
A Framework for Semantics of UML Sequence Diagrams

in PVS

Demissie B. Aredo
Department of Informatics, University of Oslo
P. O. Box 1080 Blindern, N-0316 Oslo, Norway

demissieifi.uio.no

Abstract: This paper presents a framework for representing formal semantics of a
subset of the Unified Modeling Language (UML) notation in a higher-order logic, more
specifically semantics of UML sequence diagrams is encoded into the Prototype Ver-
ification System (PVS). The primary objective of our work is to make UML models
amenable to rigorous analysis by providing their precise semantics. This approach paves
a way for formal development of systems through a systematic transformation of UML
models. This work is a part of a long-term vision to explore how the PVS tool set can
be used to underpin practical tools for analyzing UML models. It contributes to the
ongoing effort to provide mathematical foundation to UML notations, with the aim
of clarifying the semantics of the language as well as supporting the development of
semantically-based tools.

Key Words: Formal Semantics, UML, PVS, Formal Methods, Object-Orientation

Category: D.3.1, D.1.5, D.2.4

1 Introduction

The Unified Modeling Language (UML) [Rumbaugh et al., 1999, OMG, 1999,
Booch et al., 1999] is an object-oriented modeling language that consists of a
comprehensive set of notations. It is an industry standard modeling language
(standardized by the Object Management Group (OMG)) for specifying, visual-
izing, and documenting artifacts of software intensive systems. Among the dis-
tinguishing properties of UML is its capacity to unify a collection of notations
for object-oriented modeling - a property that may raise several fundamental
issues in the context of software engineering.

Compared to other object-oriented modeling languages in software engineer-
ing, UML is more precisely defined and contains a great deal of formal spec-
ification notations, for instance, the use of the Object Constraint Language
(OCL) [Warmer and Kleppe, 1999] for constraint specification. However, it is
not formal enough to address problems that relate to the lack of precision
[Evans et al., 1998] and suffers from the major drawbacks of object-oriented
methodologies - their limitation in the context of formal reasoning. The se-
mantics of UML constructs is expressed in meta-models (descriptions of UML
in UML) and natural language. Although the meta-models capture a precise
notion of the abstract syntax of the UML modeling elements, they do little

Journal of Universal Computer Science, vol. 8, no. 7 (2002), 674-697
submitted: 16/1/02, accepted: 22/7/02, appeared: 28/7/02 J.UCS

in addressing problems related to interpretation of non-trivial UML constructs
[Evans et al., 1998].

The lack of formal semantic models for graphical UML constructs renders
limitations in the context of rigorous model analysis and in developing semantics-
based CASE tools [Whittle, 2000, Evans et al., 1998]. Consistency checks pro-
vided by currently available CASE tools are, for instance, limited to very simple
syntactic checks, such as consistency of naming across models. Great improve-
ments would have been achieved had tools been augmented with deeper semantic
definitions for UML models [Whittle, 2000]. Formal methods provide the rigor
that is lacking in graphical UML notations. Providing formal semantic models to
constructs of a modeling language enables us to identify and remove ambiguities,
deficiencies, and inconsistencies from the language. Defining formal semantics for
modeling constructs of a graphical language like UML is also a prerequisite for
developing semantically based tool support.

In the sequel, we propose semantics definition for UML sequence diagrams in
the PVS specification language (PVS-SL) [Owre et al., 1993, Owre et al., 1999a].
We describe a general framework for formalization of UML diagrams, and an
approach that involves graphical notations and formal methods to facilitate rig-
orous model analysis. The approach can readily be used to support system vali-
dation and verification. Our reference is the currently available standard docu-
mentation for the Object Management Group UML [OMG, 1999]; the informal
semantics and the collection of well-formedness rules provided in the documen-
tation. The PVS environment is chosen as an underlying semantic foundation
for the following main reasons. Firstly, PVS provides general semantic notions
necessary to model reactive systems. For instance, it supports the notions of
sequences, lists, records, etc. that are crucial for providing trace-based semantic
models for UML sequence diagrams. Secondly, the PVS environment has a pow-
erful tool set consisting of a type-checker, a theorem-prover, and model-checker.

Usually, a model given in a single sequence diagram results in only a partial
specification, i.e. only subsets of the set of attributes and operations can be de-
rived from a given sequence diagram. To provide a specification of a wide range
of interactions in a system, several sequence diagrams should be used in combi-
nation. Composition of message sequence diagrams is dealt with in the literature,
e.g. see works of Haugen [Haugen, 1997], and Gunter et al [Gunter et al., 2001].
Moreover, to obtain a detailed and more complete description of both structural
and behavioural aspects of a system, it is necessary to combine several model-
ing techniques such as class diagrams, statecharts, and sequence diagrams. A
class diagram provides structural description of classes and relationships among
their objects; a statechart diagram describes dynamic behavior of a component;
and a sequence diagram specifies interactions among the components. The UML
notation is a combination of these modeling techniques and emphasizes their

675Aredo D.B.: A Framework for Semantics ...

integrated use to capture properties of systems from different viewpoints. The
works of Reggio et al [Reggio et al., 2000], Blair et al [Blair and Blair, 1999], and
Kammüller et al [Kammüller and Helke, 2000] address how different modeling
techniques can be used.

The rest of this paper is organized as follows. In Section 2, we briefly review
the PVS environment, with emphasis put on the PVS specification language
and theorem-prover, and discuss how they can be used together. In Section
3, we propose semantic models for basic concepts of UML sequence diagrams
such as actions, events, messages, and objects. In Section 4, we describe the
methodology used in our formalization framework, which includes a bottom-up
construction of semantics of UML sequence diagrams. In Section 5, we demon-
strate, by an example, the application of our formalization framework to model
analysis. Finally, in Section 6, we conclude and discuss future research issues.

2 The PVS Environment

The Prototype Verification System (PVS) [Owre et al, 1999b, Crow et al., 1995]
is a formalism for design and analysis of system specifications. PVS consists of a
highly expressive specification language, a powerful interactive theorem-prover,
a type-checker, and other tools. A particular strength of PVS is its capacity to
exploit the synergy between its tools, e.g. the type-checker and the theorem-
prover complement each other.

The PVS specification language is based on a classical typed higher-order
logic. Its type system contains basic types such as boolean, nat, integer, real, etc.
and type constructors such as set, tuple, record, and function. Record, set, and
function type constructors are extensively used in the sequel to encode abstract
syntactic and semantic domains of UML constructs in PVS. A record constructor
is a finite list of fields of a general form R : TYPE = [# a1 : T1, . . . , an : Tn #]

where ai’s are accessor functions and Ti’s are type expression. For a record r

of type R, i.e. r:R, function application-like terms ai(r) or r′ai, rather than the
conventional ’dot’ notation, is used to access the ith field of r. The structure
of tuple type is similar to that of record type except that the order of fields is
significant in tuples.

A function constructor is of a general form F : TYPE = [D1, D2, . . . , Dn →
R] where Di’s and R are type expressions, F is the set of all functions with
domain D = D1 × D2 × · · · × Dn and range R. The set of elements of type T is
denoted by either pred[T] or setof[T], where each of them is a shorthand for
S : [T → bool]. As a result, given a set s:S and an element t:T, membership
of t in s is by the truth value of the expression s(t).

The PVS type system has been augmented by predicate subtyping and de-
pendent typing mechanisms and supports a richer type system than the standard

676 Aredo D.B.: A Framework for Semantics ...

classical higher-order logic and relies on an original approach to type checking
[Dutertre and Schneider, 1997]. Given a type T and a predicate p:[T → Bool],
a predicate subtype T ′ = {t:T | p(t)} of T can alternatively be denoted by
(p). Subtyping mechanism complicates type-checking, and yet allows a stronger
checks for consistency and invariant in a uniform manner [Crow et al., 995].
Accommodating partial functions in the logic of total functions, for instance,
improves expressive power of the specification language. Subtyping mechanism,
however, renders type checking undecidable; as a result of which the type-checker
generates proof obligations called Type Correctness Conditions (TCC) that re-
quires users to discharge them. Though a great deal of TCCs can be discharged
automatically, the more involved ones require interactive use of the theorem-
prover.

Specifications in PVS are organized into hierarchies of theories. A theory
may consist of specification of types, variables, constants, definitions, axioms,
and conjectures. PVS supports modularity and reuse by means of parameterized
theories that make it possible to specify generic modeling elements. The PVS-SL
includes an extensive library of built-in theories, called preludes, which provide
several useful definitions and lemmas. PVS also allows definition of Abstract Data
Types (ADTs), from which a complete PVS theory is automatically synthesized
during type checking.

The following ADT, for example, specifies the standard stack data structure
along with its constructors empty and push, two accessor functions top and pop,
and two recognizers empty? and nonemptystack? that characterize empty and
non-empty stacks respectively.

stack[T : TYPE] : DATATYPE

BEGIN

empty : empty?

push (top: T, pop: stack) : nonemptystack?

END stack

From such an ADT, a theory called stack adt[T:TYPE] that consists of ax-
ioms, theorems, definitions, etc. is automatically synthesized during type check-
ing and completely specifies the stack data type axiomatically. For instance,
the following is one of the axioms generated during type checking, and states an
invariant property of stacks, i.e. for any stack a push operation followed by a
pop operation leaves the stack unchanged. Symbolically,

pop push ax : AXIOM (FORALL (x: T, s: stack): pop(push(x,s)) = s)

Another invariant property of stacks is that application of two push opera-
tions followed by two pop operations to a given stack leave the stack unchanged.
Symbolically,

677Aredo D.B.: A Framework for Semantics ...

pop push th : THEOREM (∀ (x, y: T, s: stack):

pop(pop(push(x, push(y, s)))) = s)

This theorem can be discharged interactively by invoking the PVS theorem
prover. While it is beyond the scope of this paper to explain details of the PVS
environment, we have only highlighted some of its key features. For a more
detailed discussion of the PVS environment, interested reader should refer to
[Crow et al., 1995, Owre et al., 1999a, Owre et al., 1999b]

3 Basic Concepts of UML Sequence Diagrams

The UML sequence diagram is a variant of the classical message sequence charts
(MSC) [ITU-TS, 1996]. Sequence diagrams are efficient constructs in modeling
dynamic aspects of systems by building up storyboards of scenarios, involving
the interacting objects and the messages that may be communicated among
them. They show sequences of message passing as they unfold over time, and
control flow throughout the interaction to effect a desired operation or result.

A sequence diagram is especially useful to specify reactive systems with time-
dependent functions such as real-time applications, and to model complex sce-
narios where time dependency plays an important role. It is particularly useful
technique to visualize dynamic behavior in the context of use case scenarios. To

o1: o2: o3:

m1

m2

m3

m4

Figure 1: A UML Sequence Diagram

motivate the need for a formal semantics for UML sequence diagrams, let us
consider the UML sequence diagram shown in Figure 1. It specifies an interac-
tion among objects o1, o2, and o3. It constrains messages <m1, m2, m3, m4>

to occur in that order. The diagram does not, however, state whether any of the
messages must occur or may occur. The sequence <m1, m2, m4> is also a valid
instance of the interaction modelled by the sequence diagram. In the classical

678 Aredo D.B.: A Framework for Semantics ...

message sequence charts [ITU-TS, 1996], Damm et al [Damm and Harel, 1999]
addressed this deficiency by introducing the concept of temperature - messages
that must occur have hot temperature whereas messages that may occur have
cold temperature. To model dependencies among messages one needs formal rep-
resentation of sequence diagrams. Suppose that, in Figure 1, message m4 occurs
only if messages m2 and m3 occur in that order. This behavior cannot be specified
by the graphical notations and induces a strong need for formal semantics.

A sequence diagram specifies only a fragment of system behavior, usually an
interaction between objects. To specify the complete behavior of an object or
the system as a whole, several sequence diagrams should be used to specify all
possible interactions during its life cycle [Breu et al., 1997].

The simplicity of sequence diagrams makes them suitable for expressing re-
quirements as they can easily be understood by the customers, requirement
engineers and software developers alike [Whittle, 2000]. The lack of formal se-
mantics for sequence diagrams, however, makes them ambiguous and difficult
to interpret. The non-deterministic nature of sequence diagrams also aggravates
the ambiguities in their interpretation. The sequence diagram shown in Fig-
ure 1, for example, turns to be non-deterministic if message m2 is removed
- the sending of m1 and m3 can not be ordered uniquely. As a result, both
<m1.out, m1.in, m3.out, m3.in, m4.out, m4.in> and <m3.out, m1.out,

m1.in, m3.in, m4.out, m4.in> are allowable execution traces, where m.out

and m.in denote, respectively, message sending and receiving events for message
m.

Before we define semantics of sequence diagrams, we need to provide semantic
models for the basic concepts, such as actions, operations, events, messages, and
objects.

3.1 Actions and Operations

An action is an invocation of an executable statement that forms an abstraction
of a computational procedure that results in a change in the state of the model
[OMG, 1999]. It can be realized by sending a message to an object or by modi-
fying a value of an attribute. We represent an action as a record type with the
following fields:

- the identifier of the action, normally the name of the associated message

- a list of arguments that determine parameters needed to perform the action

- a set of identifiers of the target objects. This enables us to capture the notion
of multi-casting that is used in UML to implement message broadcast.

- a boolean variable that will be used to check whether the action is syn-
chronous or asynchronous.

679Aredo D.B.: A Framework for Semantics ...

ActionID, ObjectID, ParameterID : TYPE

Action : TYPE = [# actionID : ActionID,

args : finseq[ParameterID],

targets : setof[ObjectID],

isAsynch : bool #]

where finseq[] and setof[] are, respectively, types of finite sequences and set
of elements of the type given as parameter predefined in PVS library. Note that
the PVS specification language is case sensitive, except for built-in identifiers,
and hence actionID : ActionID is a valid field declaration.

In UML, there are several kinds of actions, namely the create, destroy, call,
return, send, terminate, assignment, and uninterpreted actions. In the UML
meta-model, these kinds of actions are specified as subclasses (or specializations)
of the generic Action class. A CallAction, for instance, extends the general
structure of Action by an attribute which specifies the operation to be invoked,
whereas the CreateAction specifies the class of which an object is to be created
when the action ensue.

To encode classes related by generalization relationship into PVS expressions,
we use a general scheme that is described next. Consider the class diagram shown
in Figure 2(a). B is a subclass of A. First, the superclass A is represented as a
PVS record type whose fields consist of the class identifier, a set of attributes,
and a set of operations. Then, B is encoded in a similar way with one additional
field of type A that captures inherited parts of B, along with its local attributes
and operations. The class identifier field of a specialization class is the inherited
identifier of the general class. The PVS expressions shown in 2(b) is obtained
from the UML class diagram shown in 2(a). The field asA (one for every su-
perclass in general case), in the representation of the subclass B captures the
structure and behavior inherited from the superclass A. Detailed discussion of
issues related to formal representation of structural UML modeling elements is
out of the scope of this paper. Interested readers may refer to relevant works in
the literature [Aredo et al., 1999, France et al., 1997, France et al., 1998].

Let’s begin by defining structural properties of operations, and call actions,
i.e. remote operation invocation, and requirements on their well-formedness.

OperationID, ClassID: TYPE

Operation : TYPE = [# operationID : OperationID,

isQuery : bool,

parameters : finseq[ParameterID] #]

CallAction: TYPE = [# asAction: Action, operation : Operation #]

680 Aredo D.B.: A Framework for Semantics ...

CreateAction: TYPE = [# asAction: Action, class: ClassID #]

param(ca : CallAction) : bool =

(args(asAction(ca)) = parameters(operation(ca)))

The well-formedness rules for UML constructs are stated as predicates. For
instance, the predicate param() specifies a well-formedness requirement on call
actions, i.e. for any call action, the number and type of its arguments must match
the parameters of the associated operation. Strictly speaking, call actions are
instances of CallAction that fulfill all requirements, including well-formedness
rules. That is, the set of elements for which all the associated predicates holds -
a predicate subtype of CallAction.

A

x : T

B

y : D

f : [D → R]

 D, R, T : TYPE
 ClassID : string
 x : T
 y : D
 A : TYPE = (# classID := "A",

attributes := {x},
operations :={} #)

 f : [D → R]

 B : TYPE = (# asA := A,
classID:="B",
attributes :={y},
operations :={f} #)

Figure 2: Representation of Inheritance in PVS

3.2 Events and Messages

An Event is a specification of a significant occurrence that has a location in time
and space. In a description of communication among system components, we
identify three kinds of events: a local operation call, a message send event, and a
message receive event. We are interested in externally visible behavior of objects
and hence ignore local operation calls. Occurrences of message send and message
receive events usually involve invocation of operation of one object by another
(not necessarily distinct) object, the source and the target objects respectively.

681Aredo D.B.: A Framework for Semantics ...

Formally, we represent an event as a PVS record type whose fields consist of
the event identifier which is identical to the identifier of the associated message,
the sender and the receiver objects of the associated message, an attribute that
specifies the kind of event, the action that will ensue, and a list of arguments.
Symbolically, Event type is specified as follows:

EventID : TYPE;

Time : TYPE = nat

fin set[T : TYPE] : TYPE = finite set[T]

EventKind : TYPE = {send, receive, local}

Event : TYPE = [# eventID : EventID,

sender : ObjectID,

receivers : fin set[ObjectID],

eventKind : EventKind,

time : Time,

action : Action #]

A message is a specification of a communication among objects, or an object
and the environment of the system, and conveys information with the expecta-
tion that activity will ensue. It also specifies roles of the sender and receiver ob-
jects, as well as the associated action which models the statement that causes the
communication to take place. A message can be either a signal (asynchronous)
or an operation call (synchronous).

A message may be multi-casted to several target objects. UML, however, does
not directly support message broadcasting. Rather, it simulates multicasting by
making it possible to target a message to a set of objects. As a result, message
receivers are represented as a finite set of objects. Making a distinction between
message send events SendEvent and message receive events ReceiveEvent is
necessary to specify behavior of objects participating in the interaction modeled
by a sequence diagram. The SendEvent, ReceiveEvent, and LocalEvent types
are specified as predicate subtypes of the Event type.

e : VAR Event

send?(e) : bool = eventKind(e) = send

recv?(e) : bool = eventKind(e) = receive

local?(e) : bool = eventKind(e) = local

SendEvent : TYPE = (send?)

ReceiveEvent : TYPE = (receive?)

LocalEvent : TYPE = (local?)

In our framework, a message send and the corresponding message receive
events are considered to be two distinct instances of event occurrence. A message

682 Aredo D.B.: A Framework for Semantics ...

involves exactly two (not necessarily distinct) objects - the source, and the target.
In case of iterative message passing and message broadcast, each communication
is modeled separately. Hence, we model a message as a pair of send and receive
events. The correspondence between them has to be established uniquely. The
operation to be invoked and its parameters are extracted from the associated
action.

An important static constraint on a message is the causality requirement
which is formalized as a relation between set of SendEvent and the set of
ReceiveEvent - a requirement that guarantees the fact that a message is sent
before it is received. The UML supports the notion of time. For a message m,

m.sendTime and m.receiveTime, (as described in OMG UML v1.3 [OMG, 1999]
pp. 3-98) specify, respectively, the time the message is sent and received. That
is the time of occurrences of the associated send and receive events. We capture
the notion of time, by stamping every event by the time of its occurrence and to
store this information, we adorn the event record with the time field. The time
information is useful to express temporal properties of traces of events, such as
minimum time between occurrences of events. In the sequel, however, we con-
sider only the order of occurrences of events. The global time stamps of events
can be used for merging traces by interleaving them in the order of the time of
occurrences of events.

3.3 Traces of Events

A trace is a sequence of events that satisfies some predicates on events and pro-
gram variables such as the causality predicate. The semantics of an object may
be described by sets of infinite and finite traces reflecting non-terminating and
terminating executions. However, for safety purposes finite trace semantics suf-
fice to specify behavior of a system over a finite time interval, assuming that all
iterations terminate, and we consider prefix-closed sets of traces of finite lengths.
The PVS library includes a parameterized list ADT which is synthesized, dur-
ing type checking, into a complete theory that specifies the standard list data
type.

We represent traces of events as a prefix-closed set of finite list of events.
To describe essential properties of traces, and ultimately behavior of sequence
diagrams they model, we need to define some auxiliary functions on lists and
events.

t, t1, t2 : VAR list[Event]

prefix(t1, t2) : bool = t1=prefix upto(length(t1),t2)

where the function prefix upto() is a defined below. Note that types and vari-
ables that are specified in earlier sections are considered available in later sections
and referenced without re-declaration.

683Aredo D.B.: A Framework for Semantics ...

x, e, e1: VAR Event; s: VAR setof[Trace]; n : VAR nat

prefix upto(n,t) : RECURSIVE list[T] =

CASES t OF

null : null,

cons (x, t1) :

IF n = 0 THEN null

ELSE cons(x, prefix upto(n-1,t1))

ENDIF

ENDCASES

MEASURE length(t)

In PVS, only total function calls are allowed, since the domain of function
can be restricted by predicate subtyping, termination of all recursive functions
must be proved. The MEASURE construct is a predefined structure in the PVS
specification language and specifies how to prove the termination of recursively
defined functions.

rank(e,t) : RECURSIVE nat = CASES t OF

null : 0,

cons(x, t1) :

IF x=e THEN 1

ELSE 1 + rank(e,t1)

ENDIF

ENDCASES

MEASURE length(t)

prefix closed(s): bool = s(null) & (∀ e, t: s(cons(e,t)) ⇒ s(t))

es : VAR SendEvent

er : VAR ReceiveEvent

ts, tr : VAR list[Event]

filter send(er,t) : list[Event] =

filter(prefix upto(rank(er),t), send?)

filter recv(er,t) : list[Event] =

filter(prefix upto(rank(er),t), recv?)

causal?(t): bool= ∀ er: member(er,t) ⇒
length(filter send(er,t))-length(filter recv(er,t)) >= 0

Trace : TYPE = (causal?)

The prefix() and prefix upto() functions are used to determine corre-

684 Aredo D.B.: A Framework for Semantics ...

spondence between send and receive events that may comprise a message. The
filter() function returns elements of the list, i.e. its first argument, that satisfy
the predicate given as the second argument. Note that in the definition of the
rank function, we are interested in the rank of events that occur in the trace
given as an argument. Assigning rank zero to all the events that are not members
of the trace does not affect the definition of the causality predicate causal?. The
type Trace contains finite list of events that satisfy the causality predicate.

Next, we define prefix-closure of a given trace t and precedence relation on
the set events w.r.t. a given trace.

n : below(length(t))

prefix closure(t): setof[Trace]= {prefix upto(n,t) | true}

precede(e1,e2,t) : bool = rank(e1,t) ≤ rank(e2,t)

The below() function is predefined in the PVS specification language and
returns the set of natural numbers less than or equal to the actual parameter
provided.

3.4 The Notions of Classes and Objects

A class describes a set of objects sharing a collection of features, including at-
tributes, operations, and methods. It models the data structure and behavior of
its objects. Each object of a class contains its own set of values corresponding to
the structural features described in the class. In UML graphical notation, a class
is rendered as a rectangular box with three compartments; the topmost com-
partment for the class name, the middle one for a set of attributes, and the last
compartment for a set of operations. An example shown in Figure 3(a) describes
a class with name Station, attributes phones, and operations requestCh,

respond, activateCh, connect, gotoIdle, gotoBase. Types and initial val-
ues of attributes, and signatures of operations, except for the names, are all
optional. Figure 3(b) shows a PVS specification of the class meta-model at a
higher level of abstraction (details such as the set of interfaces realized by the
class are abstracted away), and its instance, the Station class. An object is an
entity that exhibits observable properties. It specifies an instance of a class on
which an operation can be invoked and which has a state that stores the effects
of the operations. An object may have a set of attribute values that implement
its current state, and is connected to a set of links, where both sets conform to
the specification of its class. In UML sequence diagrams, the existence of an ob-
ject is depicted by an object box and a life-line. A life-line is a vertical line that
specifies the existence of an object over a given period of time. Object creation
and/or destruction during the interaction specified by the sequence diagram,

685Aredo D.B.: A Framework for Semantics ...

AttributeLink, Operation, ClassID : TYPE

Class : TYPE = [# classID : ClassID,
attributes : setof[AttributeLink],
operations: setof[Operation],

 parents : setof[ClassID] #]

Station : Class = (# classID:= station,
attributes:= {phones},

 operations:= {request, ...},
 parents:= {} #)

Station

phones

requestCh()
respond()
activateCh()
connect()
gotoIdle()
gotoBase()

Figure 3: Representation of a Class in PVS

and ordering of events that may occur on the object are specified. It does not,
however, specify the exact time elapsed between occurrences of two events.

The structure of an object is represented by a PVS record whose fields in-
clude: an object identifier, a class, a set of attributes, a set of operations, and a
set of traces of events that models behavior of the object. Symbolically,

AttributeLink : TYPE

ObjectRec : TYPE = [# objectID : ObjectID,

class : Class,

attributeLinks : fin set[AttributeLink],

traces : setof[Trace] #]

We define the semantics of an object as a prefix-closed set of traces of events
or operation calls that satisfy certain properties such as causality. Below, we
define, as predicates, requirements that must be fulfilled by elements of type
ObjectRec to be considered as valid object description. Then, a predicate sub-
type Object of ObjectRec that captures semantics of objects is specified.

c : VAR Class;

at : VAR Attribute

op : VAR Operation;

objr : VAR ObjectRec

classExists?(objr) : bool = NOT empty?(classes(objr))

all attribs(objr): bool = (∀ at: (slots(objr)(at) ⇒
(∃ c: classes(objr)(c) & attributes(c)(at))))

686 Aredo D.B.: A Framework for Semantics ...

Object: TYPE = {objr| classExists?(objr) &

(∀t: member(t, traces(objr)) ⇒
causal?(t) & prefix closed(traces(objr)))}

classExistLemma : LEMMA (∀ (obj : Object) : classExists?(obj))

The functions attributes and operations return, respectively, the sets of
attributes and operations, local and inherited, of a class given as its argument, by
recursively traversing its parent classes and interfaces it realizes. The predicates
all ops, and all attribs specify that for every operations that may be invoked
on an object and for every attribute of the object, there must exist a class in the
set of classes of the object in which the operation and the attribute are specified.

In this paradigm where multiple and dynamic classification is supported, i.e.
an object can be an instance of several classes, and it may dynamically gain or
lose a class during system execution. However, there must always exist at least
one class which specifies some structure and behavior of the object. This require-
ment is stated as the predicate classExists? and the lemma classExistLemma,
where the latter can be discharged by invoking the PVS theorem prover. Other
similar requirements such as the conformance of the set of link ends of an object
to the set of association ends of one or more of its classes can similarly be stated
and proven correct.

4 Semantics of UML Sequence Diagram

Once the basic semantic elements are represented formally, we put them to-
gether into a PVS theory that contains representation of the semantic model
of sequence diagrams. This approach is in line with the specification style of
PVS - an entity should be defined before it can be referenced, and there is no
forward reference. The semantic model of a sequence diagram should capture
the behaviors that system specified by the sequence diagram should exhibit. For
example, invariant properties of the system are stated as axioms and predicates
respectively. Invariants that involve only parts that were separately defined are
specified as predicates on the corresponding semantic models.

We represent sequence diagrams, as a PVS record type with fields:

- the identifier of a sequence diagram

- the set of objects participating in the interaction specified by the sequence
diagram

- a prefix-closed set of traces of events modeling the interaction. We use a
(possibly infinite) set of traces of events in order to capture non-determinism.

687Aredo D.B.: A Framework for Semantics ...

In the PVS specification language, a trace can be modeled either as a (possibly
infinite) sequence or finite list of events. The sequence and list data types are
predefined in the PVS library. In the sequel, we model traces as lists.

SeqDiagrams : THEORY

BEGIN

SeqDiagramID: TYPE

SeqDiagRecord : TYPE = [# seqDiagramID : SeqDiagramID,

objects : fin set[Object],

traces : setof[Trace] #]

sqr : VAR SeqDiagRecord; obj : VAR Object

causal(sqr): bool= (∀ t: traces(sqr)(t) ⇒ causal?(t))

projection : [Trace, setof[Event] → Trace] = filter

projects(sqr): bool = (∀ obj,t: (traces(sqr)(t) &

objects(sqr)(obj))⇒
(∀ t1 : traces(obj)(t1) ⇒

member(projection(t, list2set(t1)), traces(obj))))

compose(sqr) : bool= (∀ e,t: (traces(sqr)(t) & member(e,t)) ⇒
(∃ obj: objects(sqr)(obj) ⇒

member(operation(action(e)), operations(obj))))

prefix closed(sqr) : bool = prefix closed(traces(sqr))

seqDiag : TYPE = {sqr | causal(sqr) & prefix closed(sqr) &

projects(sqr) & compose(sqr)}
END SeqDiagrams

The list2set is a predefined PVS function on lists that converts a list into
a set. A trace of events is a possible run of the system specified by the sequence
diagram if and only if it satisfies the properties specified by the predicates.
The projection function is defined as the built-in filter function and returns
projection of a trace on a given set of events. The predicate projects states
that for every allowable trace of a sequence diagram and an object participating
in the interaction specified by the sequence diagram, the projection of the trace
onto a trace of the object must be a valid trace of the object. The composition
predicate compose states that for every event in a valid trace, there must exist an
object, in the set of interacting objects, on which the operation associated with

688 Aredo D.B.: A Framework for Semantics ...

the event is invoked. More behaviors, for instance model well-formedness rules,
and relationships between elements of sequence diagram can easily be formalized
similarly.

5 Case Study: A Mobile Telephone System

5.1 System Description

In this section, we present a case study to demonstrate the use of our approach
in rigorous model analysis. Consider a dynamic network of mobile telephone sys-
tem shown in Figure 4. The network consists of a central telephone exchange c

: Center, two switching stations s1, s2 : Station, and a mobile telephone p

: Phone attached to a vehicle moving around. This network configuration can
be generalized to any finite number of stations and telephones. Each switching
station covers a given range of (possibly overlapping) area and the telephone is
initially connected to s1 as shown in Figure 4. Active communication channels
are represented as solid lines, whereas inactive channels are represented as bro-
ken lines. Before the vehicle moves out of the range of station s1, the mobile
telephone relinquishes its earlier contact with s1 and establishes contact with
the station s2. This scenario is an instance of the notion of dynamic reconfigura-
tion. Our objective is to model the reconnection interaction using UML sequence
diagram, encode the model into PVS specification, and formally analyze its cor-
rectness and/or consistency with respect to the requirement specification.

c: Center

active channel

inactive channel

s1 : Station s2 : Station

p :Phone

Figure 4: A Mobile Telephone Network

We assume that the switching stations s1, and s2 are permanently connected to

689Aredo D.B.: A Framework for Semantics ...

the central station c, and that the mobile telephone p is connected to station s1

before the interaction begins. A crucial system requirement is that the mobile
telephone must remain connected to at least one station at any given time. This
is equivalent to saying that, for a mobile telephone the set of base stations within
its range must remain nonempty. This means that the mobile phone must, at
any given time, remain connected at least to one station.

5.2 UML Specification of the System

The class diagram depicted in Figure 5 shows specification of structural prop-
erties of the telephone network system described above. The UML sequence

Station

phones

requestCh()
respond()
activateCh()
connect()
gotoIdle()
gotoBase()1..*

Phone

station

reconnect()
connected()

*

Center

selectCh()
confirm()

1

*

baseStation

Figure 5: A Class Diagram Specification

diagram shown in Figure 6 models the reconnection interaction: when the
mobile phone is leaving the range of s1 and entering the range of s2. When
the signal from s1 gets weak, the mobile phone p sends a request for a channel
to station s1 which in turn contacts center c to get appropriate stations and
channels, respectively s2 and n in this case. We assume that c is capable, in a
way we will not specify, to determine the appropriate station(s) and channel(s).
When the station and the channel are confirmed, c responds to s1. Then, s1
informs p to reconnect to the identified station via the given channel, and s1

may go to Idle state when there is no other telephone connected to it. Finally,
p establishes a connection to s2, and s2 goes to base state.

690 Aredo D.B.: A Framework for Semantics ...

gotoIdle

p:Phone s1:Station s2:Station c:Center

selectCh
requestCh

activateCh

confirm

respond
reconnect

connect

gotoBase

reconnection

[phones=∅]

connected

Figure 6: Sequence Diagram: reconnection

5.3 PVS Semantic Models

We provide a fragment of a PVS specification of the interaction described by the
sequence diagram shown in Figure 6. The classes Center, Station and Phone

are declared as classes with their respective set of attributes and operations (only
partially listed in the case of the Station class).

Operation : TYPE = {requestCh,activateCh,respond,connect,
gotoIdle,gotoBase,reconnect,selectCh,confirm}

Attribute: TYPE = {stations: setof[Station],

channels : setof[Channel],

phones: setof[Phone]}

Center : Class = (#classID := "Center",

attributes := {},
operations := {selectCh, confirm}
asClass := {} #)

691Aredo D.B.: A Framework for Semantics ...

Station : Class = (# classID := "Station", attributes := {phones},
operations := {activateCh,respond,connect,

gotoIdle,gotoBase,requestCh},
asClass := {} #)

Phone : Class = (# classID := "Phone",

attributes : setof[Attribute],

operations : {reconnect, connected},
traces : prefix closure((: requestCh,reconnect,

connect,connected:)),

parents : { } #)

The objects c, s1, s2 and p are declared as an instance of the Object type
with appropriate values assigned to its fields. We present explicit specification of
the objects p,s1,s2 and c. Finally, we sketch an explicit model of the sequence
diagram reconnection.

c, p, s1, s2 : VAR Object

p: Object = (# objectID := "p",

class := {Phone},
attributes := {stations} #)

s1 : Object = (# objectID := "s1",

classes := {Station},
traces:= prefix closure((: requestCh,selectCh,

respond,reconnect,

gotoIdle:) #)

s2 : Object = (# objectID := "s2",

classes := {Station},
traces : prefix closure((:activateCh,confirm,

connect,connected,

gotoBase:)) #)

c : Object = (# objectID := "c",

classes := {Center},
attributes := {channels, stations}#)

sq : SeqDiag = (# seqDiagramID := "reconnection",

objects := {c, s1, s2, p},
traces := {prefix closure((:p.requestCh,

s1.requestCh,

s1.selectCh,

c.selectCh,...,

s1.gotoIdle,

s2.gotoBase:)),

692 Aredo D.B.: A Framework for Semantics ...

...

prefix closure((:p.requestCh, ...

s2.gotoBase,

s1.gotoIdle:))}#)

In description of traces, an event is denoted by the identifier of the object
on which the event occurs followed by a dot and the name of the operation
to be invoked for ReceiveEvent and vise versa for SendEvent. For instance,
requestCh.p is a send event where as s1.requestCh is the corresponding receive
event.

As mentioned earlier, the specification given in Figure 6, assuming that
there is no mobile phone connected to s1 other than p, states that s1 enters
Idle state after it sends the reconnect message to p. Station s2 becomes a
base station for p when it receives the connect message. The UML sequence
diagram shown in Figure 6 does not guarantee that the mobile telephone is
connected to the new base station s2 before station s1 enters Idle state. In the
classical message sequence charts (MSC) [ITU-TS, 1996], an approach known as
a general ordering is used to guarantee deterministic order of event occurrences.
UML sequence diagram does not support such an approach and hence a need
for formal semantics that ensure this sort of behavior of systems.

Once a UML sequence diagram modeling a system interaction is encoded into
PVS specification language as a prefix-closed set of traces of events, temporal
properties of the system can be stated as predicate on the traces. For instance,
the idlePred predicate given below constrains the station object s1 from be-
coming Idle before the mobile phone is reconnected to a new base station s2.

idlePred(t:Trace): bool =

(∀ t, sq: traces(sq)(t): precede(connected,gotoIdle))

pv : VAR Phone; sv : VAR StationID;

cv : VAR Center; chv : VAR Channel

isConnectedTo(pv,sv): bool= attributes(sv)(pv)&attributes(pv)(sv)

mayConnectTo(pv,sv): bool= (∃ cv: attributes(cv)(sv) &

NOT attributes(pv)(sv))

connectivityPred(pv): bool = attributes(pv)(stations) �= ∅

theorem1 : THEOREM (∀ sv, pv:

NOT (isConnectedTo(pv,sv) & mayConnectTo(pv,sv)))

System requirements are stated as theorems, and we verify that a specifi-

693Aredo D.B.: A Framework for Semantics ...

cation meets the requirements, we need to discharged the theorems using the
PVS proof system. For instance, the theorem theorem1 captures the fact that
a mobile telephone is either connected or not connected to a station, but not
both. The theorem can be discharged automatically by a single prover command
”grind”. The following is a snapshot of a proof of the theorem. theorem1:

{1} ∀ (pv, sv: Class):

¬ (isConnected(pv, sv) & mayConnectTo(pv, sv))

Skolemizing,
theorem1:

{-1} (isConnected(pv′, sv′) & mayConnectTo(pv′, sv′))

Trying repeated skolemization, instantiation, and if-lifting,
This completes the proof of theorem1.

Q.E.D.
Although the theorem follows straightforwardly from the definitions given

above, it clearly demonstrates how the integrated framework enables us to exploit
the strengths of the UML notations and the PVS proof system in requirement
engineering. The UML models enable us to describe systems at appropriate level
of abstraction to improve our understanding of the system in question. They
can be used as contract between the stakeholder. The corresponding semantic
models that are obtained by translating the UML models into PVS specification
language, augmented with additional PVS expressions if need be, enable us to
verify important system requirements.

Two points are worth discussing in connection with the translation of UML
sequence diagrams into PVS, and the integration of UML CASE tools and the
PVS toolkit. Firstly, we discuss how the semantic models resulting from transla-
tion of graphical UML models and the PVS proof system interact. The semantic
models may not be sufficient to capture system requirements that would be
verified, and hence it may be necessary to augment them with pure PVS expres-
sions. Verification of the overall system requirements by using the PVS proof
system is straightforward as the whole system specification is in PVS. A draw-
back of this approach is that users that may not be experts in formal methods
should directly deal with formal specifications on PVS side. This contradicts
our aim of hiding formal artifacts at the back-end so that users interact with
the graphical front-end. An alternative approach is to specify the additional re-
quirements in an ad hoc language such as the object constraint language (OCL)

694 Aredo D.B.: A Framework for Semantics ...

[Warmer and Kleppe, 1999] and translate the OCL expressions into PVS lan-
guage, and reason about the constraints using the PVS theorem prover.

Secondly, the integration of a UML CASE tool and the PVS toolkit into a sin-
gle platform requires a mapping of semantic models into the corresponding UML
models. For instance, if the PVS theorem prover detects an error in the PVS
semantic model during a verification process, how can this be communicated to
users that are not experts in PVS? This can be done by developing a browser
that reverse engineer the translation of UML into PVS. Keeping records of cor-
respondence between UML modeling elements and their counterparts in PVS
specifications simplifies the parsing. For instance, by using the same identifers
in UML models and the corresponding PVS semantic models will significantly
simplify propagation of errors detected during verification onto the UML mod-
els. This is, however, out of the scope of this papers and one of the potential
issues for future work.

6 Conclusion and Future Work

In this paper we outline a framework for formalization of UML constructs. Ex-
pressing semantic models of UML constructs in a formal specification language
enables us to rigorously analyze the models. The resulting semantic models are
amenable to rigorous analysis, and facilitate the design and implementation
stages as well as use of formal techniques in software verification and valida-
tion tasks. Moreover, the underlying formal language and its tool set is used
to underpin CASE tools that are developed to automate model analysis. In our
case, once the UML modeling constructs are translated into semantic model in
PVS-SL, general properties of UML models, such as well-formedness rules, can
be stated and proved correct by using PVS tools like theorem-prover and type-
checker. The PVS theorem prover discharges most of the proof obligations with
little interaction from the user if the requirements are well formulated - and not
involving complex quantifier reasoning.

This work contributes to the ongoing effort to provide formal semantics of
UML, with the aim of clarifying and disambiguating the language as well as
supporting the development of semantically based tools. It is a part of our long-
term vision to explore how the PVS tool set could be used to underpin practical
tools to analyze UML models.

There are several related research works on the formalization of UML con-
structs in the literature [Shroff and France, 1997, Evans, 1998, Evans et al., 1998,
France et al., 1998, Whittle, 2000] mostly using Z [Spivey, 1992] as the underly-
ing semantic foundation. The work on encoding of CSP [Hoare, 1985] in PVS
[Dutertre and Schneider, 1997], is similar to ours. A distinguishing feature of
our work is the integration of informal graphical modeling notations and highly

695Aredo D.B.: A Framework for Semantics ...

expressive formal notations, and utilization of existing tools to analyze UML
models. For relevant and detailed information, the reader may refer to our earlier
works on formalization of other UML modeling techniques: structural modeling
techniques [Aredo et al., 1999, Aredo, 1999], and state machines [Traore, 2000].

A UML sequence diagram describes a fragment of dynamic system behavior
resulting in a partial specification. To achieve a more complete system descrip-
tion, one needs to combine several models such as class and statechart diagrams,
i.e. different viewpoints in UML vocabulary. When different modeling languages
are combined, their relationship should clearly be defined, and consistency be-
tween different viewpoints must be maintained. In the future, we will investigate
how different UML modeling constructs can be used in combination and how
they complement each other without violating consistency. Model checking will
also be among the research topics we will investigate in the future. Reverse en-
gineering of PVS semantic models to UML models is among topics for future
investigation.

Acknowledgements

I would like to thank Olaf Owe, Wenhui Zhang, and Issa Traore for fruitful
discussions and comments. This work was financed by the Research Council
of Norway (NFR) through the research program for Distributed IT-Systems.
Comments by the anonymous reviewers were useful for the improved presentation
of this paper.

References

[Aredo et al., 1999] Aredo, D., Traore, I., and Stølen, K. (1999). An Outline of PVS
Semantics for UML Class Diagrams (extended abstract. In the Proc. of The 11th
Nordic Workshop on Programming Theory NWPT’99, Uppsala, Sweden.

[Aredo, 1999] Aredo, D. B. (1999). Formalization of UML class Diagrams in PVS
(Extended Abstract). In the Proc. of Workshop on Rigorous Modeling and Analysis
with the UML: Challenges and Limitations, at OOPSLA99., Denver, Colorado, USA.

[Blair and Blair, 1999] Blair, L. and Blair, G. (1999). Composition in Multi-Paradigm
Specification Techniques. In the Proc. of 3rd International Workshop on Formal
Methods for Open Object-based Distributed Systems (FMOODS’99), Florence, Italy.
Kluwer.

[Booch et al., 1999] Booch, G., Rumbaugh, J., and Jacobson, I. (1999). The Uni-
fied Modeling Language User Guide. Addison Wesley Longman Inc, Reading Mas-
sachusetts 01867.

[Breu et al., 1997] Breu, R., Grosu, R., Hofmann, C., Huber, F., Kruger, I., Rumpe,
B., Schmidt, M., and Schwerin, W. (1997). Exemplary and Complete Object Inter-
action Descriptions. In Kilov, H., Rumpe, B., and Simmonds, I., editors, the Proc. of
OOPSLA’97 Workshop on Object-oriented Behavioral Semantics, Atlanta, Georgia.
TUM-I9737.

[Crow et al., 1995] Crow, J., Owre, S., Rushby, J., Shankar, N., and Srivas, M. (95). A
Tutorial Introduction to PVS. In WIFT’95: Workshop on Industrial-Strength Formal
Specification Techniques, Boca Raton, Florida, USA.

696 Aredo D.B.: A Framework for Semantics ...

[Damm and Harel, 1999] Damm, W. and Harel, D. (1999). LSC’s: Breathing Life
into Message Sequence Charts. In Formal Methods for Open Distributed Systems
(FMOODS’99), Florence, Italy.

[Dutertre and Schneider, 1997] Dutertre, B. and Schneider, S. (1997). Embedding
CSP in PVS: An Application to Authentication Protocols. In Theorem Proving
in Higher Order Logics: 10th International Conference, TPHOLs ’97, volume 1275,
Murray Hill, NJ. Springer-Verlag.

[Evans, 1998] Evans, A. (1998). Reasoning with UML Class Diagrams. In the Proc.
of WIFT’98. IEEE Press.

[Evans et al., 1998] Evans, A., France, R. B., Lano, K., and Rumpe, B. (1998). De-
veloping the UML as a formal modelling notation. In Bézivin, J. and Muller, P.-A.,
editors, The Unified Modeling Language, UML’98 - Beyond the Notation. First In-
ternational Workshop, Mulhouse, France, June 1998, pages 297–307.

[France et al., 1997] France, R. B., Bruel, J.-M., and Larrondo-Petrie, M. M. (1997).
An Integrated Object-Oriented and Formal Modeling Environment. Journal of
Object-Oriented Programming (JOOP), 10(7).

[France et al., 1998] France, R. B., Evans, A., Lano, K., and Rumpe, B. (1998). The
UML as a Formal Modeling Notation. Computer Standards & Interfaces, 19:325–334.

[Gunter et al., 2001] Gunter, E. L., Muscholl, A., and Peled, D. A. (2001). Compo-
sitional Message Sequence Charts. In the Proc. of TACAS 2001. Springer-Verlag
Heidelberg. LNCS 2031.

[Haugen, 1997] Haugen, O. (1997). Practitioners Verification of SDL Systems. PhD
thesis, University of Oslo.

[Hoare, 1985] Hoare, C. A. R. (1985). Communicating Sequential Processes. Prentice
Hall.

[ITU-TS, 1996] ITU-TS (1996). ITU-TS Recommendation Z.120: Message Sequence
Chart (MSC).

[Kammüller and Helke, 2000] Kammüller, F. and Helke, S. (2000). Mechanical Analy-
sis of UML State Machines and Class Diagrams. In the Proc. of Workshop on Precise
Semantics for the UML. ECOOP2000, Cannes.

[OMG, 1999] OMG, T. (1999). OMG Unified Modeling Language Specification, ver-
sion 1.3. OMG standard document.

[Owre et al., 1999a] Owre, S., Shankar, N., Rushby, J., and Stringer-Calvert, D. W.
(1999a). PVS Language Reference, version 2.3. Computer Science Laboratory.

[Owre et al., 1999b] Owre, S., Shankar, N., Rushby, J., and Stringer-Calvert, D. W.
(1999b). PVS System Guide, version 2.3.

[Owre et al., 1993] Owre, S., shankar, N., and Rushby, J. M. (1993). The PVS Speci-
fication Language. Computer Science Lab., SRI International.

[Reggio et al., 2000] Reggio, G., Astesiano, E., Choppy, C., and Hussmann, H. (2000).
Analysing UML Active Classes and Associated State Machines – A Lightweight For-
mal Approach. In Maibaum, T., editor, the Proc. Fundamental Approaches to Soft-
ware Engineering (FASE 2000), Berlin, Germany, volume 1783 of LNCS. Springer.

[Rumbaugh et al., 1999] Rumbaugh, J., Jacobson, I., and Booch, G. (1999). The Umi-
fied Modeling Language, Reference Manual. Addison Wesley Longman Inc., Reading
Massachusetts 01867.

[Shroff and France, 1997] Shroff, M. and France, R. B. (1997). Towards a formaliza-
tion of UML Class Structures in Z. In the Proc. of the COMPSAC’97.

[Spivey, 1992] Spivey, J. M. (1992). The Z Notation: A Reference Manual.
[Traore, 2000] Traore, I. (2000). An Outline of PVS Semantics for UML Statecharts.

Journal of Universal Computer Science, 6(11).
[Warmer and Kleppe, 1999] Warmer, J. B. and Kleppe, A. G. (1999). The Object Con-

straint Language: Precise Modeling with UML. Addison Wesley Longman Inc., Read-
ing Massachusetts 01867.

[Whittle, 2000] Whittle, J. (2000). Formal Approach to Systems Analysis Using UML:
An Overview. Journal of Database Management, 11(4).

697Aredo D.B.: A Framework for Semantics ...

