
An Interoperability Testing Approach to Wireless

Application Protocols

Ousmane Koné
(Université Paul Sabatier - IRIT

118 route de Narbonne F-31000 Toulouse
kone@irit.fr)

Abstract: Internet services can now be used from mobile terminals. The main stan-
dard supporting this technology, WAP, will enable new services since it is compatible
with network technologies like IP and UMTS. In parallel, powerful methods must be
proposed to validate the underlying protocols in order to guaratee reliability and in-
teroperability of new products. Our work, based on formal methods, contributes to
WAP testing efforts by proposing an approach to the development of interoperability
tests. We illustrate this approach with the design of tests suites for the WSP-protocol
operating over a WAP transaction service.

Key Words: Formal Testing, Compliance, Interoperability, WAP protocol.

Category: D.2.1, D.2.5, C.2.2

1 Introduction

The deregulation of the telecommunication industry has led to the rapid evo-
lution of technologies and know-how in the field of communication systems.
Wireless communication is a good example where the rapid growth of the de-
velopments is undeniable. Research is active to enhance technical solutions on
various aspects such as cellular transmission and routing issues [8, 19, 41], appli-
cation and service issues [6, 13, 40]. On the one hand, customer needs are growing
and manufacturers permanently develop new equipments with improved quality
of service. On the other hand, these services must be very quickly validated so
that the proposed solutions are reliable and ready to work. Therefore, in parallel,
efficient techniques in communication systems engineering must be developed in
order to reduce the time-to-market. In this context, interoperability testing is
holding a strategic position in the design of new technologies.

1.1 Compliance/Interoperability testing

The problem of interoperability has emerged from the possible heterogeneity
of computer systems. One would like computer products to be open systems,
so that they can be interchanged with few constraints and interwork with sys-
tems belonging to other manufacturers. In the context of communication sys-
tems, the interoperability problem occurs when at least two entities specified

Journal of Universal Computer Science, vol. 9, no. 10 (2003), 1220-1243
submitted: 15/1/03, accepted: 3/9/03, appeared: 28/10/03 © J.UCS

or implemented separately are required to cooperate. A good way of achieving
a successful cooperation is to define reference standards. Then these standards
must be checked for correctness and their implementations must also be checked
for correctness. Verification is the activity which is concerned with analyzing
specification properties in order to detect possible inconsistencies. Conformance
testing is the activity which is concerned with experimenting an implementation
in order to check its correctness according to a given specification. Substantial
efforts have been undertaken is these fields of protocol engineering to ensure
communication systems of good quality. But computer systems are more and
more complex, and in practice, it is difficult to test them in an exhaustive man-
ner. Moreover, these systems may have different manufacturer profiles which
may be, possibly, incompatible. Consequently, one cannot guarantee that such
systems, however conforming they may be, can successfully interwork. The need
to experiment them in order to show their aptitude to interwork is therefore
straightforward. Testing different implementations together, in view of checking
their aptitude to interwork is referred to as Interoperability testing.

1.2 Internet and Mobility

The last decade has been marked by two challenging technologies: Mobile tele-
phony and Internet. Mobility has become an integral part of everyday life. No
need to recall the widespread use of mobile terminals for both business and pri-
vate use. The other undoubtedly successful phenomenon is the Internet. The
exploding number of existing servers, the electronic commerce, etc show the in-
creasing interest of the World Wide Web (WWW). But the WWW has been
developed mainly for desktop or larger computers. To couple mobility and ac-
cess to Internet services has become another customer need which promises new
challenges in network technology.
Wireless Application Protocol (WAP). WAP specifications [27] are stan-
dards defined for the development of communication systems that operate over
wireless networks. Recent versions of these standards support UMTS and IP net-
works. WAP implementations must be tested against standards in order to check
their conformance and their aptitude to operate with one another. According to
the WAP forum, this testing process would follow two tracks/phases:

– Track one: Certification testing. This track would be focused on WAP appli-
cation level. The application environment under test may be operating on
both client or server side and checked against the standards.

– Track two: Compliance testing. This track would be concerned with the pro-
tocol level. Implementations would be tested through the lower level Service
Access Points in order to check protocol operations for compliance with the
standard.

1221Kone O.: An Interoperability Testing Approach ...

To date, the main developments have been concerned with track one and
recently, the WAP forum has announced the availability of certification test
suites. We are not aware of developments regarding compliance issues which
are the concern and contribution of our paper. Compliance involves protocol
inter-operations, and, therefore, in this paper, we make no difference between
compliance testing and interoperability testing.

1.3 Testing issues

A substantial research activity has been done in the field of conformance test-
ing which compares some particular implementation to some reference standard
[3, 15, 22, 38]. As explained before, this is a preliminary (but not sufficient)
work towards enabling heterogeneous implementations to work together. But
additional test experiment, where different occurrences of implementations are
interconnected and faced one against the other, must be performed in order to
show their aptitude to interoperate. The interoperability test design approach we
adopted for WAP, follows a generic methodology that we named Top [2, 21, 24],
and which handles interoperability test automation from specifications to test
execution via a CORBA platform. We will not recall all aspects of Top in this
paper, rather concerned with test cases design only. The test cases developed
are automatically computed from a formal model of WAP specifications. Few
works exist in the field on interoperability testing, compared to other testing
approaches. Some organizations such as SPAG (Standards Promotion and Ap-
plication Group) and ATM forum [37] contributed to clarify the understanding
of interoperability testing issues. The Top approach follows the recommenda-
tions of these organizations, mainly for testing architecture aspects. The other
aspects concern test cases generation. Methods from the literature generally
compute interoperability test cases on the basis of behavior graph modeling the
communicating entities [4, 9, 31, 35, 39]. These methods have been interest-
ing contributions in automatic test generation. However in the future, the need
to face the increasing complexity due to powerful features of new communica-
tion systems, plus concurrency, will grow up. The Top approach (implemented
in the tool named Tescoms [2, 21]), tries to tackle this problem with an on-
the-fly computation approach. We have successfully experimented the on-the-fly
paradigm with complex real-time specifications [20], and recently, we presented
the applicability of this approch to the interoperability of the WAP protocols
[23, 25].

This paper presents our experiment with compliance/interoperability test
suites development for WAP. After a brief presentation of our testing approach,
we show the application and results with the WAP session layer. The rest of the
paper is organized as follows: Section 2 recalls the main functionalities and archi-
tecture of WAP. Section 3 presents an overview of the Top methodology which,

1222 Kone O.: An Interoperability Testing Approach ...

WAP Client WAP Server

Wireless Network

Figure 1: Wireless Network

in the sections after, is followed for test design. Section 4 addresses compliance
testing and its illustration with the WAP Session layer (WSP). In section 5, we
analyze the production of test suites for WSP.

2 Wireless Application Protocols

2.1 General functionalities

WAP is aimed at enabling mobile terminals to access Internet-like services.
Within the WWW, a computer program can ask another one to execute some
request. The first program is called client and the second one is called server.
In order to insure interoperability, the WWW is built over standards such as
HTTP [11] and HTML [12]. The WWW model has influenced the WAP model
very much. Distributed wireless applications are also composed of clients and
servers (Figure 1). Mobile clients have access to both WAP-origin and WWW
servers. A WAP-origin server is, for example, a Wireless Telephony Applica-
tion server which is a direct access point of a given wireless network provider
to the WAP-client. But the communication with a WWW server requires to go
through a WAP-proxy server which stands for an intermediary node between the
two technologies. The mobile application is programmed with WML (Wireless
Markup Language) which is very close to HTML. The mobile terminal is pro-
vided with a micro-browser for WML. WAP functionalities are carried out by a
family of protocols that constitute the WAP-stack.

2.2 WAP Architecture

The WAP architecture has some similarities with the ISO-OSI basic reference
model [16]. Protocol features are organized into different layers (Figure 2). We
shortly describe these layers below.

1223Kone O.: An Interoperability Testing Approach ...

Application Layer (WAE)
Applications

Session Layer (WSP)

Transaction Layer (WTP)

Security Layer (WLTS)

Transport Layer (WDP)

Other Services and

Figure 2: WAP protocol stack

Application layer. This layer provides the mobile terminal with a uniform
environment - the WAE (Wireless Application Environment) - enabling ac-
cess to standard telephony and WWW services. The WAE includes a WML
browser.

Session layer. The session service is achieved through the WSP (Wireless Ses-
sion Protocol). It is used by applications such as the WML browsers. All the
internal mechanisms necessary to maintain the session life are transparent
to the application. We will be back to this layer in section 4.

Transaction layer. The WTP (Wireless Transaction Protocol) is involved in
the execution of transactions requested by upper layers. Optionally, transac-
tions can be confirmed and WTP must manage the acknowledgments (delay
them or not).

Security layer. Mobile applications necessarily operate over some transport
service (next item). The WTLS (Wireless Transport Layer Security) is in-
tended to secure the data transported and insures classical features such as
data integrity, privacy and authentification.

Transport layer. As the WAP technology enables the possible use of various
networks bearers, it is necessary to define a uniform transport service, ac-
cessible to standard upper layers. The role of the WDP (Wireless Datagram
Protocol) is to insure this transparency.

Structure of the WAP services. The structure of WAP model (Figure 3) is
similar to the one of the OSI basic reference model. An (i)-WAP layer is com-

1224 Kone O.: An Interoperability Testing Approach ...

(i)-WAP entity(i)-WAP entity
(i)-Service

(i-1)-Service

Network Bearer

Figure 3: Structure of WAP services

posed of (i)-WAP entities using a (i-1)-WAP service. One of the particularities
of WAP structure is that some (i)-service can be directly used by upper layers or
applications. For example, the Transaction layer or further defined applications
can directly access the Transport layer.

Normative references tell more about WAP. The reader may refer to the
standard [27] for detailed information.

3 Overview of the Top approach

This section describes the main characteristics of the methodology adopted for
WAP test development. The Top methodology is a contribution to normative
testing area for the interoperability of communicating systems. Preliminary ex-
periments with Top have been undertaken with standards such as ATM Adapta-
tion Layer, or OSI protocols [14, 17]. Similarly to ISO 9646 [15], Top is organised
in two phases: the Static Interoperability Review (SIR) and the Dynamic Inter-
operability Review (DIR). The SIR precedes the DIR. It is a necessary work as
implementations’ profiles can be different a priori.

3.1 Static Interoperability Review

Assume that we are interested in testing the interoperability of two devices A and
B, which are typically two protocol implementations. SA (resp. SB) denotes the
specification of device A (resp. device B). The SIR consists of an analysis of spec-
ifications SA and SB in order to get rid of incompatibility problems. This phase is
destinated to check that the options implemented by A are compatible with the
ones implemented by B. It is also a preparatory work to the selection of TP (Test
Purpose, cf. next subsection) in dynamic test cases generation. For instance, it

1225Kone O.: An Interoperability Testing Approach ...

is no use testing the Suspend/Resume functionality (cf. WSP protocol, next sec-
tion) if the client implements it while the server does not. The SIR follows some
essential characteristics of the OSI conformance methodology and framework
(ISO 9646) and WAP forum, in the sense that it also requires the examination
of both specifications and ICS (Implementation Conformance Statement): The
ICS stipulates the features of the specification effectively implemented by the
device under test. Notice that in conformance testing methodology, checking the
ICS may be necessary to select relevant tests for the DUT (Device Under Test,
or IUT: Implementation Under Test). This phase is named Static Conformance
Review (SCR). Similarly, in the interoperability methodology, as a preliminary
study, the features of implementation A must be analysed against the ones of
implementation B. Notice that this work is undertaken by hand, with a careful
reading of ICS. A (semi-automatic) time analysis was also added to the SIR as it
appeared that real-time features of communicating entities might influence their
aptitude to interoperate [5, 26]. This aspect is an optional investigation of the
SIR since very few standards specify real-time requirements.

Device Under
Test BTest A

Device Under

TEST SYSTEM

1 2

Communication Link

TEST SYSTEM

2

Entity A Entity B

1

Figure 4: Functional views of the Test Architecture

3.2 Dynamic Interoperability Review

DIR is concerned with the testing of different implementations which are cur-
rently working together. This phase necessitates the design and the execution
of test cases showing that the implementations under test can interoperate or
not. The final aim of cooperating implementations is to provide some expected
service. We lay emphasis on the service aspect even if we consider that inter-
operability necessitates the conformance to the specified protocol. Three issues

1226 Kone O.: An Interoperability Testing Approach ...

are to be considered for DIR: test architecture, test cases generation (test suite
design) and test deployment.
Test architecture and deployment. The test architecture represents the
functional configuration in which the testing experiment will be undertaken. Fig-
ure 4 depicts functional views of the architecture we adopted for interoperability.
In this figure, entity A and entity B represent DUTs (Device (or Implementation)
Under Test). The Service Access Points (SAP) are labeled with 1 and 2. The
test system interacts with the DUTs through the SAP. An optional interaction
point enables it to access the PDU (Protocol Data Unit) at lower communication
level. Notice that this architecture is similar to the one proposed by the ATM
forum for interoperability. The monitor point of ATM forum corresponds to the
optional interaction point in Figure 4.

But those architectures, including the ones defined in standard [15], describe
only functional configurations. In this case, they do not provide information for
a concrete design of PCO for the interaction between the test system and DUTs.
This aspect is left to test laboratory and test execution concern. In our method-
ology, we have designed a portable test platform for handling test deployment
issues [24]. The platform is featured over the CORBA standard, which facilitates
test deployment for a wide range of DUTs. We do not develop test deployment
aspects in this paper.
Test case generation. A test campaign consists of submitting interactions to
implementations while observing their reaction. Test cases can be automatically
computed if formal models of reference specifications are available. Our test gen-
eration tool implements an on the fly exploration technique, which is recognised
to be efficient against complex specifications. One straight mean of obtaining
interoperability test cases would consist of computing a reachability/global be-
haviour graph to be used as a reference model of the communicating entities
under test. Then standard test generation tools could be used to select test cases
from that reference model. With such an approach, one may consider manag-
ing the possible large size of the resulting behaviour graph. Our algorithm does
not compute a global behaviour graph before test selection. It directly extracts
test paths by analysing the sub-specifications (model of entity A and model of
entity B). As illustrated by Figure 5, our algorithm works with input/output
automata for modelling the specifications and the Test Purposes. A Test Pur-
pose (TP) is an (abstract) requirement while a Test Case is an actual (dynamic)
behaviour that meets a given TP. For instance, assume we are interested in the
following requirement, depicted by the TP in Figure 5: “Some input (resp. Re-
quest) a1 may be followed by some output (resp. Indication) e2”. A test case
which can show this particular feature, against implementations of Figure 5, is
the behaviour a1→ c→ e2→ (bold part of the figure).

The theoretical foundations of this algorithm can be found in [20, 21]. For

1227Kone O.: An Interoperability Testing Approach ...

Entity B

?c
?p

!e2!q2!d2 ?g2

?b

!h2

Accepting State

Test Purpose

?a1

!e2

Entity A

?o1

!b !c

?f1

!p

?a1

Global Behaviour Graph

?a1 ?o1

p

!q2

c

!d2 ?g2

!h2

?f1!e2

b

Figure 5: Computation of specification models - ?x=input x, !y=output y

space and readability reasons, we do not provide more theoretical details here.
The technique presented in [20] is adapted here for testing concurrent implemen-
tations (but without real-time considerations). We illustrate it with the example
of Figure 5.

3.3 The test generation algorithm

In this section, we sketch the Top test generation algorithm. The algorithm
basically uses a DFS (Depth First Search) to explore a concurrent graph until a
successful test case is computed. A transition is firable in this graph if it is firable
in both specifications and test purpose, or it is firable in specifications only. The
firability of transitions is examined, depth-wise, with some successor function,
namely lnext(), and the algorithm successfully exits when the traversal of the
test purpose automaton has been completed (This is done when an accepting
state, i.e. a state belonging to the set Accept(TP), is reached).

1228 Kone O.: An Interoperability Testing Approach ...

– (s1, s2, sp) is an identifier containing a reference to the actual global state of
(specification SA, specification SB, TP).

– lnext() returns a list of all possible successors for a given global state
(s1, s2, sp). In the example of Figure 5, the transition labeled with a1 is
a possible successor of (s0(SA), s0(SB), s0(TP)), where s0 denotes the initial
state of a given automaton.

– GStack is a global stack containing the actual global states to be evaluated.
Elements of this stack are of the form ((s1, s2, sp), Ls) where (s1, s2, sp) is a
global state identifier and Ls its related successors.

– Explored is the set of global states already explored.

– IOTest is a stack containing the path under search.

– Plus() adds one element to a given set.

– LIFO-in() is a push function adding one element on the top of a stack.

– LIFO-out() is a pop function removing one element (the top element) from
a stack.

– First() returns the value of the first element on the top of a stack.

– The symbol ∅ denotes an empty set or stack.

The algorithm is started with the initialization of the sets and stacks to empty
set.

If exercised with the specifications and test purpose of Figure 5, the algorithm
of Figure 6 produces a test case which is depicted with the bold part of the figure.
As stated before, this algorithm is based on a DFS which has been shown to be
powerful for graph exploration and test generation [1, 3, 7, 10]. The DFS is
very popular and is known to be a linear time algorithm [1, 20]. This algorithm
has been adapted and implemented in the so-called Tescoms tool [2, 21] by
our students, in C++ language. The input of the tool are finite input/output
automata modelling the specifications and the test purpose.

4 Compliance testing with Top

This section addresses test case generation for WAP. In the context of compliance
testing, we rather consider protocol level and we propose the design of tests aimed
to check whether WAP protocol implementations interoperate, i.e. whether they
communicate successfully and provide the expected service. Compliance testing
involves the observation of implementations under test through Service Access
Points.

1229Kone O.: An Interoperability Testing Approach ...

begin
GStack := ∅; Explored := ∅; IOTest := ∅; // Initialise to emptyset
Plus((s0(SA), s0(SB), s0(TP)),Explored);
LIFO-in(((s0(SA), s0(SB), s0(TP)), ∅),IOTest);
LIFO-in(((s0(SA), s0(SB), s0(TP)),lnext((s0(SA), s0(SB), s0(TP))))),GStack);
while (GStack �= ∅) do
begin

((s1, s2, sp), Ls) := First(GStack);
if (Ls �= ∅) then
begin

// V isit the next successor of current state (s1, s2, sp)
(µ, (s′1, s

′
2, s

′
p)) := First(Ls);

LIFO-out(Ls);
if (s′1, s

′
2, s

′
p) /∈ Explored then // If not explored yet

begin
LIFO-in(((s′1, s

′
2, s

′
p),lnext((s

′
1, s

′
2, s

′
p))),GStack);

LIFO-in((µ, (s′1, s
′
2, s

′
p),),IOTest); // Update the test searched

Plus((s′1, s
′
2, s

′
p),Explored);

if (s′p ∈ Accept(TP)) then // An accepting state is reached
return IOTest; // Stop the search and exit

end
end
else
begin

LIFO-out(GStack); // There is no more successor to visit
LIFO-out(IOTest); // Current test case does not match

end
end
return ∅; // Search failed
end

Figure 6: Algorithm skeleton

4.1 Top meets WAP

The presented testing methodology is suitable to WAP communicating systems.
Compare Figure 3 and Figure 4. As explained in section 2, each WAP layer is in-
tended for providing some service. This service is to be used by actual or further
upper layers and applications. It is obvious that the reliability of a given layer
depends on the reliability of the underlying services. Testing the correctness of
the service against standard specifications is therefore fundamental. The WAP
architecture enables access to each layer of the WAP stack and the Top archi-
tecture is powerful to test distributed systems through their service boundary,
with possible access to lower level protocol operations.
Moreover, WAP specifications include, for each layer, the protocol description
by state/transition tables. We modeled the specifications (client entity, server

1230 Kone O.: An Interoperability Testing Approach ...

entity) with the SDL Formal Description Technique [18] and then in the form
of finite input/output automata, which were further input to our test generation
tool. The following subsections tell more about test design for WAP.

Because of the recursive structure of WAP service layers ((i)-Service ≡ (i)-
Protocol + (i-1)-Service), our work can be applied to each WAP layer. In this
paper, we focus on our experiment that started with the WAP session layer
(WSP), which is the top of the layers underlying the WAP Application Environ-
ment.

4.2 WSP specification and reference model

WSP enables client and server applications to exchange contents through a main-
tained communication session. WSP specifications [29] include a connectionless
protocol over a datagram service, and a connection-mode protocol over a trans-
action service. In the sequel, we consider the connection-mode protocol only, as
the other one is fairly simple.

WSP is mainly featured to establish and release a session between a client
and a server, exchange contents of the two applications, suspend and resume
the session. The WSP specification is defined over a set of service primitives
and their ordering by time sequence charts. A service primitive is of the form
S-Service-type, (e.g. S-Connect-req), where S is the label of the session
layer, Service indicates the name of the service (e.g. Connect). The type
(e.g. request) is also indicated. Protocol operations are performed through
the use of a transaction (TR) service. The PDUs exchanged between the WSP
peer-entities are encapsulated in the TR primitives: TR-Service(PDU) denotes
the encapsulation of a given PDU in a TR-Service primitive. For example,
TR-Invoke(Connect) represents the encapsulation of the Connect PDU in
TR-Invoke. The session protocol is described with a set of state tables. We used
a model of the client and the server protocol entities in terms of input/output
automata as this was the formalism accepted by our test generation tool (In
the appendix section, a subset of the transitions illustrate the specifications). In
order to check the correctness of our model, we defined it in the SDL language
before, so that it could be verified with the ObjectGeode simulator/debugger.
The specification file contained about 3000 lines of SDL code. Of course, the
verification of the model revealed some modeling errors (some transitions were
forgotten) and mainly some unused transitions. It appeared that the unused
transitions corresponded to the reaction of entities against possible errors intro-
duced by the underlying layer. For the time being, our test design methodology
does not deal with error generation which falls in the category of robustness
testing. Error cases due to the communication environment are various and not
controllable. Our test design process is based on automatic computation of the
behavior part assuming a normal operating environment. Further studies will

1231Kone O.: An Interoperability Testing Approach ...

investigate error generation. Another specification issue concerns optional ser-
vices (e.g the Push service). Optional services are not systematically included in
our reference model. We described these services as SDL processes which may
be added or not to the mandatory part of the specification.

4.3 On the selection of test cases

In the WSP specifications, implementation features are organized in
groups of functionality (Session creation, Session suspend/resume, Push

facilities etc). Two kinds of features are specified: mandatory and optional.
Mandatory features must be implemented by both client and server. In the WSP
standard, each optional functionality has been specified as a whole, without re-
lationship with the other ones. This style of specification facilitates the Static
Interoperability Review. For the definition of target interoperability tests, it is
enough to compare the client and the server ICS and select the intersect of the
implemented options. We used the guide of WAP Implementation Conformance
Statement [28] as a basis to test selection. Optional services are mainly the Push
services and the Method Invocation facilities. During the SIR one can observe
that most of the optional services can be invoked only after the connection estab-
lishment (the Suspend/Resume service is a particular case which can be started
before). Instead of creating one test case per option, one could imagine to com-
pute all these optional behaviors at a time, after the connection establishment.
But in practice, implementations have not the same ICS and it is reasonable to
compute optional services separately.

Even if test patterns are produced automatically with our tool, test purposes
are to be defined formally before, and this work is done by hand. In this pa-
per, we will not include all the test purposes considered. We will present two
examples to illustrate the experiment with the WSP layer. The first example is
concerned with a mandatory service (the session creation, the session release).
The second example (the Push service) is optional. In addition, we include the
Suspend/Resume test case which is much longer. The specifications represent
3000 lines of code and cannot be included in this paper. However, in order to
help the reader follow the test generation results, we have supplied in the ap-
pendix section a portion of the specification model, including only the transitions
involved in the connection phase: the beginning of specifications (the syntax of
transitions is described in the following section).

5 Compliance/Interoperability test suites for WSP

5.1 Session Creation and Release

Test method: The session creation starts with an S-Connect-req (Connection
Request), and ends with an S-Connect-cnf (Connection confirmation). The ses-

1232 Kone O.: An Interoperability Testing Approach ...

sion release starts with an S-Disconnect-req initiated by either the client or
the server (in this example, it is the server) and ends with the notification of the
disconnection. Remember that the test purpose is an abstract definition of the
expected behavior. It can be modeled with a finite automaton, presented here
as a sequence of transitions (one line per transition). The syntax follows: Each
line/transition describes an interaction as well as the implementation which ex-
ecutes it. In the example below, “1” represents the identifier of the WAP-client
implementation and “2” represents the identifier of the WAP-server implemen-
tation. Let us consider the first line/transition of the example: TP1 is the initial
state and TP2 is the destination state of the transition. “?” means that the in-
teraction is received and 1.S-Connect-req means that the interaction is the
execution of S-Connect-req by the WAP client (identifier “1”).
Test Purpose: Identifiers WSP CO C001,WSP CO C002 of the ICS document.

TP1 ? 1.S-Connect-req 1 TP2
TP2 ? 2.S-Connect-res 2 TP3
TP3 ! 1.S-Connect-cnf 1 TP4
TP4 ? 2.S-Disconnect-req 2 TP5
TP5 ! 1.S-Disconnect-ind(DISCONNECT) 1 TP6
TP6 ! 2.S-Disconnect-ind(USERREQ) 2 TP7

The Tescoms tool computes the client and server WAP-specifications ac-
cording to the test purpose. The tool produces an output which is a test pattern
to be used for experimenting the expected feature (in this example, the connec-
tion establishment and the connection release). The output of the tool has the
following syntax: The lines of the form [XXX XXX XXX] concern internal identi-
fiers related to the global state which may be actually reached by the distributed
system: In the first line example, NULL represents the starting state of the client,
the second NULL represents the starting state of the server, and TP1 is the be-
ginning of the behavior to be tested. Between the global states, the interactions
to be executed are displayed (with tabulations).
Test case (dynamic behavior):

[NULL NULL TP1]
1: ? 1.S-Connect-req 1
[NUCIA1 NULL TP2]
2: ! TR-Invoke(Connect) 1
[CONNECTING NUCIA1 TP2]
3: ! TR-Invoke.ack 2
[CONNECTING NUCIA2 TP2]
4: ! 2.S-Connect-ind 2
[CONNECTING CONNECTING TP2]
5: ? 2.S-Connect-res 2
[CONNECTING CIC2A1 TP3]
6: ! TR-Result(ConnectReply) 2
[CICEA1 CONNECTING-2 TP3]
7: ! TR-Result.ack 1
[CICEA2 CONNECTED TP3]

1233Kone O.: An Interoperability Testing Approach ...

8: ! 1.S-Connect-cnf 1
[CONNECTED CONNECTED TP4]
9: ? 2.S-Disconnect-req 2
[CONNECTED CENUA1 TP5]
10: ! TR-Invoke(Disconnect) 2
[CENUC1 CENUA2 TP5]
11: ! 1.S-Disconnect-ind(DISCONNECT) 1
[NULL CENUA2 TP6]
12: ! 2.S-Disconnect-ind(USERREQ) 2
[NULL NULL TP7]

Test case analysis:

1: A Connection request is received by implementation 1 (the client session
entity).

2: The client invokes the transaction layer for sending its Connect PDU.

3: Upon reception of that PDU, the server (session entity) acknowledges it
through the transaction layer.

4: The server sends a Connection indication to the upper layers.

5: Then it receives the response notifying that the application accepted the
connection.

6: This notification is sent to the client, as a result of its Connect request.

7: The client acknowledges the result.

8: The client session user is sent a confirmation notifying that the connection
has been established.

9: The server side receives a Disconnection request.

10: Then the request is encapsulated by the transaction layer.

11,12: The upper layers are notified that the session has been released.

5.2 Sample Push interaction

The Push Service offers the possibility to a server to spontaneously send some
information to a client. As this feature is optional, the client must have a sub-
scription to the related service before. Then information can be automatically
received without explicit request.
Test method: The basic service primitives to be used are S-Push-req and
S-Push-ind. Note that only the server can initiate a Push request, this primitive
is not present in a WAP client specification. We define the following test purpose
for characterizing the Push Service.
Test Purpose: Identifier WSP CO C009 of the ICS document.

1234 Kone O.: An Interoperability Testing Approach ...

TP1 ? 1.S-Connect-req 1 TP2
TP2 ? 2.S-Connect-res 2 TP3
TP3 ! 1.S-Connect-cnf 1 TP4
TP4 ? 2.S-Push-req 2 TP5
TP5 ! 1.S-Push-ind 1 TP6

The following test case is obtained:
Test case (dynamic behavior):

[NULL NULL TP1]
1: ? 1.S-Connect-req 1
[NUCIA1 NULL TP2]
2: ! TR-Invoke(Connect) 1
[CONNECTING NUCIA1 TP2]
3: ! TR-Invoke.ack 2
[CONNECTING NUCIA2 TP2]
4: ! 2.S-Connect-ind 2
[CONNECTING CONNECTING TP2]
5: ? 2.S-Connect-res 2
[CONNECTING CIC2A1 TP3]
6: ! TR-Result(ConnectReply) 2
[CICEA1 CONNECTING-2 TP3]
7: ! TR-Result.ack 1
[CICEA2 CONNECTED TP3]
8: ! 1.S-Connect-cnf 1
[CONNECTED CONNECTED TP4]
9: ? 2.S-Push-req 2
[CONNECTED CECEA1 TP5]
10: ! TR-Invoke(Push) 2
[CECEA1 CONNECTED TP5]
11: ! 1.S-Push-ind 1
[CONNECTED CONNECTED TP6]

Test case analysis:

[1-8]: Connection establishment

9, 11: The Push interaction is started after the connection has been established
(this protocol works in connection-mode).

10: The interaction is performed through the transaction service.

The previous Push interaction is a non-confirmed service. The confirmed Push

is also available in the service specification.

5.3 The Suspend/Resume service

During the communication between a client and a server, some unpredictable
event may occur, involving either the client or the server to be temporarily busy
(or disturbed somehow). In such case, instead of closing the connection, and then
asking for another new connection, the Suspend/Resume service can be invoked.

1235Kone O.: An Interoperability Testing Approach ...

The entity which asks for suspending the session uses an S-Suspend-req. The
session can be resumed with the S-Resume-req. The test case below shows a
scenario which can be used to experiment this service.
Test case (dynamic behavior):

[NULL NULL TP1]
1: ? 1.S-Connect-req 1
[NUCIA1 NULL TP2]
2: ! TR-Invoke(Connect) 1
[CONNECTING NUCIA1 TP2]
3: ! TR-Invoke.ack 2
[CONNECTING NUCIA2 TP2]
4: ! 2.S-Connect-ind 2
[CONNECTING CONNECTING TP3]
5: ? 2.S-Connect-res 2
[CONNECTING CIC2A1 TP4]
6: ! TR-Result(ConnectReply) 2
[CICEA1 CONNECTING-2 TP4]
7: ! TR-Result.ack 1
[CICEA2 CONNECTED TP4]
8: ! 1.S-Connect-cnf 1
[CONNECTED CONNECTED TP5]
9: ? 1.S-Suspend-req 1
[CESEA1 CONNECTED TP6]
10: ! TR-Invoke(Suspend) 1
[CESEA2 CESEA1 TP6]
11: ! 2.S-Suspend-ind(SUSPEND) 2
[CESEA2 SUSPENDED TP7]
12: ! 1.S-Suspend-ind(USERREQ) 1
[SUSPENDED SUSPENDED TP7]
13: ? 1.S-Resume-req 1
[SERIA1 SUSPENDED TP8]
14: ! TR-Invoke(Resume) 1
[RESUMING SERIA1 TP8]
15: ! TR-Invoke.ack 2
[RESUMING SERIA2 TP8]
16: ! 2.S-Resume-ind 2
[RESUMING RESUMING TP9]
17: ? 2.S-Resume-res 2
[RESUMING RIR2A1 TP10]
18: ! TR-Result(Reply) 2
[RINUCEA1 RESUMING-2 TP10]
19: ! TR-Result.ack 1
[RINUCEA2 CONNECTED TP10]
20: ! 1.S-Resume-cnf 1
[CONNECTED CONNECTED TP11]
21: ? 2.S-Disconnect-req 2
[CONNECTED CENUA1 TP12]
22: ! TR-Invoke(Disconnect) 2
[CENUC1 CENUA2 TP12]
23: ! 1.S-Disconnect-ind(DISCONNECT) 1
[NULL CENUA2 TP13]
24: ! 2.S-Disconnect-ind(USERREQ) 2
[NULL NULL TP14]

1236 Kone O.: An Interoperability Testing Approach ...

The full execution of such test cases by WAP client and server entities show
their aptitude to interoperate or not. The occurrence of an unexpected interac-
tion reveals an error.

5.4 Analysis of the produced test suite

Function PDU/Capabilities Mandatory Feature Tests computed
Session

Creation
Connect PDU Yes Yes

Capabilities
Negotiation

Connect PDU,

Connect Reply

PDU

Yes No

Session
Release

Disconnect PDU Yes Yes

Session Suspend,
Session Resume

Suspend PDU,

Resume PDU
No Yes

Push Push PDU No Yes

Confirmed Push
ConfirmedPush

PDU
Yes Yes

Extended
Methods

Proprietary

Methods
No No

Methods
GET, POST

Get PDU, Post

PDU,

Reply PDU
No Yes

Methods
DELETE, HEAD,
OPTION, TRACE

Get PDU,

Reply PDU
No Yes

Method
PUT

Post PDU,

Reply PDU
No Yes

Table 1: Analysis of dynamic behaviour computed

Table 1 and Table 2 recap the features covered by the computed WSP test
suite. In Table 1, the column “Function” represents service functionalities. For
each function, we present the PDUs involved in the operation of the function, or
the related capabilities. Some of the functionalities specified in the standard are
mandatory while the other ones are optional. Most of the mandatory features
have been computed (80%). Capabilities represent a set of service facilities and
parameter settings related to the operation of the service provider. There are
different kinds of facilities defined in the standard, but the service provider may
recognise additional facilities. Some examples of facilities are Aliases, Extended
methods, Protocol options. The basic methods of WAP correspond to the ones

1237Kone O.: An Interoperability Testing Approach ...

defined in the HTTP/1.1 standard, and the Extended methods correspond to
those that are beyond HTTP/1.1. Proprietary methods fall in this category.
During the connection, the peer entities can perform a Capabilities negotiation
in order to agree on a common communication profile. The Connect PDU can be
used to specify the requested capabilities of the initiator, and the ConnectReply
PDU would contain the capabilities acknowledged by the responder. Since all
the actual capabilities are not provided in the current standard, and as these
capabilities depend on the actual WSP service users, we did not look into this
aspect. For the time being, we have treated the connection procedure (session
creation PDUs) that conveys user defined facilities. 83% of the dynamic optional
functions have been treated. 100% of the standard defined PDUs and also 100%
of the standard defined ASPs are involved in the test suite. This guarantees that
each elementary protocol operation can be experimented by the computed test
suite.

Mandatory functions Optional functions PDU involved ASP involved

80% 83% 100% 100%

Table 2: Percentage of computed features

In the overall test suite, there are also some parts of test cases that are
repeated. For instance, all the Method Invocation facilities have basically the
same operation scheme. At the WSP level, methods can be invoked by three
basic PDUs, namely the Get PDU, Post PDU and the Reply PDU. The current
Method reference is encapsulated in these PDUs.

6 Conclusions

In this paper, we have proposed an interoperability testing approach experi-
mented against wireless application protocols. The approach is based on auto-
matic test computation, which is a good way of insuring test soundness and test
reproductibility. Our test computation tool is based on an on-the-fly technique
(adapted here to concurrent specifications), which is a good way of tackling
specifications’ complexity.

According to the WAP forum framework, the development of WAP systems
goes through application-level testing and protocol-level testing. WAP forum
efforts have been focused on application level and actually, certification tests as
well as some WAP-certified products including WML-browsers are now available
(check the WAP forum web site [27]).

1238 Kone O.: An Interoperability Testing Approach ...

Our work is a contribution to testing methodology of protocol inter-
operations against WAP standards. Of course, for space reasons, we could not
include in this paper all the test cases designed. We illustrated our work with
WSP, which is the first layer below application level. Almost all the mandatory
functionalities have been experimented in dynamic test generation. We did not
complete the aspects related to capability negotiation, which are rather a con-
cern of the actual telecommunication service provider. Furthermore, the number
of possible facilities is unknown a priori. A preliminary static interoperability re-
view of the actual WAP-applications communicating through the WSP service
may allow for the selection of a subset of relevant facilities to be experimented.

As our testing approach is suitable for layered protocols, we can experiment
it with the other WAP lower layers with few limitations. For the time being, we
have been interested in concrete experimentation/deployment of the produced
test cases. Most of the telecommunications operators have already done some
developments related to the WAP technology, and we have obtained, for free,
a prototype of a WAP client, and a WAP server (with full source code in C
language). These implementations allow us to conduct concrete test experimen-
tations. Our test platform is currently operational with the ORBIX [34] Object
Request Broker, which environment already includes C++ and JAVA compilers.

References

1. A. Aho, J. Hopcroft and J. Ullman. Data Structures and Algorithms, Addison-
Wesley, 1983.

2. X.Balliet, N.Eloy. Development of a distributed test system with CORBA. Co-
authored Master’s thesis. Institut National Polytechnique, Nancy France, March
2000.

3. A.Belinfante, J.Feenstra,T.G.Vries, J.Tretmans, N.Goca, L.Feijs, S.Mauw,
L.Heerink. Formal test automation: A simple experiment. In. Testing of Communi-
cating Systems. pages 179-196. Kluwer Academic, 1999.

4. A.Cavalli, L.P.Lima. A pragmatic approach to generating test sequences for em-
bedded systems. In. Testing of Communicating Systems Vol. 10. Chapman & Hall,
1997.

5. R.Castanet, O.Koné, P.Laurençot. On the fly test generation for real time proto-
cols. Proc. International Conference on Computer Communication and Networks.
Louisianne, USA. October 1998.

6. S.K. Das, R. Jayaram, N.K. Kakani and Sanjoy K. Sen. A call admission and con-
trol scheme for quality-of-service (QoS) provisioning in next generation wireless
networks. Wireless Networks. Baltzer Science Publishers Vol. 6 (2), 2000. 17-
30.

7. Fernandez J. C., Jard C., Jéron T., Viho C. Using on-the-fly verification techniques
for the generation of test suites. In CAV’96. LNCS 1102, Springer Verlag, 1996.

8. FRAMES Workshop. Resource management for UMTS wireless access. Delft, The
Netherlands, January 1999.

9. A.Fukada et al. A conformance testing for communication protocols modeled as a
set of DFSMs with common inputs. In. Testing of Communicating Systems Vol. 10.
Chapman & Hall, 1997.

1239Kone O.: An Interoperability Testing Approach ...

10. Grabowski J. Test case generation and test case specification with Message Se-
quence Charts PhD thesis. University of Berne, February, 1994.

11. Hypertext Transfer Protocol. HTTP/1.1, RFC2068. R.Fielding et al. January,
1997.

12. HTML 4.0 Specification, W3C Recommendation REC-HTML40-971218.
D.Raggett et al. September 1997.

13. T.D. Hodes, R. H. Katz. Composable ad hoc location-based services for hetero-
geneous mobile clients. Wireless Networks. Baltzer Science Publishers, Vol. 5
(5), 1999. 411-427.

14. ITU-T Recommandation Q.2110: B-ISDN ATM Adaptation Layer - ITU Telecom-
munication Standard Sector 1994.

15. ISO/IEC 9646, Information Technology − Open Systems Interconnection-
Conformance testing methodology and framework - Part 1-5. 1991.

16. ISO/TC 97/SC 16/WG1 IS 7498. Basic Reference Model for Open System Inter-
connection. 1983.

17. Information Processing Systems. Open Systems Interconnection. Transport proto-
col International Standard ISO 8073, 1988 (F)-AFNOR.

18. ITU-T Recommandation Z.100: Specification and Description Language SDL, Con-
tribution Com X-R215-E, 1987.

19. Juntong Liu and Gerald Q. Maguire Jr. GMRM: An Efficient Routing Model for an
Integrated Wireless Mobile Packet Switch Network. The 3rd Workshop on Personal
Wireless Communication (PWC98), Tokyo, Japan, 1998.

20. O.Koné. A local approach to the testing of real-time systems.
The Computer Journal, Volume 44. British Computer Society,
Oxford Press. 2001.

21. O. Koné, R. Castanet. Test generation for interworking systems In. Computer
Communications, Elsevier Science Publishers, Vol. 23 N.7 Mars 2000. pp 642-652.

22. O.Koné, R.Castanet. Formal Methods in Protocol Conformance Testing.
TSI journal Technique et Science Informatiques N.5/1999, Editions Hermes Paris.

23. O.Koné. Compliance of wireless application protocols. IFIP TestCom International
Conference - Testing Internet Technologies and Services. Kluwer Academic Publish-
ers, 2002.

24. O.Koné, R.Castanet. The Tbroker platform for the interoperability of communi-
cations systems. IEEE 5th CSCC World Conference. Crete, July 2001.

25. O. Koné. J.P. Thomesse. Design of interoperability checking sequences against
WAP. Proc. IFIP International Conference on Personal Wireless Communications.
Kluwer Academic Publishers, September 2000.

26. L.Kaiser, O.Koné. Verification method of interoperability for real time systems.
4th IFAC International Symposium on Intelligent Components and Instruments for
Control Applications, Buenos Aires, Septembre 2000.

27. Wireless Application Protocol. Architecture Specification, WAP forum, April,
1998. URL: http://www.wapforum.com

28. Wireless Application Protocol. Conformance Statement, Compliance Profile and
Release List. WAP forum, April 1998. URL: http://www.wapforum.com.

29. Wireless Session Protocol Specification. WAP forum,
URL: http://www.wapforum.com, 1999

30. L’Internet du futur. RNRT Report. French Ministry of Education.
URL: http://telecom.gouv.fr/RNRT, 2000

31. D.Lee, K.Sabnani, D.Kristol, S.Paul. Conformance testing of protocols specified as
communicating FSMs. In. Proc. IEEE INFOCOM’93, San Francisco, 1993.

32. D.Lee, D.Su. Modeling and testing of protocol systems. In. Testing of Communi-
cating Systems Vol. 10. Chapman & Hall, 1997.

33. G.Luo, G.v.Bochmann, A.Petrenko. Test selection based on communicating non
deterministic machines using a generalized Wp-method. IEEE Transactions on Soft-
ware Engineering, SE-20(2):149-162, 1994

1240 Kone O.: An Interoperability Testing Approach ...

34. Orbix 2000. IONA Technologies.
URL: http://www.orbix.com

35. O.Rafiq, L.Cacciari. Controllability and Observability in distributed testing. Infor-
mation and Software Technology, Elsevier, Vol. 41 (1999) 767-780.

36. K.Sabnani, A.Dahbura. A protocol test generation procedure. Computer Networks
and ISDN Systems 15, 1988 (pp 285-297).

37. The ATM Forum. URL: http://www.atmforum.com
38. J.Tretmans. A Formal Approach on Conformance Testing. PhD thesis, University

of Twente, the Netherlands, 1992.
39. A.Ulrich, S.T.Chanson. An approach to testing distributed software systems. In.

Proc. IFIP symposium on Protocol Specification Verification and Testing, Warsaw,
Poland, June 1995.

40. T. Whalen and J.P. Black. Adaptative Groupware for Wireless Networks. 2nd
IEEE Workshop on Mobile Computing Systems and Applications. New Orleans,
Louisiana, Feb. 1999.

41. A.L. Wijesinha, S.P. Kumar and D.P. Sidhu. Handover and new call blocking per-
formance with dynamic single-channel assignment in linear cellular arrays. Wireless
Networks. Baltzer Science Publishers, Vol. 6 (2), 2000. 121-129.

Appendix

Client side (subset of full specification)

NULL ? 1.S-Connect-req 1 NUCIA1

NUCIA1 ! TR-Invoke(Connect) 1 CONNECTING

CONNECTING ? TR-Invoke.ack 1 CONNECTING

CINUA1 ! TR-Abort 1 CINUA2

CINUA2 ! 1.S-Disconnect-ind(USERREQ) 1 NULL

CONNECTING ? Disconnect 1 CINUB1

CINUB1 ! TR-Abort 1 CINUB2

CINUB2 ! 1.S-Disconnect-ind(DISCONNECT) 1 NULL

CONNECTING ? Suspend 1 CINUC1

CINUC1 ! TR-Abort 1 CINUC2

CINUC2 ! 1.S-Disconnect-ind(SUSPEND) 1 NULL

CONNECTING ? TR-Result(ConnectReply) 1 CICEA1

CICEA1 ! TR-Result.ack 1 CICEA2

CICEA2 ! 1.S-Connect-cnf 1 CONNECTED

...

Server side (subset of full specification)

NULL ? TR-Invoke(Connect) 2 NUCIA1

NUCIA1 ! TR-Invoke.ack 2 NUCIA2

NUCIA2 ! 2.S-Connect-ind 2 CONNECTING

CONNECTING ? 2.S-Connect-res 2 CIC2A1

CIC2A1 ! TR-Result(ConnectReply) 2 CONNECTING-2

1241Kone O.: An Interoperability Testing Approach ...

CONNECTING ? 2.S-Disconnect-req 2 CITIA1

CITIA1 ! TR-Result(Redirect) 2 CITIA21

CITIA21 ! 2.S-Disconnect-ind(USERREQ) 2 TERMINATING

CITIA1 ! TR-Result(Reply) 2 CITIA22

CITIA22 ! 2.S-Disconnect-ind(USERREQ) 2 TERMINATING

CONNECTING ? Disconnect 2 CINUA1

CINUA1 ! TR-Abort 2 CINUA2

CINUA2 ! 2.S-Disconnect-ind(DISCONNECT) 2 NULL

CONNECTING ? Suspend 2 CINUB1

CINUB1 ! TR-Abort 2 CINUB2

CINUB2 ! 2.S-Disconnect-ind(SUSPEND) 2 NULL

CONNECTING ? TR-Invoke(Resume) 2 CICIA1

CICIA1 ! TR-Abort 2 CONNECTING

CONNECTING ? TR-Abort 2 CINUC1

CINUC1 ! 2.S-Disconnect-ind(abortreason) 2 NULL

TERMINATING ? Disconnect 2 TINUA1

TINUA1 ! TR-Abort 2 NULL

TERMINATING ? Suspend 2 TINUB1

TINUB1 ! TR-Abort 2 NULL

TERMINATING ? TR-Result.ack 2 NULL

TERMINATING ? TR-Abort 2 NULL

C2NUA1 ! TR-Abort 2 C2NUA2

C2NUA2 ! TR-Invoke(Disconnect) 2 C2NUA3

C2NUA3 ! 2.S-Disconnect-ind(USERREQ) 2 NULL

CONNECTING-2 ? Disconnect 2 C2NUB1

C2NUB1 ! TR-Abort 2 C2NUB2

C2NUB2 ! 2.S-Disconnect-ind(DISCONNECT) 2 NULL

CONNECTING-2 ? Suspend 2 C2NUSEA1

C2NUSEA1 ! TR-Abort 2 C2NUSEA2

C2NUSEA2 ! 2.S-Disconnect-ind(SUSPEND) 2 NULL

C2NUSEA2 ! 2.S-Suspend-ind(SUSPEND) 2 SUSPENDED

CONNECTING-2 ? TR-Invoke(Resume) 2 C2RIA1

C2RIA1 ! TR-Abort 2 CONNECTING-2

C2RIA1 ! TR-Invoke.ack 2 C2RIA2

C2RIA2 ! TR-Abort 2 C2RIA3

C2RIA3 ! 2.S-Suspend-ind(RESUME) 2 C2RIA4

C2RIA4 ! 2.S-Resume-ind 2 RESUMING

CONNECTING-2 ? TR-Invoke(Disconnect) 2 C2NUC1

C2NUC1 ! TR-Abort 2 C2NUC2

C2NUC2 ! 2.S-Disconnect-ind(DISCONNECT) 2 NULL

CONNECTING-2 ? TR-Invoke(Suspend) 2 C2SEA1

1242 Kone O.: An Interoperability Testing Approach ...

C2SEA1 ! TR-Abort 2 C2SEA2

C2SEA2 ! 2.S-Suspend-ind(SUSPEND) 2 SUSPENDED

CONNECTING-2 ? TR-Result.ack 2 CONNECTED

...

1243Kone O.: An Interoperability Testing Approach ...

