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Abstract: Let G = (V, E) be a strongly connected and aperiodic directed graph
of uniform out-degree k. A deterministic finite automaton is obtained if the edges
are colored with k colors in such a way that each vertex has one edge of each color
leaving it. The automaton is called synchronized if there exists an input word that
maps all vertices into the same fixed vertex. The road coloring conjecture asks whether
there always exists a coloring such that the resulting automaton is synchronized. The
conjecture has been proved for various types of graphs but the general problem remains
open. In this work we investigate a related concept of stability, using techniques of
linear algebra. We have proved in our earlier papers that the road coloring conjecture
is equivalent to the conjecture that each strongly connected and aperiodic graph has a
coloring where at least one pair of states is stable. In the present work we prove that
stable pairs of states exist in all automata that are almost balanced in the sense that
there is at most one state for each color where synchronization can take place.
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1 Introduction

The road-coloring problem is a challenging open problem concerning synchro-
nization of finite automata. It was first stated as a problem in symbolic dy-
namics [1, 2]. The problem is to determine which directed graphs of uniform
out-degree admit an edge labeling that makes them into a synchronized deter-
ministic finite automaton (DFA), that is, a DFA in which an input word w and
state s exist such that the input w moves the automaton into state s regardless
of the start state. It is generally believed that such synchronizing labelings exist
for all strongly connected and aperiodic graphs.

Synchronization allows simple error recovery in finite automata: if an error is
detected, a synchronizing word can be used to reset the automaton into a known
state. This is an old idea used in synchronizing codes to resume decoding after
a transmission error. Another application of synchronized automata is leader
identification in processor networks. If the network has a synchronized labeling,
a synchronizing word takes a message from any processor to the leader vertex.
This idea also indicates the origin of the problem name: if a road map has a
synchronized coloring then it is impossible to get lost. By following a path labeled
with the synchronizing word one always gets back to the original location.
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The road-coloring conjecture has been proved in various special cases. An
early partial result states that a synchronizing coloring exists if the graph has
a simple cycle of prime length, and there are no multiple edges [8]. Recently
we proved the conjecture for graphs that have a uniform in-degree as well as
out-degree [7]. Other partial results have been reported in [3, 4, 5, 6, 9].

In [4] we introduced the concept of stability. In a DFA, a pair s, t of states is
called stable if for every input word u there exists a word w (which may depend
on u) such that word uw synchronizes states s and t. In other words, states s
and t are synchronizable, and they remain synchronizable no matter what input
word u is applied to both of them. Clearly all pairs are stable if the automaton
is synchronized, so the existence of stable pairs is a weaker property than syn-
chronization. We proved in [4] that stability is an equivalence relation, and that
the road-coloring conjecture is equivalent to the conjecture that labelings with
non-trivial stable pairs exist.

In the present work we develop the idea of stability further. Our techniques
are elementary and are based on linear algebra. We interpret the states of the
automaton as basis vectors of a vector space. Transition functions are viewed
as linear transformations. We show how the stability relation corresponds to a
subspace, closed under the transition transformations. We show that if at least
one pair of states can be synchronized then this subspace is non-trivial, i.e.,
contains some non-zero vectors. Unfortunately this does not always imply that
a stable pair of states exist. However this is the case if the automaton has for
each input letter a at most one state with more than one incoming edge with
label a. As a corollary we see that a graph has a labeling with a stable pair if
only only one state has an in-degree greater than the uniform out-degree of the
graph.

2 Definitions

A directed graph G = (V, E) is called admissible (k-admissible, to be precise) if
all vertices have the same out-degree k. A deterministic finite automaton (DFA)
without initial and final states is obtained if we color the edges of a k-admissible
digraph with k colors in such a way that all k edges leaving any node have
distinct colors. The vertices of the graph become the states of the automaton.
We call G the underlying graph of the automaton.

Let Σ = {1, 2, . . . , k} be the labeling alphabet. As usual, Σ∗ is the set of
words over Σ. Every word w ∈ Σ∗ defines a forward state transition function
fw : V −→ V on the vertex set V : the vertex fw(p) is the endpoint of the unique
path that starts at p and whose labels read w. For a set S ⊆ V we define

fw(S) = {fw(p) | p ∈ S}.
Word w is called synchronizing if fw(V ) is a singleton set, and the automaton is
called synchronized if a synchronizing word exists. A coloring of an admissible
graph is synchronized if the corresponding automaton is synchronized.

The road coloring conjecture states that a synchronized coloring exists for
every admissible graph that is (i) strongly connected, and (ii) aperiodic. Ape-
riodicity means that there is no number k > 1 that divides the lengths of all
cycles in the graph. Clearly, if there is such a common divisor k > 1 then no
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synchronizing coloring can exist. Throughout this work we assume that all given
graphs are strongly connected and aperiodic.

Next we define two binary relations on the state set of a DFA [4]:

Definition 1 A pair p, q of states is reducible, in symbols p ∼ q, if there exists
a word w such that fw(p) = fw(q), i.e. word w takes p and q to the same state.
Accordingly the DFA is called (p, q)-synchronized. We say that a state pair p, q
is stable, denoted p ≡ q, if for every word u there exists a word w such that
fuw(p) = fuw(q).

It follows immediately from the definition that the reducibility and the sta-
bility relations ∼ and ≡ are symmetric and reflexive. The reducibility relation is
not always transitive. In contrast, the stability relation is transitive, and hence an
equivalence relation [4]. Moreover, p ≡ q implies fw(p) ≡ fw(q) for all w ∈ Σ∗,
so that stability is a congruence of the automaton. Using this fact we proved
in [4] that the road coloring conjecture is equivalent to the following conjecture:

Conjecture 1 Every admissible, aperiodic, strongly connected graph has a col-
oring such that a pair p, q of states is stable for some p 
= q.

Therefore we concentrate on the seemingly easier task of looking for colorings
with non-trivial stability relations.

In this work we view the state transitions fw as linear transformations. Let
n = |V | be the number of states. For each letter a ∈ Σ, the state transition
function fa has a representation as the adjacency matrix of the edges with color
a, that is, the binary n × n matrix Ma whose entry Ma(p, q) is 1 if q = fa(p),
and 0 otherwise. The matrix defines a linear transformation of an n-dimensional
vector space U . We can view each state p ∈ V as a basis vector p̄ ∈ U of
this space. We call this the natural basis of U . Let f̄a : U −→ U be the linear
transformation of U whose matrix under the natural basis is Ma. In other words,
for p, q ∈ V we have f̄a(p̄) = q̄ in the vector space U if and only if fa(p) = q in
the automaton.

Each subset S ⊆ V of vertices is also viewed as a vector S̄: it is the sum of
the basis vectors that correspond to its elements:

S̄ =
∑

p∈S

p̄.

For any word w = a1a2 . . . am, the transformation f̄w is the composition

f̄w = f̄a1 ◦ f̄a2 ◦ . . . ◦ f̄am .

We clearly have the property f̄w(p̄) = q̄ if and only if fw(p) = q in the automaton.
Elements of U are all linear combinations of the basis vectors p̄, for p ∈ V .

Now we can generalize the concepts of reducibility and stability to arbitrary
vectors:

Definition 2 A vector x̄ is reducible if there exists a word w such that f̄w(x̄) =
0̄, the zero vector. Vector x̄ is stable if for every word u there exists a word w
such that f̄uw(x̄) = 0̄.
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Notice that a pair p, q of states is reducible (stable) according to Definition 1
if and only if the vector p̄ − q̄ is reducible (stable, respectively) according to
Definition 2. The fact that the stability relation is an equivalence relation has
the following counter part in the linear spaces:

Proposition 1 The set of stable vectors is a linear subspace.

Proof. The zero vector is stable, so there always exist stable vectors. If x̄ and ȳ
are stable vectors and a and b are arbitrary real numbers then ax̄ + bȳ is stable:
For every u ∈ Σ∗ there exists word v ∈ Σ∗ such that f̄uv(x̄) = 0̄, and a word
w ∈ Σ∗ such that f̄uvw(ȳ) = 0̄. Hence

f̄uvw(ax̄ + bȳ) = af̄w(0̄) + b0̄ = 0̄.

✷

Let us call the subspace formed by the stable vectors the stability space of
the automaton. In this work we investigate this space, and prove that it is the
null space {0̄} if and only if all input letters specify a permutation of the state
set. Let us call such DFA a permutation automata, that is, an automaton is a
permutation automaton iff

fa(p) = fa(q) =⇒ p = q

for every a ∈ Σ and all p, q ∈ V . We have proved in [7] the road coloring
conjecture for the underlying graphs of permutation automata, so the present
work shows that in all remaining open cases there exist non-trivial stable vectors
in every labeling of the graph.

3 The stability space

Let us recall a few definitions from [4]. We call a set S ⊆ V of states non-
reducible if |fw(S)| = |S| for every w ∈ Σ∗, where |X | is the notation we use for
the cardinality of set X . The non-reducible sets S that can be reached from the
full state set V form the set

Vmin = {fw(V ) | fw(V ) is non-reducible }.
It is easy to see that Vmin is not empty: the cardinality of a state set can only
be decreased a finite number of times, after which it becomes non-reducible.
It is also clear that all elements of Vmin have the same cardinality. Indeed, if
A = fw(V ) and B = fv(V ) are two elements of Vmin then fv(A) ⊆ B. Because A
is non-reducible, we have |B| ≥ |A|. Symmetrically, |A| ≥ |B|, so the cardinalities
of A and B are the same.

Following [4] we call the cardinality of the elements of Vmin the synchroniza-
tion degree of the automaton.

Proposition 2 If S, T ∈ Vmin then S̄ − T̄ is a stable vector.
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Proof. Let u ∈ Σ∗ be arbitrary, and let w ∈ Σ∗ be such that fw(V ) ∈ Vmin.
Let us denote R = fw(V ). We have fuw(S) = fuw(T ) = R. Because S and T
are non-reducible we have f̄uw(S̄) = R̄ and f̄uw(T̄ ) = R̄ in the vector space U .
Therefore

f̄uw(S̄ − T̄ ) = f̄uw(S̄) − f̄uw(T̄ ) = R̄ − R̄ = 0̄.

✷

Corollary 1 The stability space is {0̄} if and only if the automaton is a permu-
tation automaton.

Proof. If the automaton is not a permutation automaton then the synchroniza-
tion degree of the automaton is less than |V |. Since the automaton is strongly
connected, every state p ∈ V belongs to some element of Vmin. Consequently
there must be at least two different sets S and T in Vmin. According to Propo-
sition 2 the difference S̄ − T̄ is a non-zero stable vector.

Conversely, if each input letter specifies a permutation of the state set then
it is clear that every non-zero vector is mapped into a non-zero vector by the
linear transformations f̄a. Therefore there are no other stable vectors except 0̄.
✷

Example 1. In the automaton A of Figure 1

Vmin = {{1, 4}, {2, 3}} .

Therefore vector x̄ = 1̄+4̄− 2̄− 3̄ is stable. It is easy to see that all stable vectors
are scalar multiples of x̄, so the stability space has dimension one.

Figure 1: Automaton A.
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As an application of Corollary 1 we can prove that an automaton has non-
trivial stable pairs of states (as defined in Definition 1) if for each label a there
is at most one state pa ∈ V where synchronization with input letter a can occur.

Proposition 3 Let A be a non-permutation automaton with at least two states.
Assume that for every input letter a ∈ Σ there exists a state pa ∈ V such that

fa(p) = fa(q), p 
= q =⇒ fa(p) = fa(q) = pa.

(In other words, for every a ∈ Σ there is at most one state with more than one
incoming edge of label a.) Then the automaton has a stable pair p, q of states,
where p 
= q.

Proof. Let x̄ ∈ U be a vector, and let

x̄ =
∑

p∈V

app̄

be its representation as a linear combination of the basis vectors p̄, for p ∈ V .
The support of x̄ is the set

supp(x̄) = {p ∈ V | ap 
= 0}
of states that correspond to non-zero coefficients.

Let x̄ 
= 0̄ be a stable vector whose support supp(x̄) has minimal cardinality
among all non-zero stable vectors. According to Corollary 1 such vector x̄ exists.
Basis vectors p̄ are not stable so the support of x̄ must contain at least two
states.

Let us prove that all p, q ∈ supp(x̄) form stable pairs. Because x̄ is stable it
is enough to prove that fw(p) = fw(q) with every w such that f̄w(x̄) = 0̄.

Let w ∈ Σ∗ be any word such that f̄w(x̄) = 0̄, and let u be the longest prefix
of w such that f̄u(x̄) 
= 0̄. Let ȳ = f̄u(x̄), and let a ∈ Σ be the letter that follows
the prefix u in w. Because ȳ is stable its support cannot be smaller than the
support of vector x̄. Therefore, no states of supp(x) are synchronized by word u.
On the other hand, because f̄ua = 0̄ each state in supp(x) is synchronized with
another one by word ua. Because there is only one state pa ∈ V with more than
one incoming edge labeled a, we must have fua(p) = pa with all p ∈ supp(x).
This means that fw(p) = fw(q) for all p, q ∈ supp(x̄). ✷

Example 2. Consider the automaton A of Example 1. If we exchange the labels
of the edges that go out of state 1, we get an automaton where states 1 and
4 are the only states with more than one incoming edge with labels a and b,
respectively. According to the previous proposition the automaton has a stable
pair of states. (This particular automaton is synchronized, so all pairs of states
are stable.)

In [7] we proved the road coloring conjecture for graphs that have the same
uniform in- and out-degree k. We also proved that such balanced graphs can
be labeled in a fully non-synchronizing way: there is a labeling that creates a
permutation automaton. From the Corollary 1 we know that this is the only case
when there are no non-zero stable vectors.

Consider then a graph G that is almost balanced in the sense that there is
only one vertex whose in-degree is greater than k, the uniform out-degree. Let
us prove that G can be labeled in such a way that Proposition 3 can be applied:
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Proposition 4 Let G = (V, E) be a k-admissible graph with at least two ver-
tices. If at most one vertex has an in-degree greater than the common out-degree
k then there exist a labeling with a non-trivial stable pair of vertices.

Proof. If all vertices have the same in-degree k then the result was proved in [7].
Assume then that p is the only vertex with in-degree m > k. Construct another
directed graph that is identical to G except that any m − k edges that enter
p in G have been changed in such a way that instead of entering p they enter
some other vertices whose in-degree in G is less than k. Clearly they can be
redistributed in such a way that in the new graph G′ = (V, E′) all vertices have
the same in-degree k.

In [7] we proved the simple fact that graph G′ has a labeling into a per-
mutation automaton. Notice that G′ is not necessarily strongly connected or
aperiodic, but this result holds for all admissible graphs of uniform in-degree.

If we transfer the labeling back to graph G, we get a labeling such that all
vertices except p have at most one incoming edge of each color. The result now
follows from Proposition 3. ✷

Notice that Proposition 4 is not enough to prove that ”almost balanced”
graphs with only one vertex of large in-degree are synchronized. It only proves
that the stability relation is non-trivial. This means that the quotient automaton
A/ ≡ is smaller than the original automaton A. But in order to continue reducing
the size of A/ ≡ further, as we did in [4, 7], we would need to know that the
quotient automaton has the same property of being almost balanced. This we
are able to show for a smaller class of automata only:

Proposition 5 Let A be a DFA whose underlying graph is strongly connected
and aperiodic. If A has the property that for every input letter a ∈ Σ there is at
most one state that does not have an edge labeled with a entering it then A can
be recolored in such a way that it becomes synchronized.

Proof. Let us use mathematical induction on n, the number of states in the
automaton. If n = 1 the claim is trivial. Next, let n > 1 and assume that the
claim has been proved for automata with fewer states.

If A is a permutation automaton then the claim has been proved in [7].
Assume then that A is not a permutation automaton. For every input letter a,
the number of edges with label a is the same as the number of states. So if there
would be two states with more than one incoming edge of label a then there
would necessarily be at least two states with no incoming edges of label a. This
is not the case, so A satisfies the assumptions made in Proposition 3. According
to that proposition A has a stable pair of states. This means that the quotient
automaton A/ ≡ has fewer states than A has.

Let us prove that A/ ≡ satisfies the conditions of the proposition so that
we can use the inductive hypothesis. We know from [4] that A/ ≡ is strongly
connected and aperiodic since A has these properties. States of A/ ≡ are equiva-
lence classes of A under the stability relation ≡. If there is no incoming edge with
label a into an equivalence class it means that there is no incoming edge of label
a to any state that belongs to that equivalence class. Since there exists at most
one such state, we conclude that there can exist at most one such equivalence
class.

The quotient automaton A/ ≡ satisfies the conditions of the proposition.
According to the inductive hypothesis there exists a recoloring of A/ ≡ into a
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synchronized automaton. This recoloring can be lifted to A as described in [4].
The result is a synchronized recoloring of A. ✷

4 Conclusions

We have introduced and studied the stability space of finite automata, with the
ultimate goal of proving that any k-admissible, strongly connected and aperiodic
graph has a coloring with some stable pairs of vertices. We proved that in all
non-permutation automata there are non-trivial stable vectors. In some instances
this implies the existence of stable pairs. In particular this is the case if the
automaton has the property that there is at most one state for each color where
synchronization can take place. In the future we hope to establish other situations
where stable pairs of states can be found based on the stability space of the
automaton.
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