S, id) where S is a closed
agent and id ∈ I is an identifier. The purpose of this notation is to relate a SPPA
agent S and its sub-agents, to their unique owner (principal) via its identifier
id. When no confusion is possible, we often use X as a reference to the principal
(SX , idX) where SX is the initial agent of X i.e., the closed agent specifying
the entire behaviour of the principal X within the protocol. Moreover, given a
principal A from a protocol, we commonly use the identifier idA for a message
containing its address, while we simply use A to refer to the protocol’s entity.
For simplicity, we often write A1|A2 instead of (S1|S2, id), A1 + A2 instead of
(S1 + S2, id), and [a = a′]A1 instead of ([a = a′]S1, id), where A1 = (S1, id) and
A2 = (S2, id) (they must have the same identifier).

In order to specify a security protocol in SPPA, we use the classic ap-
proach [Focardi et al. 1997, Schneider 1996] of specifying the principals as con-
current agents. Given a principal A, SPPA processes are constructed as follows:

P ::= A (principal) | A ‖ P (protocol) | P\L (restriction)
| P/O (O-observation)

where ‖ is an associative and commutative operator that forces communication
over the set C of public channels used by the protocol (commonly, there is one
channel for every step of a protocol run).

Example 1. The (one run) TCP’s three-way handshake connection establishment
protocol is specified as follows:

TCP ::= An ‖ Bm

where C = {c1, c2, c3} and principals An and Bm (with idAn = idA and
idBm = idB) are defined as follows:

An ::= x1 := storeidA(SY Nn). c1(x1). c2(x2). x3 := extract2,1
idA

(x2).
x4 := extract2,2

idA
(x2). checkAckidA(SY Nn, x4).

x5 := makeAckidA(x3). c3(x5). A′

Bm ::= c1(y1). y2 := makeAckidB (y1). y3 := storeidB (SY Nm).
c2((y3, y2)). c3(y4). checkAckidB (y3, y4). B′

where A′ and B′ are principals specifying the remainder of the TCP protocol
and the private functions are defined as follows:

– storeid(a) = a (storing function over M);

1357Lafrance S., Mullins J.: An Information Flow Method ...

– checkAckid(SY Nn, ACKn+1) (acknowledgment verification function over
the set of pairs of SY N packet and ACK packet with corresponding sequence
number);

– makeAckid(SY Nn) = ACKn+1 (acknowledgment function over the set of
SY N packets).

Intuitively, storeid(a) really stands for the address where the message is being
stored. Note that SY Nn and ACKn packets may be viewed as tuples
(header, idX , idX′ , n) from our message algebra where idX , idX′ ∈ I are the
source and the destination identifiers, and n ∈ N is a sequence number. Since
TCP does not need an encryption-related function, we only need to consider, for
every id ∈ I, the set of private functions

Fid = {extractn,i
id , storeid, checkAckid, makeAckid}.

A destination principal B (e.g. a server) may usually proceed to several connec-
tion establishments at the same time. If N denotes the maximal number of con-
current half-open TCP connections allowed (before a reset), then a destination
B is specified by principal Bm1,...,mN ::= Bm1 | . . . | BmN where principals Bmi

use different packets SY Nmi . Since n, m1, . . . , mN stands for random numbers,
we simply write A instead of An, and BN instead of Bm1,...,mN . Therefore, the
TCP connection establishment process is given by process TCP ::= A ‖ BN .

2.2 The Semantics of SPPA

Markers are introduced in an attempt to establish an annotation upon the se-
mantics of a SPPA process; they do not occur in the syntax of processes since
they are not considered as prefixes, and their specific semantics restricts their
occurrence in order to tag the exchanges between principals. In value-passing
process algebra, communication is commonly expressed by replacing the match-
ing output action and input action by the silent action τ , which causes a consid-
erable loss of information about the values exchanged and the parties involved.
A marker action has three parameters: a principal identifier, a channel and a
message. Roughly speaking, the occurrence of an output marker δc

idX
(a) stands

for “the principal X has sent message a over the channel c”, and the occurrence
of an input marker δc

idX
(a) stands for “the principal X has received message a

over the channel c”. Hence, similarly to private functions, every marker action
belongs to the principal stated in its parameter.

Given a message a ∈ M, the actions of SPPA are defined as follows:

1358 Lafrance S., Mullins J.: An Information Flow Method ...

α ::= c(a) (output action)
| c(a) (input action)
| a′ := f(a) (functional action where a′ = f(a))
| fail := f(a) (fail action where a �∈ dom(f))
| δ(a) (marker action)
| τ (silent action).

For instance, action {a}k := encidX (k, a) stands for principal X encrypting
message a with the key k and obtaining, in return, message {a}k. We write Act

to denote the set of all actions and we consider the set ActX of actions observable
only by the principal X , defined by:

ActX = {a′ := f(a) ∈ Act | f ∈ FidX and a ∈ dom(f)}
∪ {fail := f(a) ∈ Act | f ∈ FidX and a �∈ dom(f)}
∪ {δc

idX
(a), δc

idX
(a) ∈ Act | c ∈ C and a ∈ M}.

We typically use C to denote both the set of public channels and the set of
output and input actions.

An observation criterion is a partial mapping O : Act∗ �→ Act designed to
express the equivalence

between process behaviours. Two sequences of actions γ1 and γ2 are said to
carry out the same observation α whenever γ1, γ2 ∈ O−1(α). Given a subset
L ⊆ Act \ {τ}, we consider the observation criterion OL defined as follows:

O−1
L (α) =

{
(Act \ L)∗ α (Act \ L)∗ if α ∈ L

(Act \ L)∗ if α = τ.

Only the behaviour from the set L is observable along this criterion. In partic-
ular, we have a natural observation criterion OActX∪C , often denoted by OX ,
describing the actions observable by a principal X .

The operational semantics of a process can be viewed as an extension of the
usual notion of non-deterministic automaton where we generally do not consider
final states. The operational semantics of SPPA processes is defined in [Fig. 1]
where a ∈ M is a message, L ⊆ Act is a subset of actions, and P, P ′, Q, Q′

are processes. The Sum, Parallel, Protocol and Synchronisation rules are
assumed to be both associative and commutative.

The Output rule allows a principal A to output messages over public chan-
nels. Conversely, the Input rule needs to consider every possible message that
an agent may receive over a public channel. The Function rule restricts the
execution of local function calls to their owner, while the Fail rule deals with
the case where a function is called on terms outside its domain. The Match rule
allows the verification of equality between two messages. The Sum and Parallel

rules allow for the specification of non-deterministic sum and parallel product
of principals (with a matching identifier). The Protocol and Synchronisation

1359Lafrance S., Mullins J.: An Information Flow Method ...

Output −
c(a).P

c(a)−→ P

Input a ∈ M
c(x).P

c(a)−→ P [a/x]

Function
a′=f(a) and f ∈ FidP

x:=f(a).P
a′:=f(a)−→ P [a′/x]

Fail
a�∈dom(f) and f ∈ FidP

x:=f(a).P
fail:=f(a)−→ 0

Match P
α−→ P ′

[a=a]P
α−→ P ′

Sum P
α−→ P ′

P+Q
α−→ P ′

Parallel P
α−→ P ′

P |Q α−→ P ′|Q

Protocol P
α−→ P ′ and α�∈C

P‖Q
α−→ P ′‖Q

Synchronisation P
c(a)−→ P ′ and Q

c(a)−→ Q′

P‖Q

δc
idP

(a)

−→ P ′‖Q

δc
idQ

(a)

−→ P ′‖Q′

Restriction P
α−→ P ′ and α �∈ L

P\L
α−→ P ′\L

O-Observation P
γ−→ P ′ and γ ∈ O−1(α)

P/O α−→ P ′/O
.

Figure 1: The Semantics of SPPA processes.

rules allows the specification of protocols, where the operator ‖ is similar to a
parallel product between principals in which the communication between prin-
cipals is achieved (and forced) through public channels. The Restriction rule
interprets P \L (where L is a set of actions) as P with the actions in L forbidden.
Finally, the O-Observation rule interprets the observation of a process through
an observation criterion O, where the computation P

γ−→ P ′, for a sequence
of actions γ = α0α1 . . . αn ∈ Act∗, stands for the finite string of transitions

1360 Lafrance S., Mullins J.: An Information Flow Method ...

P
α0−→P1

α1−→· · · αn−→P ′. Thus, P/OL (where L is a set of actions) means P with
the actions outside L ignored.

A process P ′ is a derivative of P if there is a computation P
γ−→ P ′ for some

γ ∈ Act∗. We shall frequently use the set

D(P) = {P ′ | ∃γ∈Act∗ P
γ−→ P ′}

the set of P ’s derivatives.
For the following, we need Milner’s notions of (strong) bisimulation, de-

noted by
 [Milner 1989]. The concept of O-bisimulation, called O-congruence
by Boudol [Boudol 1985], captures the notion of behavioural indistinguishability
through an observation criterion O. Given an observation criterion O, we say
that the process P is O-simulated by the process Q whenever P/O � Q/O,
and we write P �O Q. Moreover, we say that the process P is O-bisimilar to
the process Q whenever P/O
 Q/O, and we write P
O Q. For instance,
consider the weak criterion OV is, where V is = Act \ {τ} is the set of visible
actions. We can easily see that OV is-bisimulation corresponds to Milner’s weak
bisimulation [Milner 1989].

3 Admissible Interference

Given a process P and two disjoint subsets K and L of the set V is of visible ac-
tions, K is said to cause interference on L (within the process P) whenever there
are actions from K (in P) causing actions from L which might have not occurred
otherwise. For instance, in [Fig. 2] we see that action α1 causes interference on
action α2 in process Q, but not in process P .

P � �α1
� �α2

�

�
α2
�

and Q � �α1
� �α2

�

Figure 2: SPPA processes P and Q.

The following formulation of non-interference (with respect to L and K)
requires that a processOK∪L-simulates its OL-observation. Hence, roughly speak-
ing, bisimulation-based strong non-deterministic non-interference (BSNNI) states
that any observable behaviour from L remains a behaviour of the process in
which actions from L and K are observable, in order to disallow any correlation
between behaviours from K and from L. Formally, process P satisfies BSNNI if

P/OL
OK∪L P \ K .

1361Lafrance S., Mullins J.: An Information Flow Method ...

From [Fig. 2], assuming that α 1 ∈ K and α2 ∈ L, we see that process P

satisfies BSNNI, but not process Q. When K holds for the set Hi of high-
level observable actions and L holds for the set Lo of low-level observable ac-
tions, it is not difficult to see that this property coincides with bisimulation-
based strong non-deterministic non-interference as proposed by Focardi & Gor-
rieri [Focardi and Gorrieri 1994/1995].

Given a set Γ ⊆ V is of downgrading actions, admissible interference refers
to the information flow property which requires that systems admit informa-
tion flow from K behaviours to L behaviours only through downgrading actions.
To capture this property, it was proposed [Mullins 2000] that any process P ′

derived from P and executing no downgrading action be required to satisfy
non-interference. More precisely, for P to satisfy intransitive non-interference
[Rushby 1992], process P ′ \ Γ must satisfy non-interference for every derivative
P ′ ∈ D(P). Rephrasing this condition in the context of BSNNI as the non-
interference property yields the definition of bisimulation-based non-deterministic
admissible interference (BNAI) [Lafrance and Mullins 2002a]. Formally, process
P satisfies BNAI if

∀P ′∈D(P) (P ′ \ Γ)/OL �OK∪L (P ′ \ Γ).

The next theorem is an algebraic characterisation of BNAI based on
OL-bisimulation.

Theorem 1 (Unwinding Theorem for BNAI). Process P satisfies BNAI if
and only if

∀P ′∈D(P) P ′ \ Γ
OL P ′ \ (Γ ∪ K).

A complete proof of this result was presented in [Lafrance and Mullins 2002a]
in the context of a simpler process algebra. The general proof has to be done
by double induction on the structures of both messages and processes. In the
following section, we only give a sketch of this proof.

Proof. Given Q ::= P ′ \ Γ for P ′ ∈ D(P), we see that

Q/OL �OL∪K Q ⇐⇒ Q/OL � Q/OL∪K

⇐⇒ Q/OL � (Q/OL∪K) \ K

⇐⇒ Q/OL � (Q \ K)/OL

⇐⇒ Q �OL Q \ K.

The result then follows from the fact that any OL-simulation of Q by Q/OL is
actually an OL-bisimulation. ��

1362 Lafrance S., Mullins J.: An Information Flow Method ...

4 Finding Denial of Service Vulnerabilities in Security
Protocols

In this section, we investigate DoS attacks in which an intruder causes a resource
exhaustion to a defender (e.g. server) through the steps of a security protocol
(mostly authentication protocols). In such an attack, at any step of the protocol
(but mostly at the beginning), the intruder sends a fake message in order to
waste the defender’s resource processing it. In this context, we mainly focus on
attacks that require little effort from the intruder and cause a large waste of
resources to the defender. If the defender can simultaneously process several re-
quests (protocol runs), the intruder can then repeat his attack up to the point of
causing a resource exhaustion; the defender then has to refuse any other request
for a protocol run, even from honest principals. This type of DoS, which includes
distributed DoS, is formalized as N copies of an enemy process simultaneously
initiating protocol runs with a principal (defender) able to handle a maximum of
N simultaneous requests. Since the whole attack is based on a single flaw in the
protocol, it is enough to verify whether a single enemy process may interfere on
high-cost actions of the defender by only using its low-cost actions. This single
resource exhaustion flaw, once multiplied by N , may lead to a fatal distributed
DoS attack.

However, we allow any interference coming from an intruder behaving prop-
erly. Such honest behaviours include the initiation of a real protocol run (with
its own identifier and no fake message) and a proper response to an invitation to
a protocol run. This assumption of allowing the behaviours of honest intruders
is often omitted in the literature, but is crucial in order to view the intruder
as a legitimate user. Admissible interference helps us achieve this goal by al-
lowing an enemy process to cause harmless interference on the protocol through
predetermined actions called admissible attacks.

The main contribution of this paper is an equivalence-checking method for
the validation of security protocols against resource exhaustion attacks. It is
based on an information flow property called impassivity, inspired by admissible
interference and verified through O-bisimulation.

4.1 Specification of Enemy Processes

Given a security protocol, we are particularly interested in studying its behaviour
in a hostile environment. More precisely, we want to make sure that the protocol
acts “correctly” in any given critical situation. In our process algebra, such
hostile environments are expressed as enemy processes attempting to attack
the protocol through its public channels. We consider a unique enemy identifier
idE ∈ I and a unique set FidE of enemy private functions. Therefore, every

1363Lafrance S., Mullins J.: An Information Flow Method ...

enemy process is related to the same enemy identifier. The set of admissible
attacks, denoted by Γ , is a subset of the set ActE .

In order to achieve a resource exhaustion attack, an intruder commonly needs
to initiate several protocol runs, each exploiting the same flaw. For this reason,
we only consider attacks where the intruder is the protocol’s initiator. Thus, the
interaction of an enemy process E with the protocol P is written as the process
PE ::= E ‖ B, where B is the defender (server). Therefore, process PE \ Γ

stands for the protocol run in which its honest behaviours are removed, leaving
only potentially dangerous attacks.

For instance, the SYN flooding attack on the TCP connection protocol, spec-
ified as A ‖ BN , is pursued by the enemy principal

En1,...,nN ::= (c1(SY Nn1).0 | . . . | c1(SY NnN).0)

(we write EN for short) where each SY Nni packet contains a fake identifier in-
stead of idE . Therefore TCPE ::= EN ‖ BN . Moreover, the set Γ of admissible
attacks corresponds to the set of markers actions δc1

idE
(SY Nn) in which SY Nn

contains idE as its source’s identifier. The set Γ also contains every input marker
δc1
idE

(SY Nn) in which SY Nn is intended for E.

4.2 Cost Function

The following approach for assigning cost to actions is inspired by Meadows’ cost-
based framework [Meadows 2001]. In order to compare resource spending, we
consider two ordered sets of costs 〈Ccpu, <〉 (for CPU resources) and 〈CM , <〉 (for
memory resources). Moreover, we consider two cost functions ρcpu : Act �→ Ccpu

and ρM : Act �→ CM , where ρcpu(α) stands for the amount of CPU resources
(CPU cost) required to execute action α, and ρM (α) stands for the quantity of
memory resources, namely the memory cost to execute action α. (Note that ρM ’s
definition could be extended to deal with sequences of actions in which memory
resource are released.)

Given a principal B (defender) within a protocol, we consider its CPU ca-
pacity CPUB ∈ Ccpu which stands for the defender’s CPU resource capacity:
running simultaneously N actions of CPU cost greater than CPUB may cause
B a CPU resource exhaustion DoS. Similarly, we consider its memory capacity
MB ∈ CM , which stands for the defender’s memory resource capacity: running
simultaneously N actions with a memory cost higher than MB may cause B a
memory resource exhaustion DoS. Moreover, we consider the intruder’s CPU ca-
pacity CPUE ∈ Ccpu and memory capacity ME ∈ CM , which respectively stand
for the intruder’s CPU resource capacity and memory resource capacity: the en-
emy process E may only execute actions of CPU cost lesser or equal to CPUE

and the enemy process E may only execute actions with a maximum memory

1364 Lafrance S., Mullins J.: An Information Flow Method ...

usage of ME. Therefore an intruder which may only launch low-cost attacks
is specified as an enemy process E in which every transition E′ α−→ E′′, with
E′ ∈ D(E), is such that ρcpu(α) ≤ CPUE and ρM (α) ≤ ME . In that case, we
say that the enemy process E respects its capacities . Obviously, the values of the
capacities of each principal depend on many factors.

For the TCP protocol, we can assume that actions checkAckid(SY N, ACK)
(along with their corresponding fail actions fail := checkAckid(a, a′)) have the
highest CPU cost, although we do not assume that their CPU cost is higher than
B’s capacity CPUB, or E’s capacity CPUE . However, we assume that actions
storeid(a) have the largest memory cost and that their cost exceeds both B’s
capacity MB, and E’s capacity ME . Therefore, memory resource exhaustion may
occur whenever B stores some data.

4.3 Verifying Robustness Against DoS Through Equivalence-
Checking

The following information flow property, called impassivity, used to specify ro-
bustness against DoS vulnerabilities, is inspired by information flow property
BNAI. More precisely, impassivity verifies robustness against both CPU and
memory resource exhaustion DoS. Given a server B, it states that no enemy
process respecting its capacity may cause inadmissible interference on actions
α ∈ Act>CPUB ∪ Act>MB , where Act>CPUB = {α ∈ ActB | ρ(α) > CPUB} is
the set of B’s CPU-costly actions, and Act>MB = {α ∈ ActB | ρ(α) > MB} is
the set of B’s memory-costly actions. Put Actcostly = Act>CPUB ∪ Act>MB .

Definition 2 (Impassivity). Protocol P is impassive if, for every enemy pro-
cess E respecting its capacity, the process PE satisfies BNAI, with K = ActE
and L = Actcostly.

The following theorem provides a sound and complete proof for impassivity.
Its proof follows from [Theorem 1], where PE \ (Γ ∪ ActE)
 PE \ ActE since
Γ ⊆ ActE .

Theorem 3 (Unwinding Theorem for Impassivity). Protocol P is impas-
sive if, for every enemy process E respecting its capacity,

∀Q∈D(PE) Q \ Γ
Ocostly
Q \ ActE

where Ocostly = OActcostly .

Therefore, given an enemy process, impassivity is satisfied whenever the pro-
tocol in which E attempts to attack B is bisimilar, in terms of costly actions, to
the protocol in which E’s actions are removed. Thus, Impassivity is satisfied by

1365Lafrance S., Mullins J.: An Information Flow Method ...

security protocols which use a sequence of authentication mechanisms, arranged
in order of increasing cost (to both parties) and increasing security. With this
approach, an intruder must be willing to complete the earlier stages of the pro-
tocol before he can force a system to expend resources running the later stages
of the protocol.

One must also note that the definition of impassivity suffers from a universal
quantification over enemy processes. This problem can be circumvented by defin-
ing a generic enemy process (respecting the enemy capacity) and verifying our
property only with this process. This type of process, capable of OV is-simulating
any other enemy process, has been presented in [Lafrance and Mullins 2002b].
Although this generic process is infinite, it still is an attractive practical al-
ternative for approximating the universal quantifier “for every enemy process
E”. ¿From [Theorem 3] and the enemy process EN defined in [Section 4.1] (and
which respects its capacity since there are no storing action), we can conclude
that the TCP connection protocol does not satisfy impassivity. More precisely,
we can see that

(EN ‖ BN) \ Γ �
Ocostly
(EN ‖ BN) \ ActE

where Γ = {δc
idE

(SY Nn), δc
idE

(SY Nn) | SY Nn contains idE}.

4.4 Example of a Protocol not Satisfying Impassivity

The following is an example of an authentication protocol which does not satisfy
impassivity.

Example 2. Consider the following protocol:

Message 1: A
idA,n,[idA,n]kA−→ B

Message 2: B
n−→ A .

In this simple protocol, principal A starts an authentication procedure with B by
sending its identifier idA and a fresh nonce n, both signed and unsigned, where
kA is A’s private key. Upon receiving this message, B authenticates A’s signature
and replies with the nonce as an acknowledgment. We consider principals A and
B, specified as follows:

A ::= x1 := signidA(kA, (idA, n)). c1(((idA, n), x1)).c2(x2).[x2 = n] 0

B ::= c1(y1).y2 := extract2,1
idB

(y1). y3 := extract2,2
idB

(y1).
checksignidB(k−1

A , y2, y3). y4 := extract2,1
idB

(y2). c2(y4).0 .

The protocol is then specified as the process P ::= A ‖ B. For this protocol,
we consider the set of functions Fid = {extractid, signid, checksignid} and we

1366 Lafrance S., Mullins J.: An Information Flow Method ...

assume that no action exceeds the CPU capacity of server (B) nor the intruder’s
memory capacity. However, we assume that the signature verification actions
exceeds the server’s CPU capacity i.e.

ρCPU (checksignidB) > CPUB

and that both the signature verification actions and signing actions exceed the
intruder’s CPU capacity, that is:

ρCPU (checksignidE), ρCPU (signidE) > CPUE .

Moreover, we consider the enemy principal (which respects its capacity) E ::=
c1(a).0 where a = (a1, a2) is any pair of messages. This enemy process attacks
the protocol by sending a fake message which causes B to execute a costly
signature verification action (which fails). ¿From process PE ::= E ‖ B, we see
that protocol P does not satisfy impassivity since the marker action δc1

idE
(a)

causes interference on the action checksignidB which exceeds B’s CPU capacity.

5 Related Work and Future Work

This paper presents a method based on admissible interference for the detection
of DoS vulnerabilities in security protocols. It uses the SPPA process algebra,
which allows the specification of local function calls as visible actions. SPPA
also gives, through markers actions, a clearer view of communication between
principals. Using SPPA and a cost-based framework, we introduce an informa-
tion flow property called impassivity which detects any case when an enemy
process may cause interference, using its low-cost actions, on high-cost actions
of other principals. It is based on the fact that such interference may lead to an
attack on the protocol by exploiting this single flaw several times, thus causing
DoS through resource exhaustion. Moreover, our cost-based framework allows
an attribution of cost which depends on the capabilities of the various princi-
pals. For instance, if we suspect an attack by a strong intruder, we may impose
that ρCPU ({a}k := encidE (k, a)) < ρCPU ({a}k := encidB (k, a)) i.e. impose that
encryption require more CPU resource for the server B than for the intruder E.

The specification of security protocols and their validation against DoS vul-
nerabilities often requires to view function generating symbolic values such as
random numbers, fresh nonces, fresh keys, fake addresses and fake messages. Fol-
lowing this approach, the authors [Lafrance and Mullins 2003] have introduced
a symbolic extension of SPPA able to handle symbolic values. The main idea
behind this approach is to assign to each SPPA process a formula describing the
symbolic values conveyed by its semantics. In such symbolic processes, called
constrained processes , the formulas are drawn from a decidable logic based on
SPPA’s message algebra. The symbolic operational semantics of a constrained

1367Lafrance S., Mullins J.: An Information Flow Method ...

process is then established through a symbolic operational semantics in which
formulas are updated by adding restrictions over the symbolic values, as required
for the process to evolve. The authors also proposed a bisimulation equivalence
between constrained processes which amounts to a generalisation of Milner’s
bisimulation between value-passing processes. The authors also provides a sound
and complete symbolic bisimulation method to construct the bisimulation be-
tween constrained processes.

The most fatal distributed denial of service (DDoS) attacks have also caused
their share of mayhem. Some tools devoted to DDoS presented by Criscuolo
[Criscuolo 2000], Dietrich, Long & Dittrich [Dietrich et al. 2000] and Paxson
[Paxson 2001] were developed to analyze such attacks based on specific mali-
cious applications like Trin00 , TFN2K and Stacheldraht . We also plan to im-
prove our cost-based framework in order to clearly grasp DDoS. Since most
resource exhaustion DoS attacks occur relatively early and usually involve a vic-
tim allocating costly data structures, we plan to extend our method to cope with
accumulative memory cost. We feel that this future extension of our cost-based
framework could be easily achieved through a generalisation of our memory cost
function ρM able to compute the memory cost of any sequence of actions, in-
cluding sequences of actions in which memory resource are released.

A tool to check whether a process satisfies admissible interference or not has
been designed and implemented at the École Polytechnique de Montréal . We are
currently extending this tool into a security protocol compiler. Protocols will be
specified using a notation à la Alice and Bob, compiled into SPPA processes and
analyzed along the lines described in this paper.

References

[Abadi and Gordon 1998] Abadi, M., Gordon, A. D.: “A bisimulation method for cryp-
tographic protocols”; Nordic Journal of Computing, 5, 4 (1998), 267-303.

[Boreale et al. 1999] Boreale, M., De Nicola, R., Pugliese, R.: “Proof techniques for
cryptographic processes”; Proc. Logic in Computer Science (1999), 157-166.

[Boudol 1985] Boudol, G.: “Notes on algebraic calculi of processes”: Proc. Logic and
Models of Concurrent Systems, NATO ASI Series F-13, Springer (1985), 261-303.

[Cortier 2002] Cortier, V.: “Observational equivalence and trace equivalence in an ex-
tension of spi-calculus. application to cryptographic protocols analysis”; Technical
Report LSV-02-3, Lab. Specification and Verification, ENS de Cachan, Cachan,
France (2002).

[Criscuolo 2000] Criscuolo, P. J.: “Distributed denial of service trin00, tribe flood net-
work, tribe flood network 2000, and stacheldraht”; Technical Report CIAC-2319,
Lawrence Livermore National Laboratory (Feb 2000).

[Cuppens and Saurel 1999] Cuppens, F., and Saurel, C.: “Towards a formalization of
availability and denial of ssrvice”; Proc. Information Systems Technology Panel
Symposium on Protecting Nato Information Systems in the 21st century, Washing-
ton (1999).

[Dietrich et al. 2000] Dietrich, S., Long, N., Dittrich, D.: “Analyzing distributed denial
of service tools: The shaft case”; Proc. USENIX LISA (2000).

1368 Lafrance S., Mullins J.: An Information Flow Method ...

[Durante et al. 1999] Durante, A., Focardi, R., Gorrieri, R.: “CVS: A compiler for
the analysis of cryptographic protocols”; Proc. of 12th IEEE Computer Security
Foundations Workshop, IEEE Computer Society (June 1999).

[Focardi et al. 1997] Focardi, R., Ghelli, A., Gorrieri, R.: “Using non interference for
the analysis of security protocols”: Proc. DIMACS Workshop on Design and For-
mal Verification of Security Protocols, Orman, H., Meadows, C. (editors), Rutgers
University (Sep 1997).

[Focardi and Gorrieri 1994/1995] Focardi, R., Gorrieri, R.: “A classification of security
properties for process algebras”; Journal of Computer Security, 3, 1 (1994/1995),
5-33.

[Goguen and Meseguer 1982] Goguen, J.A., Meseguer, J.: “Security policies and secu-
rity models”; Proc. 1982 IEEE Symposium on Research in Security and Privacy
(1982), 11-20.

[Gong and Syverson 1998] Gong, L., Syverson, P.: “Fail-stop protocols: An approach to
designing secure protocols”; Proc. Dependable Computing for Critical Applications,
5, IEEE Computer Society (1998), 79-100.

[Lafrance and Mullins 2002a] Lafrance, S., Mullins, J.: “Bisimulation-based non-
deterministic admissible interference and its application to the analysis of cryp-
tographic protocols”; Proc. Electronic Notes in Theoretical Computer Science, 61,
Harland, J. (editor), Elsevier Science Publishers (2002).

[Lafrance and Mullins 2002b] Lafrance, S., Mullins, J.: “A generic enemy process
for the analysis of cryptoprotocols”; Proc. FSCBS’2002 (2002). Available at
www.crac.polymtl.ca/mullins.

[Lafrance and Mullins 2003] Lafrance, S., Mullins, J.: “A symbolic approach
to the analysis of security protocols”; Proc. of Foundations of Com-
puter Security affiliated with LICS’03 , Ottawa (2003). Available at
http://theory.stanford.edu/ iliano/fcs03/www/.

[Meadows 1996] Meadows, C.: “The NRL protocol analyzer: An overview”; Journal of
Logic Programming, 26, 2 (1996), 113-131.

[Meadows 2001] Meadows, C.: “A cost-based framework for analysis of denial of service
networks”; Journal of Computer Security, 9, 1/2 (2001), 143-164.

[Millen 1992] Millen, J.: “A resource allocation model for denial of service”; Proc. of
the 1992 IEEE Symposium on Security and Privacy, IEEE Computer Society Press
(1992), 137- 147.

[Milner 1989] Milner, R.: “Communication and concurrency”; Prentice-Hall (1989).
[Mullins 2000] Mullins, J.: “Nondeterministic admissible interference”; Journal of Uni-

versal Computer Science, 6, 11 (2000), 1054-1070.
[Mullins and Yeddes 2001] Mullins, J., Yeddes, M.: “Two proof methods for

bisimulation-based non-deterministic admissible interference”; Submitted for publi-
cation (2001). Available at www.crac.polymtl.ca/mullins.

[Paxson 2001] Paxson, V.: “An analysis of using reflectors in distributed denial-of-
service attacks”; (2001).

[Rushby 1992] Rushby, J.: “Noninterference, transitivity and channel-control security
policies”; Technical Report CSL-92-02, SRI International, Menlo Park CA, USA
(Dec 1992).

[Schneider 1996] Schneider, S.: “Security properties and CSP”; Proc. IEEE Sympo-
sium on Security and Privacy (1996), 174-187.

[Schuba et al. 1997] Schuba, C. L., Krsul, I. V., Kuhn, M. G., Spafford, E. H., Sun-
daram, A., Zamboni, D.: “Analysis of a denial of service attack on TCP”; Proc. of
the 1997 IEEE Symposium on Security and Privacy, IEEE Computer Society Press
(May 1997), 208-223.

[Yu and Gligor 1988] Yu, C., Gligor, V. D.: “A formal specification and verification
method for the prevention of denial of service”; Proc. 1988 IEEE Symposium on
Security and Privacy, 117, IEEE Computer Society Press (Apr 1988), 187-202.

1369Lafrance S., Mullins J.: An Information Flow Method ...

