
Some Remarks on Codes Defined by Petri Nets1

Masami Ito
(Department of Mathematics, Sangyo University Kyoto, Kyoto 603–8555, Japan

Email: ito@ksuvx0.kyoto-su.ac.jp)

Jürgen Dassow
(Otto-von-Guericke-Universität Magdeburg, Fakultät für Informatik, PSF 4120,

D–39016 Magdeburg, Germany
Email: dassow@iws.cs.uni-magdeburg.de)

Ralf Stiebe
(Otto-von-Guericke-Universität Magdeburg, Fakultät für Informatik, PSF 4120,

D–39016 Magdeburg, Germany
Email: stiebe@iws.cs.uni-magdeburg.de)

Abstract: With any Petri net we associated its CPN language which consists of all
sequences of transitions which reach a marking with an empty place whereas all proper
prefixes of the sequence lead to positive markings.
We prove that any CPN language can be accepted by a partially blind multicounter ma-
chine, and that any partially blind multicounter language is the morphic image of some
CPN language. As a corollary we obtain the decidability of membership, emptiness and
finiteness problem for CPN languages. We characterize the very strictly bounded reg-
ular languages, which are CPN languages, and give a condition for a Petri net, which
ensures that its generated language is regular. We give a dense CPN language and
prove that no dense regular language is a CPN language.

Key Words: Petri nets, codes, formal languages

Category: F. 4.2, F. 4.3

1 Introduction

Let D = (P, T, δ, µ0) be a Petri net where P is the set of places, T is the set of
transitions, δ is the transition function and µ0 is the initial marking. δ can be
given by the values #(p, I(t)) and #(p,O(t)) which give the numbers of tokens
taken from and given to the place p, respectively, if the transition t fires. By
πp(µ) we denote the number of tokens at place p ∈ P of the marking µ.

The languages of Petri nets are formed by sequences of firing transitions.
We are interested in the CPN2 language of a Petri net which was introduced by
Tanaka in [7] and is defined as the set of all sequences u ∈ T ∗ such that there is
a place p ∈ P with πp(δ(µ0, u) = 0 and πq(µ0, v) > 0 for all q ∈ P and all proper
prefixes v of u. Intuitively, we take those sequences in the language which lead
to a marking with at least one empty place and where all intermediate markings
1 C. S. Calude, K. Salomaa, S. Yu (eds.). Advances and Trends in Automata and

Formal Languages. A Collection of Papers in Honour of the 60th Birthday of Helmut
Jürgensen.

2 C, P and N stand for code, Petri and net.

Journal of Universal Computer Science, vol. 8, no. 2(2002), 260-269
submitted: 15/9/02, accepted: 4/2/02, appeared: 28/2/02 J.UCS

have no empty places. By L(D) we denote the CPN language generated by D.
By CPN we denote the family of all CPN languages generated by Petri nets.

CPN languages are of interest because they are prefix codes. This follows
from the fact that we take sequences where an empty place occurs for the first
time.

In [7] and [4] CPN languages have been investigated with respect to properties
which are of interest from the point of coding theory. For instance, if Cn with
n ≥ 2 is a finite maximal prefix code and a CPN language, then this holds for
any Ck with 1 ≤ k ≤ n, too, and C is a full uniform code.

In this paper, we study relations of the language family CPN to other (clas-
sical) language families. In [4] it was shown that

– CPN is a proper subclass of the family of context-sensitive languages,
– CPN contains non-context-free languages, and
– there are finite languages which do not belong to CPN .

From this we obtain that CPN is incomparable with the families of regular and
context-free languages, respectively.

We improve the upper bound by showing that CPN is a proper subclass of the
family PBLIND(n) of languages accepted by quasirealtime blind multicounter
machines. As a corollary we obtain the decidability of membership, emptiness
and finiteness problems for CPN languages. On the other hand, we can also
characterize PBLIND(n) by means of CPN languages.

Furthermore, we study in more detail the relation to regular languages. For a
special class of regular languages, the so-called very strictly bounded languages,
we give a characterization of the CPN languages. Furthermore, we give a condi-
tion which ensures that the generated language of a Petri net is regular.

Finally, we show that CPN contains dense languages, but no regular dense
languages, where density of L ⊆ T ∗ is defined as the property that, for any
u ∈ T ∗, there are words x and y with xuy ∈ L.

We assume that the reader is familiar with the basic concepts of formal
language theory (see [6]) and Petri nets (see [5]). We recall here some notations.

A deterministic finite automaton is specified as a quintupleA = (Z,X, z0, F, δ)
where X is the input alphabet, Z is the set of states, z0 is the initial state, F
is the set of accepting states and δ : Z × X → Z is the transition function.
T (A) denotes the set of words accepted by A. By REG we denote the family of
regular languages (i.e., the family of languages acceptable by deterministic finite
automata.

Partially blind counter machines, introduced by Greibach [2], are one-way
multicounter machines where zero tests of the counters is not possible during a
computation, but where a computation fails whenever a counter is below zero.
Formally, a partially blind k-counter machine is a construct A = (Z,X, z0, F, δ),
where Z, X , z0 and F are defined as for a finite automaton and δ ⊂ Z × (X ∪
{λ})× Z × ZZk is a finite transition relation. An instantaneous description (ID)
of A is a (k+2)-tuple (z, w, n1, . . . , nk) with z ∈ Z, w ∈ X∗ and n1, . . . , nk ∈ IN.
If (z, a, z′,m1, . . . ,mk) ∈ δ, (z, aw, n1, . . . , nk) is an ID and ni + mi ≥ 0 for

261Ito M., Dassow J., Stiebe R.: Some Remarks on Codes Defined by Petri Nets

1 ≤ i ≤ k, then we write (z, aw, n1, . . . , nk) (z′, w, n1+m1, . . . , nk +mk). This
changing of the ID is called a step. Moreover, if a = λ, the step is called an λ-
step. A is called quasirealtime of delay d if (z, λ, n1, . . . , nk) r (z′, λ, n′

1, . . . , n
′
k)

implies r ≤ d. The language accepted by A is

L(A) = {w ∈ X∗ | (z0, w, 0, . . . , 0) ∗ (q, λ, 0, . . . , 0), for some q ∈ F},
where ∗ is the transitive and reflexive closure of . The family of languages ac-
cepted by (quasirealtime) partially blind counter machines is denoted by PBLIND
(PBLIND(n)).

For an n-dimensional vector µ = (a1, a2, . . . , an), we set |µ| =
∑n

i=1 ai. If µ
is a marking of a Petri net, then |µ| is the total number of tokens in the net.

2 CPN Languages and Partially Blind Counter Machines

Greibach [2] gave a characterization of PBLIND(n) by means of a class of
Petri net languages. More specifically, a Petri net machine is a quintuple A =
(P, T, δ, µ0, F), where (P, T, δ, µ0) is a Petri net and F ⊆ P is a set of accepting
places. The computation sequence set (CSS language) accepted by A consists of
all transition sequences that transform µ0 to a marking µ with πq(µ) = 1, for
some q ∈ F , and πp(µ) = 0, for p �= q. The family of CSS languages accepted by
Petri net machines is denoted by CSS .

Lemma1 (Greibach [2]). 1. CSS ⊆ PBLIND(n).

2. Any language in PBLIND(n) is the projection of a language in CSS. 3 ✷

In what follows, we will relate CPN and CSS languages, and thus the families
CPN and PBLIND(n).

Lemma2. For any L ∈ CSS, L ⊆ T ∗, the language L$, $ /∈ T , is in CPN .

Proof. Consider a Petri net machineM = (P, T, δ, µ0, F). We construct the Petri
net D = (P ∪ {sum, run}, T ′ ∪ {e}, δ′, µ′

0), where

– sum, run /∈ P are additional positions,

– T ′ is a disjoint copy of T , the copy of t ∈ T is denoted by t′, e /∈ T ∪ T ′ is
an additional transition,

– πp(µ′
0) = 2πp(µ0) + 1, for p ∈ P ,

πsum(µ′
0) = 2

∑
p∈P\F πp(µ0) +

∑
p∈F πp(µ0) + 1,

πend = 2,
3 A projection is a morphism mapping a letter to a letter. In [2], the projection is

already included in the definition of the CSS language. Therefore, the result looks
somewhat different here.

262 Ito M., Dassow J., Stiebe R.: Some Remarks on Codes Defined by Petri Nets

– and δ′ is defined by
#(p, I(t′)) = 2#(p, I(t)), for p ∈ P, t ∈ T ,
#(run, I(t′)) = 2, for t ∈ T ,
#(sum, I(t′)) = 2

∑
p∈P\F

#(p, I(t)) +
∑

p∈F

#(p, I(t)), for t ∈ T ,

#(p,O(t′)) = 2#(p,O(t)), for p ∈ P, t ∈ T ,
#(run, O(t′)) = 2, for t ∈ T ,
#(sum, O(t′)) = 2

∑
p∈P\F

#(p,O(t)) +
∑

p∈F

#(p,O(t)), for t ∈ T ,

#(p, I(e)) = 0, for p ∈ P ,
#(run, I(e)) = 2,
#(sum, I(e)) = 2,
#(p,O(e)) = 0, for p ∈ P ,
#(run, I(e)) = 1,
#(sum, I(e)) = 0.

It can be shown by induction that the sequence of transitions t′1t
′
2 · · · t′n can

be fired in D and yields the marking µ′ with πp(µ′) = 2πp(µ) + 1, for p ∈ P ,
πsum(µ′) = 2

∑
p∈P\F πp(µ) +

∑
p∈F πp(µ) + 1 and πrun(µ′) = 2 iff t2t2 · · · tn

can be fired in M and yields µ. The transition e can be fired once and stops the
computation, as it leaves the position run with 1 token.

Hence, an accepting marking µ′′ of D satisfies πsum(µ′′) = 0 and is reached
after a transition sequence t′1t′2 · · · t′ne. The transition µ′ reached after t′1t′2 · · · t′n
satisfies πsum(µ′) = 2. For the marking µ obtained in M after the sequence
t1t2 · · · tn, it follows that πq(µ) = 1, for some q ∈ F , and πp(µ) = 0, for all
p ∈ P \ {q}.

Consequently, a sequence is accepted by D iff it has the form t′1t′2 · · · t′ne and
t1t2 · · · tn is in the CSS language of M.

Lemma3. CPN ⊆ PBLIND(n).

Proof. Given a Petri net D = (P, T, δ, µ0) with P = {p1, . . . , pk}, we construct
the partially blind k-counter machine A = (Z, T, z0, F, δ

′) with

Z = {z0} ∪ {zi | 1 ≤ i ≤ k} ∪ {z′i | 1 ≤ i ≤ k} ∪ {zi,t | 1 ≤ i ≤ k, t ∈ T },
F = {zi | 1 ≤ i ≤ k},

and δ′ contains the following transitions for 1 ≤ i ≤ k:

– (z0, λ, zi,α) with αi = πpi(µ0), 0 ≤ αj ≤ πpj (µ0) for j �= i,

– (zi, λ, z
′
i, (−1, . . . ,−1)),

– (z′i, t, zi,t,β) with βj = 1−#(pj , I(t)), for 1 ≤ j ≤ k, t ∈ T ,

– (zi,t, λ, zi,γ) with γi = #(pi, O(t)), −1 ≤ γj ≤ #(pj , O(t)), for i �= j, t ∈ T .

The machine works as follows. In the first step, by choosing state zi, it guesses
that place pi is the first place which becomes empty. In the sequel, a run of D

263Ito M., Dassow J., Stiebe R.: Some Remarks on Codes Defined by Petri Nets

is simulated. The number of tokens on pi is stored in the i-th counter, while the
contents of the j-th counter can be any number less than or equal to the number
of tokens on place pj , for j �= i. The firing of a transition t is simulated by A in
3 steps:

– The application of (zi, λ, z
′
i, (−1, . . . ,−1)) tests that all counters have a con-

tents of at least 1.

– The application of (z′i, t, zi,t,β) decreases the counters by the number of
tokens needed for firing t.

– The application of (zi,t, λ, zi,γ) increases counter i by the number of tokens
fired by t to pi, and the counters j, j �= i, by at most the number of tokens
fired by t to pj .

An ID (z, λ,0) of A can be reached iff the input reaches in D a marking µ with
πpi(µ) = 0, and all previous markings are positive for all places.

Corollary 4. 1. CPN ⊂ PBLIND(n).

2. For any L ∈ PBLIND(n), there are a language L′ and a projection h such
that L = h(L′) and L′$ ∈ CPN .

Hitherto decision problems have not been studied for CPN languages. From
the decidability properties of PBLIND we obtain the following results as direct
consequences.

Corollary 5. The membership, emptiness, finiteness, and intersection empti-
ness problems are decidable for CPN languages. ✷

3 CPN languages versus regular languages

Obviously, since CPN only contains prefix codes and there are regular languages,
which are not prefix codes, there exist regular languages which are not in CPN .
Conversely, in [4], pages 88/89, an example of a CPN language L is given, which
is not context-free. Therefore CPN and REG are incomparable. However, the
second claim of Corollary 4 holds obviously for regular languages L, too. In this
section we investigate the relation between CPN and REG more detailed.

A languageK is called strictly bounded if there are letters a1, a2, . . . , an such
that

K ⊆ a∗1a
∗
2 . . . a

∗
n .

By [1], a strictly bounded language is regular if and only if it is a finite union of
languages of the form

L = {ar1+k1t1
1 ar2+k2t2

2 . . . arn+kntn
n | ki ≥ 0, 1 ≤ i ≤ n} (1)

for some ri ≥ 0 and ti ≥ 0 for 1 ≤ i ≤ n. We say that a language is a very strictly
bounded language if it is of the form (1). By definition, very strictly bounded
languages are regular.

We now characterize the very strictly bounded languages in CPN .

264 Ito M., Dassow J., Stiebe R.: Some Remarks on Codes Defined by Petri Nets

Theorem 6. A very strictly bounded language L is in CPN if and only if

L = au1
1 au2

2 . . . aun
n

where n ≥ 1, ui ∈ IN ∪ {∗} for 1 ≤ i ≤ n, uj = ∗ for some j with 1 ≤ j ≤ n
implies uj+1 ∈ IN and un ∈ IN.

Proof. Let L be a very strictly bounded language in CPN and letD = (P, T, δ, µ0)
be a Petri net with L = L(D). Obviously, T = {a1, a2, . . . , an}.

By supposition, L is of the form (1). Assume that tj > 0 for some j, 1 ≤ j ≤ n.
Then

L′ = {ar1
1 ar2

2 . . . a
rj−1
j−1 a

rj+kjtj

j a
rj+1
j+1 . . . arn

n | kj ≥ 0}
is an infinite subset of L. If there is a place p such that #(p, I(aj)) > #(p,O(aj)),
then transition aj can only fire at most q times where q depends on r1, r2, . . . , rj−1.
This contradicts the infinity of L′. Thus

#(p, I(aj)) ≤ #(p,O(aj)) for p ∈ P .

Now let p′ be a place such that p′ does not contain a token after using the
sequence

v = ar1
1 ar2

2 . . . a
rj−1
j−1 a

rj

j a
rj+1
j+1 . . . arn

n .

If #(p′, I(aj)) < #(p′, O(aj)) for all p′ ∈ P , then every p ∈ P contains a token
using

w = ar1
1 ar2

2 . . . a
rj−1
j−1 a

rj+tj

j a
rj+1
j+1 . . . arn

n .

Thus w /∈ L(D) by definition whereas in contrast to this w ∈ L and L = L(D).
Thus there is at least one place p′ such that #(p′, I(aj)) = #(p′, O(aj)) and p′
contains no token after using v. Now, obviously, p′ also has no token after

u = ar1
1 ar2

2 . . . a
rj−1
j−1 a

rj+1
j a

rj+1
j+1 . . . arn

n .

This implies tj = 1.

Analogously, we can show that rj = 0.

Thus L is of the form L = au1
1 au2

2 . . . aun
n with ui ∈ IN ∪ {∗}. Let us assume

that uj = uj+1 = ∗ for some j, 1 ≤ j ≤ n. Since #(p, I(aj)) ≤ #(p,O(aj)) and
#(p, I(aj+1)) ≤ #(p,O(aj+1)) for any p ∈ P , the sequences

f = ar1
1 ar2

2 . . . a
rj−1
j−1 a

sj

j a
sj+1
j+1 a

rj+2
j+2 . . . arn

n

and
g = ar1

1 ar2
2 . . . a

rj−1
j−1 a

sj−1
j aj+1aja

sj+1−1
j+1 a

rj+2
j+2 . . . arn

n

induce the same markings for some sj , sj+1 ≥ 1. Since f ∈ L, we have f ∈ L(D)
and therefore g ∈ L(D) in contrast to g /∈ L and L = L(D). Hence, for any j,
1 ≤ j ≤ n, uj = ∗ implies uj+1 �= ∗.

Moreover, if un = ∗, then L = L(D) is not a prefix code in contrast to the
fact mentioned in the Introduction.

265Ito M., Dassow J., Stiebe R.: Some Remarks on Codes Defined by Petri Nets

Furthermore, if ui = 0 for some j, then we can omit the letter ai without
changing L.

Therefore L has the desired form.

Conversely, assume that au1
1 au2

2 . . . aun
n ∈ T+ satisfies the condition of the the-

orem. It is obvious that aun
n ∈ CPN . Assume that aui+1

i+1 a
ui+2
i+2 . . . aun

n ∈ CPN for
some i, 1 ≤ i ≤ n− 1. Let D = (P, T, δ, µ0) such that L(D) = a

ui+1
i+1 a

ui+2
i+2 . . . aun

n

where T = {ai+1, ai+2, . . . , an}. Now we construct the Petri netD = (P , T , δ, µ0)
such that L(D) = aui

i a
ui+1
i+1 . . . aun

n where T = T ∪ {ai}.
Case 1. ui ∈ N. Let P = P ∪{.1, .2}. To define δ, we add the following values

to those of δ:

#(.1, I(ai)) = 2,

#(.2, O(ai)) = 1,

#(.2, I(ai+1)) = #(.2, O(ai+1)) = ui + 1.

Moreover, we define µ0 as follows:

πp(µ0) = πp(µ0) for p ∈ P ,

π�1(µ0) = 2ui + 1,

π�2(µ0) = 1.

Then it can be seen that ai+1 can be fired only after the configuration of aui

i

is performed and after that D simulates D. Thus aui

i a
ui+1
i+1 . . . aun

n = L(D).

Case 2. ui =. Let P = P ∪ {.}. To define δ, we add the following values to
those of δ:

#(., I(ai)) = #(., O(ai)) = 2ui+1 + 1,

#(., I(ai+1)) = 2.

Moreover, we define µ0 as follows:

πp(µ0) = πp(µ0) for p ∈ P ,

π�(µ0) = 2ui+1 + 1,

Then it is easy to see that D simulates D after calculating at
i, t ≥ 0 and start-

ing firing ai+1. Thus aui

i a
ui+1
i+1 . . . aun

n = L(D). Hence, by induction hypothesis,
au1
1 au2

2 . . . aun
n ∈ CPN .

Theorem 7. Let D = (P, T, δ, µ0) be a Petri net with

– P = {p1, p2, . . . , pr},
– T = {a1, a2, . . . , an}, and

– for 1 ≤ i ≤ n,
∑r

j=1 mij ≤ 0 where mi,j = #(pj , O(ai))−#(pj , I(ai)).

Then L(D) is regular.

266 Ito M., Dassow J., Stiebe R.: Some Remarks on Codes Defined by Petri Nets

Proof. For any marking µ reachable by D and any i, 1 ≤ i ≤ n, such that
δ(µ, ai) �= ∅, we have

|δ(µ, ai)| = |µ|+
r∑

i=1

mij ≤ |µ|

and thus by induction
|µ| ≤ |µ0| .

Hence the set R of reachable markings of D is finite.

We now construct the finite automaton

A = (R ∪ {e}, T, µ0, F, δ)

where e is an additional element,

F = {(k1, k2, . . . , kr) | (k1, k2, . . . , kr) ∈ R,min{kj | 1 ≤ j ≤ r} = 0}
and δ is defined as follows:

– δ(µ, a) = δ(µ, a) for µ ∈ R ⊆ F , a ∈ T and δ(µ, a) �= ∅,
– δ(µ, ai) = e for µ ∈ R, a ∈ T and δ(µ, a) = ∅,
– δ(µ, a) = e for µ ∈ F ,

– δ(e, a) = e for a ∈ T .

It is easy to see that u = b1b2 . . . bm ∈ L(D) if and only if δ(µ0, u) ∈ F and
δ(µ0, b1b2 . . . bk) ∈ R \ F for 1 ≤ k < m if and only if δ(µ0, u) ∈ F if and only if
u ∈ L(A).

Theorem 7 cannot be extended to the case where
∑r

i=1 mij > 0 for some i,
1 ≤ i ≤ n. In order to see this we consider the Petri nets D1 and D2 in Figure 1.
In both cases we get the same elements

m11 = m21 = 0, m12 = 1 and m22 = −1.
L(D1) is not regular, because

L(D1) ∩ a+
1 a

+
2 = {an

1a
n+1
2 | n ≥ 0} ,

and L(D2) = {a2} is regular.

267Ito M., Dassow J., Stiebe R.: Some Remarks on Codes Defined by Petri Nets

D1 : ��������1
1 �� |a1

1
��

1

��

D2 : ��������1
2 �� |a1

2
��

1

����������1
1

�� |a2
��������1

1
�� |a2

Figure 1: Petri nets D1 and D2

4 Density of CPN languages

By Q(T) we denote the set of all primitive words over T , i.e., the family of all
words q such that q �= pj for all p ∈ T ∗ and j ≥ 2.

For a language L over T , we define the degree deg(L) of L by

deg(L) = {i | qi ∈ L for some q ∈ Q(T) .

Lemma8. Let D = (P, T, δ, µ0) be a Petri net with µ0 = (k1, k2, . . . , kr). Fur-
ther, let k = max{ki | 1 ≤ i ≤ r}. Then deg(L(D)) is finite, more exactly,
deg(L(D)) contains at most k numbers.

Proof. Suppose that deg(L(D)) contains more than k numbers. Then there exists
a positive integer i such that i > k and qi ∈ L(D) for some q ∈ Q(T). By
qi ∈ L(D), there exists a place p such that πp(δ(µ0, q

i)) = 0. This implies
πp(δ(µ, q)) < πp(µ) for all intermediate markings µ. Thus

0 = πp(δ(µ0, q
i)) ≤ πp(µ0)− i.

On the other hand, πp(µ0)− i < 0 by the choice of i. This contradiction proves
the lemma.

A language L ⊆ T ∗ is called dense, if, for u ∈ T ∗, there are words x and y in
T ∗ such that xuy ∈ L.

Theorem 9. Let T be an alphabet with at least two letters. Then there exist a
dense language L in CPN but no regular dense language is in CPN .

Proof. The first statement follows by the Petri net D given in Figure 2. It is
easy to see that

a
|u|
1 ua∗2 ∩ L(D) �= ∅ for u ∈ T ∗.

Therefore L(D) is dense.

Now suppose that there is a dense regular language L in CPN . By [3], the
degree of any regular dense language is infinite. Thus deg(L) is infinite. However,
this contradicts Lemma 8.

268 Ito M., Dassow J., Stiebe R.: Some Remarks on Codes Defined by Petri Nets

��������1

1

���
��

��
��

��
|a1

1
��

1

����������1
1

�� |a2 |a3 ... |an

Figure 2: A Petri net that generates a dense language

References

1. S. Ginsburg and E. H. Spanier, Bounded regular sets. Proc. Amer. Math. Soc.
17 (1966) 1043–1049.

2. S. A. Greibach, Remarks on blind and partially blind one-way multicounter ma-
chines. Theoretical Computer Science, 7:311–324, 1978.

3. M. Ito and M. Katsura, Dense languages and languages related to primitive
words. In: Proceedings of Asian Mathematical Conference 1990, World Scientific,
Singapore, 1992, 215–220.

4. M. Ito and Y. Kunimochi, Some Petri Net Languages and Codes. In: W. Kuich
(ed.), Developments in Language Theory, Preproceedings of 5th Int. Conf. DLT,
Vienna, 2001.

5. J. L. Petersen, Petri Net Theory and the Modelling of Systems. Prentice-Hall,
New Jersey, 1981.

6. G. Rozenberg and A. Salomaa (eds.), Handbook of Formal Languages, Vol. I –
III, Springer-Verlag, Heidelberg, Berlin, 1997.

7. G. Tanaka, Prefix codes determined by Petri nets. Algebra Colloquium 5 (1998)
255–264.

269Ito M., Dassow J., Stiebe R.: Some Remarks on Codes Defined by Petri Nets

