
On the Power of P Systems with Symport Rules

Carlos Mart́in-Vide
(Research Group on Mathematical Linguistics

Rovira i Virgili University
Pl. Imperial Tàrraco 1, 43005 Tarragona, Spain

E-mail: cmv@astor.urv.es)

Andrei Păun
(Department of Computer Science
University of Western Ontario

London, Ontario, Canada N6A 5B7
E-mail: apaun@csd.uwo.ca)

Gheorghe Păun
(Institute of Mathematics of the Romanian Academy

PO Box 1-764, 70700 Bucureşti, Romania, and
Rovira i Virgili University

Pl. Imperial Tàrraco 1, 43005 Tarragona, Spain
E-mail: gpaun@imar.ro, gp@astor.urv.es)

Abstract: A purely communicative variant of P systems was considered recently,
based on the trans-membrane transport of couples of chemicals. When using both
symport rules (the chemicals pass together in the same direction) and antiport rules
(one chemical enters and the other exits a membrane), one obtains the computational
completeness, and the question was formulated what happens when only symport rules
are considered. We address here this question. First, we surprisingly find that “gener-
alized” symport rules are sufficient: if more than two chemicals pass together through
membranes, then we get again the power of Turing machines. Three results of this type
are obtained, with a trade-off between the number of chemicals which move together
(at least three in the best case) and the number of membranes used. The same result
is obtained for standard symport rules (couples of chemicals), if the passing through
membranes is conditioned by some permitting contexts (certain chemicals should be
present in the membrane). In this case, four membranes suffice. The study of other
variants of P systems with symport rules (for instance, with forbidding contexts) is
formulated as an open problem.
Key Words: Molecular Computing, Membrane Computing, Symport, Antiport, Com-
putational Universality
Category: F.1.1

1 Introduction

This paper is a direct continuation of the paper [Păun and Păun, 2002], where
P systems with symport and antiport rules were introduced.

P systems are distributed parallel computing models which abstract from
the structure and the functioning of the living cells. In short, we have a mem-
brane structure, consisting of several membranes embedded in a main membrane
 C. S. Calude, K. Salomaa, S. Yu (eds.). Advances and Trends in Automata and

Formal Languages. A Collection of Papers in Honour of the 60th Birthday of Helmut
Jürgensen.

Journal of Universal Computer Science, vol. 8, no. 2 (2002), 317-331
submitted: 15/9/09, accepted: 30/1/02, appeared: 28/2/02 J.UCS

(called the skin) and delimiting regions (Figure 1 illustrates these notions) where
multisets of certain objects are placed; the objects evolve according to given evo-
lution rules, which are applied nondeterministically (the rules to be used and
the objects to evolve are randomly chosen) in a maximally parallel manner (in
each step, all objects which can evolve must do it). The objects can also be com-
municated from a region to another one. In this way, we get transitions from a
configuration of the system to the next one. A sequence of transitions constitutes
a computation; with each halting computation we associate a result, the number
of objects from a specified output membrane.

✬

✫

✩

✪

✬

✫

✩

✪

✤

✣

✜

✢✤
✣
✜
✢

	
✒
✏
✑

✗
✖
✔
✕

�
✧
✥
✦

	
✒
✏
✑
	
✒
✏
✑

✡
✡

✡✡✢

❅
❅

❅❘

�
�

�
�✠

membrane

❆❆

skin elementary membranemembrane

region

environment environment

✟✟✯
❍❍❍❍❍❍❍❍❥

❅
❅

❅❅❘

Figure 1: A membrane structure

1 2

3

4
5

6

7

8

9

Since these computing devices have been introduced ([Păun, 2000]) several
different classes of P systems have been considered. Many of them were proved
to be computationally complete, able to compute all Turing computable sets of
natural numbers. When membrane division, or membrane creation (or string-
object replication) is allowed, NP-complete problems are shown to be solved in
polynomial (often linear) time. Comprehensive details can be found at the web
address http://bioinformatics.bio.disco.unimib.it/psystems.

Starting from the observation that communication is rather important in
this framework, a purely communicative variant of P systems was introduced in
[Păun and Păun, 2002] (a previous proposal, of a completely different type, was
discussed in [Martin-Vide et al., 2002]), modeling a real life phenomenon, that
of trans-membrane transport in pairs of chemicals. When two chemicals can pass
together through a membrane in the same direction, the process is called symport.
When the two chemicals pass only with the help of each other, but in opposite
directions, one says that we have antiport. We refer to [Alberts et al., 1998] and
[Ardelean, 2002] for biological details.

Technically, the rules used in P systems as models of these biological pro-
cesses are of the forms (x, in) and (x, out) for symport, and (x, out; y, in) for
antiport, where x, y are strings of symbols representing multisets of chemicals.

318 Martin-Vide C., Paun A., Paun G.: On the Power of P Systems with Symport Rules

Of course, this is a generalization of what happens in nature, where mainly pairs
of chemicals are coupled. Still, even using only such standard rules, it is found in
[Păun and Păun, 2002] that we can compute in this “osmotic” manner whatever
a Turing machine can compute. The proof uses both symport and antiport rules.

However, the symport look more attractive than the antiport (not only be-
cause of the name. . .): one can imagine that in the case of antiport a sort of
“traffic jam” appears in a protein channel through which the chemicals have to
pass simultaneously in opposite directions (of course, this discussion has nothing
to do with biochemistry, it is just a way to introduce a mathematical restriction).
So, what about using only symport rules?

At the first sight, using only symport rules seems not to be too powerful,
but we find that if we are allowed to use packages of more than two chemicals,
then we characterize again the family of Turing computable sets of numbers. In
the results proved below, the decrease in the number of chemicals in a symport
rule is obtained at the expense of increasing the number of membranes. The
universality is obtained also with standard symport rules, that is, involving at
most pairs of molecules which pass together through a membrane conditionally,
depending on the content of that membrane. We consider here only the case
of promoters, single chemicals which should be present when a symport rule is
applied. The case of inhibitors (chemicals which should not be present when a
symport rule is applied) remains to be investigated.

2 P Systems with Symport/Antiport

The language theory notions we use here are standard, and can be found, for
instance, in [Rozenberg and Salomaa, 1997].

A membrane structure is pictorially represented by a Venn diagram (like the
one in Figure 1); it can be mathematically represented by a tree or by a string of
matching parentheses associated in a standard manner with a tree. A multiset
over a set X is a mapping M : X −→ N∪{∞} (we allow infinite multiplicities).
Here we always use multisets over finite sets X (that is, X will be an alphabet).
A multiset with a finite support and with finite multiplicities of elements can be
represented by a string over X ; the number of occurrences of a symbol a ∈ X
in a string x ∈ X∗ represents the multiplicity of a in the multiset represented
by x. Clearly, all permutations of a string represent the same multiset, and the
empty multiset is represented by the empty string, λ.

We introduce first the P systems with rules of arbitrary length. Such a device
is a construct

Π = (V, µ, w1, . . . , wm,Me, R1, . . . , Rm, io),

where:

1. V is the alphabet of chemicals (we call them objects);
2. µ is a membrane structure withmmembranes (injectively labeled by positive
integers 1, 2, . . . ,m; the skin membrane is labeled by 1); m ≥ 1 is called the
degree of the system;

3. w1, . . . , wm are strings over V representing the multisets of objects initially
present in the regions of the system, andMe is the multiset of objects present
outside the system, in the environment; the “internal multisets” have finite

319Martin-Vide C., Paun A., Paun G.: On the Power of P Systems with Symport Rules

multiplicities of objects, while for each a ∈ V we have either Me(a) = 0 or
Me(a) = ∞ (outside the system, an object is either absent, or present in
arbitrarily many copies); that is why Me is identified by its support (the set
of objects appearing at least once – hence in infinitely many copies – in the
environment);

4. R1, . . . , Rm are finite sets of rules of the form (x, out; y, in), for x, y ∈ V ∗
with xy 	= λ; if one of x, y is empty, then we have a symport rule (written
in the form (x, out), (y, in)), when both x and y are non-empty we have an
antiport rule;

5. io ∈ {1, . . . ,m} is an elementary membrane of µ (the output membrane).
The meaning of a rule (x, out; y, in) from Ri, 1 ≤ i ≤ m, is the following:

the objects present in x exit the region of membrane i, and, simultaneously, the
objects present in y enter the region of membrane i. Of course, x and y represent
multisets, hence the multiplicities of objects matters.

Note that the rules do not change the nature of objects, they just move
objects from a region to another one, possibly sending objects out of the system
or bringing objects in the system, from the environment. Thus, a P system with
symport/antiport rules observes the conservation law (which is not necessarily
the case with other classes of P systems).

The multisets of objects present in the m regions of Π constitute the con-
figuration of the system; (w1, . . . , wm) is the initial configuration. We pass from
a configuration to another configuration by using the rules from R1, . . . , Rm, as
customary in P systems: the rules are applied in the non-deterministic maxi-
mally parallel manner, in the sense that we apply the rules in parallel, to all
objects which can be processed, non-deterministically choosing the rules and
the objects. Thus, a transition means a redistribution of objects among regions
(and environment), which is maximal for the chosen set of rules. A sequence of
transitions between configurations of the system constitutes a computation; a
computation is successful if it halts, i.e., it reaches a configuration where no rule
can be applied to any of the objects.

The result of a successful computation is the number of objects present within
the membrane with the label io in the halting configuration. A computation
which never halts yields no result. The set of all the numbers computed by Π is
denoted by N(Π).

The family of all sets N(Π), computed as above by systems Π of degree at
most m ≥ 1, using symport rules (x, in), (x, out) with |x| ≤ p (we say that |x| is
the weight of the symport rule (x, in), (x, out)), and antiport rules (x, out; y, in)
with |x|, |y| ≤ q, is denoted by NPPm(symp, antiq), for m ≥ 1 and p, q ≥ 0.
(The case from biochemistry corresponds to p ≤ 2 and q = 1.) When the number
of membranes is not bounded we replace the subscript m by ∗.

Also, we use NRE to denote the family of recursively enumerable sets of
natural numbers; this is precisely the family of the length sets of recursively
enumerable languages, and we will make below an essential use of this observa-
tion.

The following results are proved in [Păun and Păun, 2002]:

1. NPP5(sym2, anti1) = NRE,
2. NPP2(sym2, anti2) = NRE.

320 Martin-Vide C., Paun A., Paun G.: On the Power of P Systems with Symport Rules

The P systems with symport and antiport rules were also considered in
[Păun et al., 2001], where, among others, a complete mathematical formaliza-
tion is given, both of the structure and the functioning of such a machinery.

3 The Symport Suffices

At the end of [Păun and Păun, 2002] it is proposed to investigate the power of
P systems using symport rules only, and it is suggested that in order to obtain
a significantly powerful class of computing devices it is necessary to supplement
the model with a control of using the rules. We will consider this suggestion in
the subsequent sections, but first we show that, surprisingly enough, generalized
(with respect to the biochemical case) symport rules are already universal.

In the proof of this result, as well as in the subsequent sections, we will use
the notion of a matrix grammar with appearance checking.

Such a grammar is a construct G = (N,T, S,M,F), where N,T are disjoint
alphabets, S ∈ N , M is a finite set of sequences of the form (A1 → x1, . . . ,
An → xn), n ≥ 1, of context-free rules over N ∪T (with Ai ∈ N, xi ∈ (N ∪T)∗),
and F is a set of occurrences of rules in M (N is the nonterminal alphabet, T
is the terminal alphabet, S is the axiom, while the elements of M are called
matrices).

For w, z ∈ (N ∪ T)∗ we write w =⇒ z if there is a matrix (A1 → x1,
. . . , An → xn) in M and the strings wi ∈ (N ∪ T)∗, 1 ≤ i ≤ n + 1, such that
w = w1, z = wn+1, and, for all 1 ≤ i ≤ n, either wi = w′

iAiw
′′
i , wi+1 = w′

ixiw
′′
i ,

for some w′
i, w

′′
i ∈ (N ∪ T)∗, or wi = wi+1, Ai does not appear in wi, and the

rule Ai → xi appears in F . (The rules of a matrix are applied in order, possibly
skipping the rules in F if they cannot be applied – therefore we say that these
rules are applied in the appearance checking mode.)

The language generated by G is defined by L(G) = {w ∈ T ∗ | S =⇒∗ w}.
The family of languages of this form is denoted by MATac.

It is known that matrix grammars with appearance checking generate the
family RE of recursively enumerable languages.

A matrix grammar G = (N,T, S,M,F) is said to be in the binary normal
form if N = N1 ∪N2 ∪ {S,#}, with these three sets mutually disjoint, and the
matrices in M are in one of the following forms:

1. (S → XA), with X ∈ N1, A ∈ N2,
2. (X → Y,A→ x), with X,Y ∈ N1, A ∈ N2, x ∈ (N2 ∪ T)∗, |x| ≤ 2,
3. (X → Y,A→ #), with X,Y ∈ N1, A ∈ N2,
4. (X → λ,A→ x), with X ∈ N1, A ∈ N2, and x ∈ T ∗, |x| ≤ 2.

Moreover, there is only one matrix of type 1 and F consists exactly of all rules
A → # appearing in matrices of type 3; # is a trap-symbol, because once
introduced, it is never removed. A matrix of type 4 is used only once, in the last
step of a derivation.

According to Lemma 1.3.7 in [Dassow and Păun, 1989], for each matrix
grammar there is an equivalent matrix grammar in the binary normal form.

We are now ready to give our first result: as announced above, the (general-
ized) symport rules suffice.

Theorem 1. NPP2(sym5, anti0) = NRE.

321Martin-Vide C., Paun A., Paun G.: On the Power of P Systems with Symport Rules

Proof. We only prove the inclusion NRE ⊆ NPP2(sym5, anti0), the opposite
one being straightforward.

Because RE = MATac, it follows that each set from NRE is the length set
of a language from MATac; moreover, we can consider a language in MATac

over the one-letter alphabet. Thus, let us start from a matrix grammar with
appearance checking G = (N, {a}, S,M, F) in the binary normal form, hence
with N = N1 ∪N2 ∪ {S,#}, and with the matrices of the four types mentioned
above. Assume that we have n matrices in total, k of types 2 and 4, hence
of the form mi : (X → α1, A → α2α3), for some X ∈ N1, α1 ∈ N1 ∪ {λ},
A ∈ N2, and α2, α3 ∈ N2 ∪ {a, λ}, and the others of type 3, hence of the form
mi : (X → Y,A → #), for some X,Y ∈ N1, and A ∈ N2. Let us denote by
(S → X0A0) the initial matrix of G.

We construct the following P system (of degree 2, using only symport rules)

Π = (V, [
1
[
2
]
2
]
1
, w1, λ,Me, R1, R2, 2),

V = N1 ∪N2 ∪ {di | 1 ≤ i ≤ n} ∪ {gi | k + 1 ≤ i ≤ n}
∪ {a, b, b′, c, e, f, g, h},

w1 = X0A0bced1d2 . . . dn,

Me = N1 ∪N2 ∪ {a, b′, f, g, h} ∪ {gi | k + 1 ≤ i ≤ n},
R1 = {(cdiXA, out), (cdiα1α2α3, in) |

for mi : (X → α1, A→ α2α3), 1 ≤ i ≤ k,

with X ∈ N1, α1 ∈ N1, A ∈ N2, α2, α3 ∈ N2 ∪ {a, λ}}
∪ {(bc, out), (bb′, in)}
∪ {(cdiXA, out), (diα2α3f, in) | for mi : (X → λ,A→ α2α3),
with X ∈ N1, A ∈ N2, α2, α3 ∈ {a, λ}}

∪ {(cdiX, out), (diY gih, in), (digiAb, out) |
for mi : (X → Y,A→ #), k + 1 ≤ i ≤ n, with X,Y ∈ N1, A ∈ N2}

∪ {(ggi, out) | k + 1 ≤ i ≤ n}
∪ {(eh, out), (ceg, in)},

R2 = {(a, in), (b′, in), (b′, out)}
∪ {(fA, in), (fA, out) | A ∈ N2}.

Assume that in (the region of) membrane 1 we have a multiset corresponding
to a sentential form Xw of G (initially, we have X0A0, for the matrix (S →
X0A0) of G), as well as copies of the symbols b, c, e and d1, . . . , dn. If c does
not exit together with a symbol di, 1 ≤ i ≤ n, by a rule (cdiXA, out) ∈ R1

or (cdiX, out) ∈ R1, then it will be used by the rule (bc, out) ∈ R1 and will
introduce into the system a copy of the trap-object b′, which will pass forever
back and forth through membrane 2, preventing the halting of the computation.
Thus, as long as c is present in the system, we have to continue the computation.

Assume that we use a rule (cdiXA, out) ∈ R1, for some 1 ≤ i ≤ k. If the first
rule of the matrix mi : (X → α1, A→ α2α3) has α1 ∈ N1, then we use the rule
(cdiα1α2α3, in) ∈ R1, and the matrix is correctly simulated. Because we return
to a configuration with the symbols c, di again present in membrane 1, we can
continue.

322 Martin-Vide C., Paun A., Paun G.: On the Power of P Systems with Symport Rules

If the matrix was a terminal one, to be used at the end of a derivation in G,
then we use the rule (diα1α2f, in) ∈ R1, which simulates the matrix, but does
not bring back the symbol c, hence no other matrix can be simulated. Instead,
we introduce into the system a copy of the symbol f , which checks whether or
not any symbol A from N2 is still present in the system. In the affirmative case,
the computation will never end, because of the rules (fA, in), (fA, out), from
R2. Thus, in the moment when the symbol f is introduced into the system the
derivation in G should be terminal.

Assume now that we start by using a rule (cdiX, out) ∈ R1 for some k +
1 ≤ i ≤ n, hence associated with a matrix mi : (X → Y,A → #) with the
second rule to be used in the appearance checking mode. The symbol di returns
to the system by the rule (diY gih, in) ∈ R1, which simulates the use of the
first rule of the matrix, and, at the same time, the auxiliary symbols gi, h are
introduced in the system. Because c is not present, we cannot start the simulation
of another matrix. In the presence of gi, if any copy of A is present, then we
can send it out, together with the symbol b, which brings back the trap-symbol
b′, hence the computation never stops (note that there is only one symbol of
the form gj present in the system, with j = i for i identifying the matrix mi

which is simulated). If no copy of A is present in membrane 1, then the rule
(digiAb, out) ∈ R1 cannot be used, and gi waits in the system. In parallel, the
rule (eh, out) ∈ R1 is used, followed by (ceg, in) ∈ R1, which brings back the
symbols c, e, as well as one copy of g. The multiset contains again the auxiliary
symbols b, c, e and d1, . . . , dn, hence the simulation of matrices from M can be
iterated. (The symbols g and gi present in the system exit immediately, by the
rule (ggi, out) ∈ R1.)

Consequently, a computation in Π stops if and only if it simulates a terminal
derivation in G. All copies of the terminal symbol a are introduced in the output
membrane, hence N(Π) = {m | am ∈ L(G)}, which completes the proof.

We do not know whether or not the previous result can be improved in what
concerns the weight of the symport rules (whether NRE = NPP2(symp, anti0)
holds or doesn’t hold for some p ≤ 4), but we can achieve this goal by paying in
the number of membranes used.

Theorem 2. NPP3(sym4, anti0) = NRE.

Proof. We start again from a matrix grammar G = (N, {a}, S,M, F) in the
binary normal form. Using the same notations as in the proof of the previous
theorem, we construct the P system (of degree 3)

Π = (V, [1[2]2[3]3]1, w1, λ, w3,Me, R1, R2, R3, 2),
V = N1 ∪N2 ∪ {di | 1 ≤ i ≤ n} ∪ {gi | k + 1 ≤ i ≤ n}

∪ {a, b, b′, c, c′, c′′, e, f, g, h, q},
w1 = A0bed1d2 . . . dn,

w3 = X0qcc
′c′′,

Me = N1 ∪N2 ∪ {a, b′, f, g, h} ∪ {gi | k + 1 ≤ i ≤ n},
R1 = {(cdiXA, out), (diY α1α2, in) |

for mi : (X → Y,A→ α1α2), 1 ≤ i ≤ k,

323Martin-Vide C., Paun A., Paun G.: On the Power of P Systems with Symport Rules

with X,Y ∈ N1, A ∈ N2, α1, α2 ∈ N2 ∪ {a, λ}}
∪ {(c, in), (bc, out), (bb′, in)}
∪ {(c′′diXA, out), (diα1α2f, in) | for mi : (X → λ,A→ α1α2),
1 ≤ i ≤ k, with X ∈ N1, A ∈ N2, α1, α2 ∈ {a, λ}}

∪ {(c′diX, out), (diY gih, in), (digiAb, out) |
for mi : (X → Y,A→ #), k + 1 ≤ i ≤ n, with X,Y ∈ N1, A ∈ N2}

∪ {(ggi, out) | k + 1 ≤ i ≤ n}
∪ {(eh, out), (c′eg, in), (q, out)},

R2 = {(a, in), (b′, in), (b′, out)}
∪ {(fA, in), (fA, out) | A ∈ N2},

R3 = {(qc, out), (qc, in), (qc′, out), (qc′, in) (qc′′, out)}
∪ {(X, in), (X, out) | X ∈ N1}.

The difference from the system constructed in the previous proof is that the
simulation of nonterminal matrices mi, 1 ≤ i ≤ k, is done in the presence of
the symbol c, the simulation of terminal matrices is done in the presence of the
symbol c′′, while the simulation of matrices mi, k + 1 ≤ i ≤ n, is done in the
presence of the symbol c′. These symbols are released from membrane 3 (at the
same time with the unique symbol from N1) by means of the symbol q, which
nondeterministically chooses one of them. When c is in the skin membrane,
several matrices without rules to be used in the appearance checking manner
can be simulated, and then the symbol c returns to membrane 3. As long as
any symbol X ∈ N2 is present in the system, the computation should continue,
as we can use the rules (X, in), (X, out) from R3. When a terminal matrix is
simulated, no symbol from N1 is reintroduced and, also, c′′ is not reintroduced
into the system, hence the computation can stop (if the derivation in G was
terminal) by sending out the symbol q. After simulating a matrix having a rule
used in the appearance checking mode, the symbol c′ has to return to membrane
3 (we can simulate two matrices mi, k + 1 ≤ i ≤ n, in a row only if they have
the first rule of the form X → X). We conclude that N(Π) = {m | am ∈ L(G)},
which ends the proof.

The weight of symport rules can be further decreased, but this time we needed
two more membranes (and a different construction):

Theorem 3. NPP5(sym3, anti0) = NRE.

Proof. Let G = (N, {a}, S,M, F) be a matrix grammar with appearance check-
ing in the binary normal form. Assume that M contains k1 matrices of the
form mi : (X → Y, A → α1α2), 1 ≤ i ≤ k1, with X,Y ∈ N1, A ∈ N2, α1, α2 ∈
N2∪{a, λ}, k2 matrices of the formmi : (X → λ,A→ α1α2), k1+1 ≤ i ≤ k1+k2,
with X ∈ N1, A ∈ N2, α1, α2 ∈ {a, λ} (terminal matrices), and k3 matrices of
the form mi : (X → Y,A→ #), k1 + k2 + 1 ≤ i ≤ n, with X,Y ∈ N1, A ∈ N2.

We construct the P system (of degree 5)

Π = (V, µ, w1, . . . , w5,Me, R1, . . . , R5, 5),
V = N1 ∪N2 ∪ {ci, c′i, c′′i , di, d

′
i, d

′′
i | 1 ≤ i ≤ n}

324 Martin-Vide C., Paun A., Paun G.: On the Power of P Systems with Symport Rules

∪ {a, b, b′, f, e},
µ = [1[2[3[4]4]3]2[5]5]1,
w1 = XAb, for (S → XA) being the initial matrix of G,
w2 = c′′1 . . . c

′′
n,

w3 = c′1 . . . c
′
n,

w4 = c1 . . . cnf,

w5 = λ,

Me = N1 ∪N2 ∪ {a, b′, e} ∪ {di, d
′
i, d

′′
i | 1 ≤ i ≤ n},

R1 = {(ciX, out), (c′iA, out), (c′′i , out),
(cidiY, in), (cid′iα1, in), (c′′i d

′′
i α2, in),

(cib, out), (c′ib, out), (dib, out), (d′ib, out), (d
′′
i b, out) |

for all mi : (X → Y,A→ α1α2), 1 ≤ i ≤ k1,

with X,Y ∈ N1, A ∈ N2, α1, α2 ∈ N2 ∪ {a, λ}}
∪ {(bb′, in)}
∪ {(ciX, out), (c′iA, out), (c′′i , out),
(cidie, in), (cid′iα1, in), (c′′i d

′′
i α2, in),

(cib, out), (c′ib, out), (dib, out), (d′ib, out), (d
′′
i b, out) |

for all mi : (X → λ,A→ α1α2), k1 + 1 ≤ i ≤ k1 + k2,

with X ∈ N1, A ∈ N2, α1, α2 ∈ {a, λ}}
∪ {(ciX, out), (cib, out), (c′iA, out), (c′′i , out),
(cidiY, in), (c′ib

′, in), (c′′i d
′′
i d

′
i, in) |

for all mi : (X → Y,A→ #), k1 + k2 + 1 ≤ i ≤ n,

with X,Y ∈ N1, A ∈ N2},
R2 = {(c′i, out), (cic′′i , out), (cidi, in), (c′id

′
i, in), (c

′′
i d

′′
i , in) |

for all 1 ≤ i ≤ n}
∪ {(b′, in), (b′, out)},

R3 = {(cic′i, out), (cidi, in), (c′id
′
i, in) | for all 1 ≤ i ≤ n},

R4 = {(fci, out), (fcidi, in) | for all i ∈ {1, 2, . . . , k1} ∪ {k1 + k2 + 1, . . . , n}}
∪ {(cidi, in) | for all k1 + 1 ≤ i ≤ k1 + k2},

R5 = {(a, in)}
∪ {(eA, in), (eA, out) | A ∈ N2}.
This system works as follows. Nondeterministically, one ci exits membrane

4, together with f ; this latter symbol will wait in membrane 3 until the matrix
mi was simulated. Then, the symbol ci exits membrane 3 together with c′i, and
after that both ci and c′i exit membrane 2, also bringing out of this membrane
the symbol c′′i .

Assume that 1 ≤ i ≤ k1, corresponding to a matrixmi : (X → Y,A→ α1α2),
1 ≤ i ≤ k1, with X,Y ∈ N1, A ∈ N2, α1, α2 ∈ N2 ∪ {a, λ}. By using the
rules (ciX, out), (c′iA, out), (c

′′
i , out), (cidiY, in), (cid′iα1, in), (c′′i d

′′
i α2, in) from

R1 we simulate this matrix. The simulation is correct, as none of ci, c′i may
remain unused: if any of the rules (cib, out), (c′ib, out) is used, then b exits the

325Martin-Vide C., Paun A., Paun G.: On the Power of P Systems with Symport Rules

system and then it brings into the system the trap-symbol b′: by using the rules
(b′, in), (b′, out) from R2 we can continue the computation forever.

We cannot continue by simulating again this matrix, because the symbols
di, d

′
i, d

′′
i should not use any of the rules (dib, out), (d′ib, out), (d

′′
i b, out) ∈ R1.

Thus, all pairs cidi, c
′
id

′
i, c

′′
i d

′′
i will enter membrane 2, then cidi, c

′
id

′
i will enter

membrane 3, and after that cidi enter membrane 4, at the same time with f . In
this way, we have again f in membrane 4, and the simulation of matrices from
M can be continued. (The symbols di, d

′
i, d

′′
i will remain in the corresponding

membranes, unused.) However, when the symbols di, d
′
i, d

′′
i are not in membrane

1, hence the rules (dib, out), (d′ib, out), (d
′′
i b, out) ∈ R1 cannot be used, the sym-

bols ci, c′i, c
′′
i can exit again membranes 4, 3, 2, and the simulation of the same

matrix mi is entailed, which is correct with respect to G.
If we have started with k1 + k2 + 1 ≤ i ≤ n, corresponding to a matrix

mi : (X → Y, A → #), with X,Y ∈ N1, A ∈ N2, then, after bringing ci, c′i, c
′′
i

in the skin membrane, we continue as follows. The rule (ciX, out) ∈ R1 must be
used, otherwise we use (cib, out) ∈ R1 and the computation will never stop. At
the same time c′′i exits. If any copy of A is present, then the rule (c

′
iA, out) ∈ R1

must be used, and at the next step (c′ib
′, in) ∈ R1 brings the trap-symbol in

the system. If no copy of A is present, then c′i waits in the skin membrane. At
the next step, ci brings di and Y into the system, while c′′i brings d

′
i and d

′′
i . In

this way, we have again the pairs cidi, c
′
id

′
i, c

′′
i d

′′
i , which will bring the symbols

ci, c
′
i, c

′′
i in the starting membranes. The matrix mi was correctly simulated. (If

X = Y , then the simulation can be done once again, after removing the symbols
di, d

′
i, d

′′
i from the skin membrane, but this changes nothing.)

The process can be iterated. When we simulate a terminal matrixmi, k1+1 ≤
i ≤ k1 + k2, we introduce the symbol e which will check whether or not any
nonterminal from N2 is still present (in the positive case the computation will
continue forever), while the symbols ci, di, c

′
i, d

′
i, c

′′
i , d

′′
i enter membranes 2 and 3

as above, but only ci, di enter membrane 4, not also the symbol f . In this way,
the computation stops, because f is no longer available in membrane 4.

Thus, N(Π) = {m | am ∈ L(G)} and the proof is complete.

4 What About Antiport Rules?

At the first sight, the antiport rules are a generalization of symport rules, because
each rule (u, out) can be transformed into (u, out; d, in), where d is a dummy
object, and the same for rules (u, in). Actually, this is not true, no system Π
using only antiport rules can compute the number 0, because if 0 ∈ N(Π), then
N(Π) = {0}: if the output membrane is initially empty, then it will remain
forever empty, if it is not initially empty, then it will never become empty.

However, if we consider two sets of numbers equal if they differ at most in
the element 0, then all recursively enumerable sets of numbers can be computed
by P systems using only antiport rules. The proof of this assertion is not trivial,
because we have to start with finite multisets of objects present in the system
and we have to ensure that arbitrarily large multisets can be produced. That
is why we give a proof of the next result, although not dealing directly with
symport rules, the topic of the present paper.

Let us denote NRE′ = {M ∈ N− {0} |M ∈ NRE}.
Theorem 4. NPP3(sym0, anti2) = NRE′.

326 Martin-Vide C., Paun A., Paun G.: On the Power of P Systems with Symport Rules

Proof. The proof is based on the construction from the proof of Theorem 2
from [Păun and Păun, 2002], with an additional care paid to the fact that each
symport rule should be replaced by an antiport rule.

Let G = (N, {a}, S,M, F) be a matrix grammar with appearance checking
in the binary normal form, with N = N1 ∪N2 ∪ {S,#}, and with M containing
matrices mi : (X → α,A→ x), X ∈ N1, α ∈ N1 ∪ {λ}, A ∈ N2, x ∈ (N2 ∪ {a})∗,
for i = 1, . . . , k, and mi : (X → Y,A → #), X, Y ∈ N1, A ∈ N2, for i =
k + 1, . . . , n, for some k ≥ 1, n ≥ k.

We construct the P system with antiport rules

Π = (V, [1[2]2[3]3]1, w1, h
′, g,Me, R1, R2, R3, 2),

V = N1 ∪N2 ∪ {a, c, f, g, h, h′, h′′, F,H,Z}
∪ {ci, c′i, di | 1 ≤ i ≤ n},

w1 = XAch, for (S → XA) being the initial matrix of G,
Me = N1 ∪N2 ∪ {a, f, h, h′, h′′, F,H,Z} ∪ {ci, c′i, di | 1 ≤ i ≤ n},
R1 = {(cX, out; ciY, in), (ciA, out; cc′i, in), (c′i, out;u, in) |

mi : (X → Y,A→ u), 1 ≤ i ≤ k}
∪ {(cX, out; cif, in), (ciA, out; c′i, in), (c′i, out;u, in) |
mi : (X → λ,A→ u), 1 ≤ i ≤ k}

∪ {(cX, out; cidi, in), (diA, out;Y H, in), (ciA, out;Z, in),
(H, out; cF, in), (ciF, out;h′′, in) | mi : (X → Y,A→ #), k + 1 ≤ i ≤ n}

∪ {(h, out;hh, in), (h, out;h′, in)},
R2 = {(h′, out;h′h′, in), (h′, out; a, in), (h′, out;h′, in)},
R3 = {(g, out;α, in), (α, out; g, in) | α ∈ {Z} ∪ {ci, c′i | 1 ≤ i ≤ k}}

∪ {(g, out; fD, in), (fD, out; g, in) | D ∈ N2}.
For the sake of completeness, we discuss some details about the work of this

system, although they are very similar to those from the proof of Theorem 2
from [Păun and Păun, 2002].

The symbols c, ci, c′i control the simulation of matrices mi, 1 ≤ i ≤ k, in the
following way. After using the rule (cX, out; ciY, in) ∈ R1, we have ci in the
system. If the rule (ciA, out; c′ic, in) ∈ R1 cannot be used, then the symbol ci
will go forever back and forth through membrane 3, hence the computation will
never finish. If the rule (ciA, out; c′ic, in) ∈ R1 is used, then at the next step c′i
will exit, bringing into the system the string u, which completes the simulation
of the matrix mi : (X → Y,A→ u).

In the case of terminal matrices, that is, with the first rule of the form
X → λ, we bring the symbols ci, f in the system, ci simulates the second rule of
the matrix, and f checks whether or not the derivation was a terminal one. In
the negative case, the rules (g, out; fD, in), (fD, out; g, in) of R3, for D ∈ N2,
are used forever (the symbol c is no longer present, hence no other rule can be
used).

If we start with a rule of the form (cX, out; cidi, in) ∈ R1, for some k + 1 ≤
i ≤ n, for mi : (X → Y,A → #), then at the next step we have to use the
rule (di, out;Y H, in) ∈ R1. If in the skin membrane there is any copy of A, then
the rule (ciA, out;Z, in) ∈ R1 has to be used, and the computation will never

327Martin-Vide C., Paun A., Paun G.: On the Power of P Systems with Symport Rules

finish, because of the rules (g, out;Z, in), (Z, out; g, in) from R3. If no copy of A
is present, then ci waits in the skin membrane. At the next step, H exits and
brings cF inside. Now, together with F , the symbol ci can leave the system. In
this way, the application of matrix mi was simulated.

Note that in all cases the symbol c is again available, hence the process can
be iterated.

Let us now see how arbitrarily many copies of a can be introduced in mem-
brane 2. Initially, we have one copy of h in membrane 1 and one copy of h′ in
membrane 2. By using the rules (h, out;hh, in), (h, out;h′, in) ∈ R1 any number
of copies of h′ can be introduced in membrane 1. From here, any number of copies
of h′ can be introduced into membrane 2. If all these symbols h′ are exchanged for
copies of a, then no rule (h′, out;x, in) can be used for membrane 2. Thus, if we
introduce exactly m copies of h′ when we want to generate the number m, then
the computation will correctly stop, hence we have N(Π) = {m | am ∈ L(G)},
and this completes the proof.

5 Controls on the Use of Symport Rules

Let us return to the “realistic” symport process, that is, referring to at most
two chemicals/objects. We do not know whether NPP∗(sym2, anti0) is equal to
NRE. However, we can supplement the power of symport rules by using them
in a conditional manner, depending on the content of the membrane where they
are used, and then such an equality holds true.

Specifically, a symport rule with a promoter is of the form (x, in)b or (x, out)b,
where x is a string (representing a multiset of objects) and b is an object. The
meaning is that the multiset represented by x enters or exits, respectively, a
membrane only if b is present in that membrane. We say that we have a permit-
ting context use of the rule.

Dually, the object b can be used as an inhibitor, and the rule is not used in
its presence. We say that the rules are used in the forbidding context mode, but
we do not investigate this case here.

We denote by NPPm(psymp, anti0) the family of sets of numbers gener-
ated by P systems with symport rules (x, in)b, (x, out)b, with |x| ≤ p, used in
the permitting context mode, with at most m membranes. A rule of the form
(x, in), (x, out), hence without any symbol associated with it, is by default con-
sidered as having a permitting condition, and it is applied freely, as in a usual
P system with symport rules.

The use of the symport rules in the conditional manner is rather useful, as
we can decrease the weight of symport rules to two.

Theorem 5. NPP4(psym2, anti0) = NRE.

Proof. Let us consider again a matrix grammar G = (N, {a}, S,M, F) with
appearance checking in the binary normal form, hence withN = N1∪N2∪{S,#},
and with matrices of the four known types. We assume the matrices from M
labeled in a one-to-one manner. Assume that we have n matrices in total, k of
types 2 and 4, hence of the form mi : (X → α1, A → α1α2), for some X ∈ N1,
α1 ∈ N1∪{λ}, A ∈ N2, and α1, α2 ∈ N2∪{a, λ}, and the others of type 3, hence
of the form mi : (X → Y,A→ #), for some X,Y ∈ N1, and A ∈ N2.

328 Martin-Vide C., Paun A., Paun G.: On the Power of P Systems with Symport Rules

We construct the P system (of degree 4) with symport rules

Π = (V, µ, w1, w2, w3, λ,Me, R1, R2, R3, R4, 4),
V = N1 ∪N2 ∪ {ci, di, d

′
i, d

′′
i , d

′′′
i | 1 ≤ i ≤ n}

∪ {div
i | 1 ≤ i ≤ k} ∪ {a, Z, Z ′, f, g, h, q, r},

µ = [1[2[3]3]2[4]4]1,
w1 = XAZr, for (S → XA) being the initial matrix of G,

w2 = d1d
′
1d

′′
1d

′′′
1 d

iv
1 . . . dkd

′
kd

′′
kd

′′′
k d

iv
k dk+1d

′
k+1d

′′
k+1d

′′′
k+1 . . . dnd

′
nd

′′
nd

′′′
n ,

w3 = c1c2 . . . cnfg,

Me = N1 ∪N2 ∪ {a, Z ′, h, q},
R1 = {(diX, out)f , (d′iA, out)f , (d

′′
i , out)f , (d

′′′
i , out)f , (d

iv
i f, out),

(diZ, out)f , (d′iZ, out)f , (diq, in), (d′ih, in), (d
′′
i α1, in),

(d′′′i α2, in), (div
i α3, in) | for mi : (X → α1, A→ α2α3), 1 ≤ i ≤ k,

with X,α1 ∈ N1, A ∈ N2, α2, α3 ∈ N2 ∪ {a, λ}}
∪ {(ZZ ′, in), (r, out)f , (r, in)h, (f, in)r}
∪ {(diX, out)f , (d′iA, out)f , (d

′′
i , out)f ,

(d′′′i , out)f , (d
iv
i f, out), (diZ, out), (d′iZ, out),

(d′′i t, in), (d
′′′
i α2, in), (div

i α3, in) | for mi : (X → λ,A→ α2α3),
1 ≤ i ≤ k, with X ∈ N1, A ∈ N2, α2, α3 ∈ {a, λ}}

∪ {(diX, out)f , (diZ, out), (d′′i , out)f , (d
′′′
i f, out),

(diq, in), (d′′i Y, in), (d
′′′
i h, in) | for mi : (X → Y,A→ #),

with k + 1 ≤ i ≤ n,X, Y ∈ N1, A ∈ N2},
R2 = {(di, out)ci , (d

′
i, out)ci , (d

′′
i , out)ci ,

(d′′′i f, out)ci , (d
iv
i , out)ci , (di, in)q, (d′i, in)q, (d

′′
i , in)q,

(d′′′i , in)q, (d
iv
i , in)q | for mi : (X → α1, A→ α2α3), 1 ≤ i ≤ k,

with X,α1 ∈ N1, A ∈ N2, α2, α3 ∈ N2 ∪ {a, λ}}
∪ {(q, in), (f, in), (h, in)}
∪ {(di, out)ci , (d

′
i, out)ci , (d

′′
i , out)ci , (d

′′′
i f, out)ci , (di, in)q,

(d′i, in)q, (d
′′
i , in)q, (d

′′′
i , in)q, (d

′
iA, in) | for mi : (X → Y,A→ #),

k + 1 ≤ i ≤ n, with X,Y ∈ N1, A ∈ N2},
∪ {(tA, in) | A ∈ N2},

R3 = {(fci, out), (ci, in)g | 1 ≤ i ≤ n}
∪ {(h, in), (q, in), (g, out)f , (f, in)g, (g, in)}
∪ {(tA, in), (tA, out) | A ∈ N2}
∪ {(d′iA, in), (d′iA, out) | for mi : (X → Y,A→ #),
k + 1 ≤ i ≤ n, with X,Y ∈ N1, A ∈ N2},

R4 = {(a, in), (Z ′, in), (Z ′, out)}.
Let us examine the work of this P system, when starting from a multiset

of the form XwZr present in membrane 1, for some w ∈ (N2 ∪ {a})∗ (at the

329Martin-Vide C., Paun A., Paun G.: On the Power of P Systems with Symport Rules

beginning we have w = A, for (S → XA) the initial matrix of G), and with
the multisets w2, w3 in membranes 2 and 3, respectively. All copies of a enter
immediately membrane 4, hence from now on we will ignore this symbol.

The only applicable rules are (g, out)f and one of (fci, out) from R3, for some
i ∈ {1, 2, . . . , n}. This i will determine the simulation of the matrix mi from M .

At the next step, g returns to membrane 3 (and it will remain there, because
f is no longer present in order to allow the use of the rule (g, out)f), and ci makes
possible the exit of all symbols di, d

′
i, d

′′
i , d

′′′
i , d

iv
i , for 1 ≤ i ≤ k, or di, d

′
i, d

′′
i , d

′′′
i ,

for k + 1 ≤ i ≤ n, from membrane 2. Together with d′′′i also f exits membrane
2.

Now, all symbols di, d
′
i, d

′′
i , d

′′′
i , d

iv
i exit membrane 1 (di together with X , d′i

together with A, and div
i together with f ; in the same step, also r exits the

system), and then these symbols return to this membrane together with the
symbols q, h, α1, α2, α3, thus simulating the matrix mi : (X → α1, A → α2α3),
with X,α1 ∈ N1 and A ∈ N2, α2, α3 ∈ N2 ∪ {a, λ}.

Note that if one of the symbols di, d
′
i is not involved in this simulation, then

the corresponding rule (diZ, out), (d′iZ, out) ∈ R1 should be used, and in this
way the symbol Z ′ is brought into the system; the computation will continue
forever by using the rules (Z ′, in), (Z ′, out) from R4. In this way, we ensure the
fact that both rules of the matrix are used.

When returned to membrane 1, the symbols di, d
′
i, d

′′
i , d

′′′
i , d

iv
i cannot exit

again, because the promoter f is not present, but they have to wait until either
f will be here, or q will be present in membrane 2. Actually, this latter event
will happen: q is immediately sent to membrane 2, in the step when h also enters
membrane 2, and r enters membrane 1 (promoted by h). Because q is present,
the symbols di, d

′
i, d

′′
i , d

′′′
i , d

iv
i enter membrane 2, and at the same time f enters

membrane 1, promoted by r. At the next step, f enters membrane 2 and then
membrane 3. In this way, we return to a configuration similar with the one we
have started with, with all control symbols in their initial places, hence we can
start simulating another matrix.

If the matrix was a terminal one, hence with α1 = λ, then q and h are not
introduced into the system, hence also r and f remain outside. Instead, the
symbol t is introduced, which will check whether or not any nonterminal of G
is still present: by (tA, in) ∈ R3, a nonterminal is introduced in membrane 2,
then it will pass forever through membrane 3 by means of rules (tA, in), (tA, out)
from R3.

When the symbol ci sent out of membrane 3 was associated with a matrix
mi : (X → Y, A → #), k + 1 ≤ i ≤ n, with the second rule to be used in the
appearance checking manner, then only the symbols di, d

′
i, d

′′
i , d

′′′
i are sent out

of membrane 2, together with f . At the next step, the symbols di, d
′′
i , d

′′′
i exit

membrane 1, together with X and f , and then return to the system together
with the symbols Y, q, h. At the same time, d′i, remained in membrane 1, either
enters to membrane 2 in the presence of A, if this symbol is present in mem-
brane 1, or it waits. In the former case, the computation will continue forever,
because of the rules (d′iA, in), (d

′
iA, out) from R3. The symbols q, h will help

the symbols di, d
′
i, d

′′
i , d

′′′
i to enter membrane 3 and the symbol f to return to

the system, in the same manner as explained above, when discussing matrices
without appearance checking rules.

In this way, the use of the matrix mi is correctly simulated, and we return to

330 Martin-Vide C., Paun A., Paun G.: On the Power of P Systems with Symport Rules

a configuration of the same form as that we have started with. The simulation
of derivations in G can be iterated.

Therefore, we have N(Π) = {m | am ∈ L(G)}, which completes the proof.
The size of the families NPPm(psym2, anti0), for m ≤ 3, remains to be

investigated (we do not know whether or not the result in Theorem 5 is optimal
in the number of membranes).

6 Final Remarks

The manner of “computing by osmosis”, as done in P systems with symport
and antiport rules, is interesting from many points of view (it has a good bi-
ological motivation, observes the conservation law, is computationally powerful
and mathematically elegant, etc), hence it deserves further research efforts. A
possible continuation of this paper is to consider other controls on the use of
(symport) rules, starting with forbidding contexts, as already mentioned above,
and proceeding with other ideas already investigated in the P system area: con-
trolling the permeability of membranes, using a priority relation, and so on. We
will return to this topic in a forthcoming paper.

References

[Alberts et al., 1998] Alberts, B., et al., “Essential Cell Biology. An Introduction to
the Molecular Biology of the Cell”, Garland Publ. Inc., New York/London
(1998).

[Ardelean, 2002] Ardelean, I.I., “On the relevance of cell membranes for P systems;
General aspects”, Fundamenta Informaticae, 49 (2002), in press.

[Dassow and Păun, 1989] Dassow, J., Păun, Gh., “Regulated Rewriting in Formal Lan-
guage Theory”, Springer, Berlin (1989).

[Martin-Vide et al., 2002] Martin-Vide, C., Păun, Gh., Rozenberg, G., “Membrane
systems with carriers”, Theoretical Computer Sci., to appear.

[Păun, 2000] Păun, Gh., “Computing with membranes”, Journal of Computer and
System Sciences”, 61, 1 (2000), 108–143.

[Păun and Păun, 2002] Păun, A., Păun, Gh., “The power of communication: P systems
with symport/antiport”, New Generation Computers, to appear.

[Păun et al., 2001] Păun, Gh., Perez-Jimenez, M., Sancho-Caparrini, F., “On the
reachability problem for P systems with symport and antiport”, submit-
ted, 2001.

[Rozenberg and Salomaa, 1997] Rozenberg, G., Salomaa, A., eds., “Handbook of For-
mal Languages”, 3 volumes, Springer, Berlin (1997).

331Martin-Vide C., Paun A., Paun G.: On the Power of P Systems with Symport Rules

