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Abstract: We introduce counter synchronized context-free grammars and investigate
their generative power. It turns out that the family of counter synchronized context-free
languages is a proper superset of the family of context-free languages and is strictly
contained in the family of synchronized context-free languages. Moreover, we estab-
lish the space and time complexity of the fixed membership, the general membership,
and the non-emptiness problem for synchronized and counter synchronized context-
free languages and solve the mentioned complexity questions in terms of complete-
ness results for complexity classes. In this way we present new complete problems for
LOG(CF), NP, and PSpace. It is worth to mention that the main theorem on the
PSpace-completeness of the general membership problem of synchronized context-free
grammars relies on a remarkable normal form for these grammars, namely for every
synchronized context-free grammar one can effectively construct and equivalent gram-
mar of same type without non-synchronizing nonterminals, except the axiom.
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1 Introduction

One of the most thoroughly investigated language classes is the family of context-
free languages. However, in the applications of formal language theory, in par-
ticular to natural and programming languages, there are a lot of aspects where
context-free grammars and languages turn out to be not sufficient. For example,
the language of all words of the form ww, where w is an arbitrary word over
some alphabet, is important both in linguistics and in the syntax of program-
ming languages. For an extensive discussion of that item, e.g., see [Dassow and
Păun 1989].
Since context-sensitive grammars, the next level in the Chomsky hierarchy,

are such powerful that they become, in fact, intractable, a series of context-free
grammars with regulated rewriting has been introduced. The aim is to cover non-
context-free languages which are, in principle, needed in the applications, thereby
1 C. S. Calude, K. Salomaa, S. Yu (eds.). Advances and Trends in Automata and
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maintaining as many as possible of the “nice” properties of the context-free
languages. In grammars with regulated rewriting, certain derivations are selected
to be correct whereas the other derivations are ruled out and not contributing
to the language generated.
In [Jürgensen and Salomaa 1997], a new type of such extensions of context-

free grammars was introduced, namely block-synchronized context-free gram-
mars, where the mechanism ruling out some derivations is defined in a quite
natural way. In a derivation, independent sub-derivations, i.e., derivations start-
ing off from different nonterminals in a sentential form, can communicate by
means of so-called synchronizing symbols which may be attached to the nonter-
minals. A derivation is considered to be correct if and only if the sequences of
synchronizing symbols produced along any two paths are in the prefix relation,
i.e., one is a prefix of the other, or, in another synchronization mode, are identi-
cal. The first restriction is referred to as prefix-mode (p-mode) of derivation and
the latter as equality-mode (e-mode) of derivation.
The idea of synchronizing independent branches of a computation is inherited

from several different automata models, e.g., see [Hromkovič, Karhumäki, Rovan,
and Slobodová 1991; Hromkovič, Rovan, and Slobodová 1994; Salomaa 1994].
In [Jürgensen and Salomaa 1997], this concept of synchronization is extended by
allowing the grammar to recursively begin, within a synchronized derivation, a
sub-derivation that has to be synchronized in a similar manner, leading to the
notion of block -synchronized context-free grammars.
In the present paper, we restrict ourselves to the case of synchronized context-

free grammars, where such nesting feature is not taken into consideration. In
the study of synchronized context-free grammars the question arises whether
the generative power of these grammars depend on the number of synchronizing
symbols. It is obvious that a synchronized grammar with an empty set of syn-
chronizing symbols can only generate context-free languages. On the other hand
two synchronizing symbols suffice to generate all synchronized context-free lan-
guages, because the synchronizing symbols of a general synchronized grammar
can be encoded by strings of two synchronizing symbols. Thus, the restricted
variant of counter synchronized context-free grammars is introduced, where, ex-
cept from a possible end marker, only one synchronizing symbol can be attached
to the nonterminals such that different synchronizing sequences are distinguished
only by their lengths, except from a possible appearance or nonappearance of
the end marker. This concept of counter synchronized context-free grammars
appears to be simple, natural and, moreover, has analogues both in automata
theory and in the theory of formal languages. In particular, context-free indexed
counter grammars [Aho 1968] use only one index symbol and a possible end
marker in order to control the derivations of the underlying context-free gram-
mar.
The paper is organized as follows: In the next section we introduce the neces-

sary notions. Then in Section 3 we show that counter synchronized context-free
grammars can be simulated by (a restricted variant) of context-free indexed
counter grammars. As a conclusion, we prove that they are strictly less powerful
as their general counterparts, the synchronized context-free grammars. More-
over, besides presenting a few normal forms, we show that prefix-synchronization
is exactly as powerful as equality-synchronization also in case of counter synchro-
nized context-free grammars. In the next two sections, which are the main part
of the paper, we investigate the complexity status of the fixed and the general
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membership as well as the non-emptiness problem for both synchronized and
counter synchronized context-free grammars. Finally, we summarize our results
and state some open problems.

2 Definitions

The reader is assumed to be familiar with the basic notions of formal language
theory, in particular with context-free grammars, and complexity theory, as con-
tained, e.g., in [Hopcroft and Ullman 1979] and [Balcázar, Dı́az, and Gabarró
1988], respectively. This section aims to fix the notation used throughout this pa-
per. Moreover, the definitions of synchronized and counter synchronized context-
free grammars are given. We mainly follow [Jürgensen and Salomaa 1997].
First, we establish the following general conventions: Let ⊆ denote inclusion,

whereas ⊂ denotes strict inclusion, and |M | is the cardinality of set M . Let Σ
be some alphabet, i.e., a finite non-empty set. The set of all words over Σ is
denoted by Σ∗ and Σ+ = Σ∗ \ {λ}, where λ is the empty word. A word w ∈ Σ∗
is prefix of v ∈ Σ∗, v ≤p w, if there is a word u ∈ Σ∗ such that w = vu. Two
words w1 and w2 are said to be in the prefix relation, in symbols w1 	 w2, if one
word is prefix of the other.
A context-free grammar is a quadruple G = (N,T, I, P ), where N and T are

two disjoint alphabets of nonterminal and terminal symbols, respectively, I ∈ N
is the axiom, and P is a finite set of context-free productions of the form A→ α
with A ∈ N and α ∈ (N ∪ T )∗. A word α ∈ (N ∪ T )∗ directly derives β, α⇒ β,
if and only if α = α1Aα2, β = α1γα2 with α1, α2 ∈ (N ∪ T )∗, and A→ γ in P .
The language generated by G is defined by

L(G) = {w ∈ T ∗ | I ∗⇒ w },

where ∗⇒ is the reflexive and transitive closure of the relation⇒. A language is
said to be context-free if it is generated by some context-free grammar and the
family of all context-free languages is denoted by L(CF).
The derivations of a context-free grammar can be represented as trees where

the nodes are labelled by symbols from (N ∪T ∪{λ}). Such a derivation tree t of
a context-free grammar G = (N,T, I, P ) satisfies the following three conditions:
(1) The root of t is labelled by the axiom I, (2) the leaves of t are labelled by
terminal symbols or by λ, and (3) a node labelled by nonterminal A has exactly k
immediate successors which are labelled, in their natural order from left to right,
by B1, B2, . . . , Bk if and only if (A→ B1B2 . . . Bk) ∈ P with Bi ∈ (N ∪ T ), for
1 ≤ i ≤ k.
We consider the concept of a tree and notions such as root, leaf, path etc. to

be well-known and mention only the following. Let t be a tree the nodes of which
are labelled by symbols of some set S. For some node µ, let patht(µ) denote the
sequence of symbols of S occurring on the path from the root of t to the node µ.
Nodes of a tree t that are not leaves are said to be inner nodes of t, and the
tree which is obtained by cutting off all the leaves is the inner tree of t, denoted
by inner(t). The yield of a labelled tree t, denoted by yd(t), is the string which
results when the labels of the leaves of t are concatenated from left to right (in
the natural order). Here, occurrences of λ are identified with the empty word,
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i.e., they are simply omitted. Then, for a context-free grammar G, we have

L(G) = { yd(t) | t is a derivation tree of G }.
In the following definition we introduce synchronized and counter synchro-

nized context-free grammars.

Definition 1. A synchronized context-free grammar is a five-tuple

G = (V, S, T, I, P ),

such that G′ = (V × (S ∪ {λ}), T, I, P ) forms a context-free grammar. Here V
is the alphabet of base nonterminals and S is the alphabet of synchronizing
symbols. Elements of V ×S are called synchronizing nonterminals, whereas non-
terminals of the form (A, λ) are called non-synchronizing nonterminals.
A synchronized context-free grammar G = (V, S, T, I, P ) is a counter syn-

chronized context-free grammar if and only if S = {f,#} and P satisfies the
condition that (A,#)→ α in P implies α ∈ T ∗, for all A ∈ V . The synchroniz-
ing symbol f is called counter symbol and # is called end marker.

In fact, if G is a counter synchronized context-free grammar, only the leaves
of the inner tree of its derivation trees may be labelled by synchronizing nonter-
minals of the form (A,#), whereas to the other nodes only non-synchronizing
nonterminals or nonterminals with the counter symbol can be assigned. But note
that a leaf of the inner tree may be labelled by an arbitrary nonterminal of the
counter synchronized context-free grammar.
In order to simplify the notation, we usually identify non-synchronizing non-

terminals with the corresponding base nonterminal, i.e., we simply write A in-
stead of (A, λ). Furthermore, we define the morphism

hg : (V × (S ∪ {λ}))∗ → S∗

by the condition hg((A, x)) = x for each A ∈ V and x ∈ S ∪ {λ}.
Before we give the definitions of prefix- and equality-synchronized deriva-

tions of (counter) synchronized context-free grammars, we need to define the
notions of the synchronizing sequence corresponding to a leaf of the inner tree
of a derivation tree and then of p-acceptable and e-acceptable derivations. Since
counter synchronized context-free grammars are particular synchronized context-
free grammars, we give the formal definitions only for the general case, but they
apply to counter synchronized context-free grammars as well.

Definition 2. Let G = (V, S, T, I, P ) be a synchronized context-free grammar
and t be some derivation tree of the underlying context-free grammar G′ =
(V × (S ∪ {λ}), T, I, P ); in the forthcoming, when referring to a derivation tree
of a synchronized grammar we mean the corresponding derivation tree of the
underlying context-free grammar. Denote t1 = inner(t) and let µ be some leaf
of t1.

1. The synchronizing sequence with respect to t1 corresponding to µ is the word

seqt1(µ) = hg(patht1(µ)).
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2. The derivation tree t is referred to as p-acceptable if seqt1(µ) 	 seqt1(ν) for
any couple of leaves (µ, ν) of the inner tree t1.

3. The derivation tree t is referred to as e-acceptable if seqt1(µ) = seqt1(ν) for
any couple of leaves (µ, ν) of the inner tree t1.

A derivation is said to be z-acceptable, for z ∈ {p, e}, if the corresponding deriva-
tion tree is so.

Observe, that in case of counter synchronized context-free grammars the
synchronization sequence seqt1(µ) ∈ f∗ ∪ f∗# for any leaf µ of the inner tree t1
of an arbitrary derivation tree t induced by the grammar under consideration.
Although one may wish to define counter synchronized context-free grammars
without end marker, i.e., only by the restriction |S| = 1, this would be less
sensible. Clearly, under such a definition any derivation would be p-acceptable,
hence those systems would describe exactly the family of context-free languages
L(CF). Furthermore, it is an easy exercise to prove that allowing end markers,
as in the definition given above, does not alter the generative power of counter
synchronized context-free grammars considering e-acceptable derivations, only.
This fact is also seen from the proof of Theorem 8 given in the next section.

Definition 3. Let z ∈ {p, e}. The language generated by the synchronized
context-free grammar G working in z-mode of derivation is the set

Lz(G) = { yd(t) | t is a z-acceptable derivation tree of G }.
A language L is a z-synchronized context-free language (z-counter synchronized
context-free language,respectively) if there exists a synchronized context-free
grammar (a counter synchronized context-free grammar, respectively) G such
that L = Lz(G).

The family of z-synchronized context-free languages, for z ∈ {p, e}, is denoted
by Lz(SCF). Analogously, the family of z-counter synchronized context-free
languages is denoted by Lz(cSCF).
In the remainder of this section we introduce the necessary notions concerning

the theory of computational complexity. We consider the following well-known
sequence of containments: NL ⊆ LOG(CF) ⊆ P ⊆ NP ⊆ PSpace.
Here NL is the set of problems accepted by nondeterministic logarithmic

space bounded Turing machines, and LOG(CF) is the set of languages accepted
by nondeterministic auxiliary pushdown automata with a logarithmic space
bounded work tape in polynomial time. Moreover, P (NP, respectively) is the
set of problems accepted by deterministic (nondeterministic, respectively) poly-
nomially time bounded Turing machines, and PSpace is

⋃
k DSpace(nk). Com-

pleteness and hardness are always meant with respect to deterministic many-one
log-space reducibilities. If A log-space many-one reduces to B we simply write
A ≤log

m B. A problem A is said to be log-space many-one equivalent or as hard
as B, if and only if A reduces to B and B reduces to A.
In this paper we investigate the fixed and general membership problem, as

well as the non-emptiness problem, for counter synchronized and synchronized
context-free languages. The fixed membership problem for (counter) synchronized
context-free languages is defined as follows:
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– Fix a (counter) synchronized context-free grammar G working in z-mode of
derivation, with z ∈ {p, e}. For a given word w, is w ∈ Lz(G)?

A natural generalization is the general membership problem which is defined as
follows:

– Given a (counter) synchronized context-free grammar G working in z-mode
of derivation, with z ∈ {p, e}, and a word w, i.e., an encoding 〈G,w〉, is
w ∈ Lz(G)?

Finally, the non-emptiness problem is defined as:

– Given a (counter) synchronized context-free grammar G working in z-mode
of derivation, with z ∈ {p, e}, is Lz(G) �= ∅?

The general membership and non-emptiness problems have synchronized gram-
mars as inputs. Therefore we need an appropriate coding function 〈·〉 which
maps a grammar G (and a string w) into a word 〈G〉 (word 〈G,w〉) over a fixed
alphabet Σ. We do not go into the details of 〈·〉, but assume it fulfills certain
standard properties; for instance, that the coding of terminal and nonterminal
symbols of the grammar is of logarithmic length.

3 Normal Forms and Inclusion Structure

In this section we prove normal forms for synchronized context-free grammars
and investigate the inclusion structure on synchronized and counter synchronized
context-free language families working in z-mode of derivation, for z ∈ {p, e}.

3.1 Normal Forms

We consider three normal forms, namely the standard normal form, the binary
normal form, and the normal form without non-synchronizing nonterminals (ex-
cept the axiom). All constructions in this subsection are effective and don’t in-
crease the size of the grammars to much, i.e., the constructed grammars remain
polynomial in the size of the originally given grammar.
Let us start our investigations with the easiest normal form, the standard

normal form. A (counter) synchronized context-free grammar G = (V, S, T, I, P )
is in standard normal form, if the right-hand sides of the productions are either
a string of nonterminal symbols or a single terminal symbol. More precisely it is
required that V = V1 ∪ V2 with V1 ∩ V1 = ∅, and

P ⊆ (N1 × (N1 ∪N2)∗) ∪ (N2 × (T ∪ {λ})),
where Ni = Vi × (S ∪ {λ}), for 1 ≤ i ≤ 2. The following lemma shows that
for both counter synchronized and synchronized context-free grammars such a
normal form exists.

Lemma4. Let G = (V, S, T, I, P ) be a (counter) synchronized context-free gram-
mar. Then there exists a (counter) synchronized context-free grammar G′ in
standard normal form with Lz(G′) = Lz(G), for z ∈ {p, e}.
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Proof. We distinguish two cases:

1. If G is an arbitrary synchronized context-free grammar, set V1 = V and
V2 = {Xa | a ∈ T ∪ {λ} }, and replace, for all a ∈ T ∪ {λ}, any occurrence
of a in the rules of P by Xa ∈ V2. The construction of P ′ is completed by
adding the rules Xa → a, for a ∈ T ∪ {λ}.

2. If G is a counter synchronized context-free grammar, define the set V1 =
V ∪{A# | A ∈ V } (the union being disjoint) and V2 = {Xa | a ∈ T ∪{λ} }.
Perform the construction as in the general case, but additionally replace
all occurrences of (A,#) in the productions by A#, for all A ∈ V , and
then replace all productions (which have been obtained by the replacements
described above) of the form A# → Xa1Xa2 . . . Xam with the production
A# → (Xa1 ,#)(Xa2 ,#) . . . (Xam ,#), and add the rules (Xa,#) → a, for
a ∈ T ∪ {λ}. This completes the description of the production set P ′.

Define the synchronized context-free grammar G′ = (V1 ∪ V2, S, T, I, P
′). Obvi-

ously, grammar G′ is in standard normal form and it is straightforward to prove
that Lz(G′) = Lz(G), for z ∈ {p, e}. ��
Next we consider the binary normal form, which is defined as follows: A syn-

chronized context-free grammar G is in binary normal form if grammar G is in
standard normal form and every right-hand side of a nonterminating production
is of length at most two. As in the previous lemma, such a normal form exists
for both counter synchronized and synchronized context-free grammars.

Lemma5. Let G = (V, S, T, I, P ) be a (counter) synchronized context-free gram-
mar. Then there exists a (counter) synchronized context-free grammar G′ in bi-
nary normal form, such that Lz(G′) = Lz(G), for z ∈ {p, e}.
Proof. Let G be in standard normal form. It remains to split up the right-hand
side of every nonterminating production which is of length greater than or equal
to two. Let N denote the set V × (S ∪ {λ}). Then, every nonterminating rule
(A, s) → Y1Y2 . . . Ym in P with m ≥ 3, s ∈ S ∪ {λ}, and Y1Y2 . . . Ym ∈ N+ is
replaced by

(A, s)→ Y1(ZY2...Ym , λ)
(ZY2...Ym , λ)→ Y2(ZY3...Ym , λ)

...
(ZYm−1Ym , λ)→ Ym−1Ym,

where the Z’s are new base nonterminals. Obviously, the constructed (counter)
synchronized grammar G′ is in binary normal form and is equivalent to the
original grammar G, i.e., Lz(G′) = Lz(G), for z ∈ {p, e}. ��
In the remainder of this subsection we show that non-synchronizing nonter-

minals are not essential for synchronized context-free grammars in general. A
synchronized grammar G = (V, S, T, I, P ) is without non-synchronizing nonter-
minals if

P ⊆ ({I} × (N ∪ T )∗) ∪ (N × (N ∪ T )∗),
whereN = V ×S. Loosely speaking, there are no nonterminals of the form (A, λ),
except the axiom.
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Lemma6. Let G = (V, S, T, I, P ) be a synchronized context-free grammar. Then
there exists a synchronized context-free grammar G′ without non-synchronizing
nonterminals, except the axiom, such that Lz(G′) = Lz(G), for z ∈ {p, e}.
Proof. Let G be in standard normal form. We eliminate non-synchronizing non-
terminals, i.e., nonterminals of the form (A, λ), by introducing a new synchro-
nizing symbol $, which serves as a placeholder for λ. In addition the produc-
tions must be enabled to produce an appropriate number of $ symbols along the
branches in order to meat the acceptance condition of synchronized context-free
grammars. In detail, the construction for a synchronized context-free grammar
G = (V , S ∪ {$}, T, I ′, P ) looks as follows: Let
V = V ∪ {As | A ∈ V and s ∈ S ∪ {$} }

∪ { a′ | a ∈ T ∪ {λ} } ∪ {Xa | a ∈ T ∪ {λ} } ∪ {I ′}
(the unions being disjoint) be the new base nonterminal set. In order to estab-
lish P , replace any nonterminating production of P of the form

(A, s)→ Y1Y2 . . . Ym,

where s ∈ S ∪ {λ} and Y1Y2 . . . Ym ∈ (V × (S ∪ {λ}))+, with the production
(A, t)→ Z1Z2 . . . Zm,

where

t =
{
s if s ∈ S
$ otherwise and Zi =

{
(Br, $) if Yi = (B, r) with r ∈ S
(B$, $) if Yi = (B, λ).

Moreover, for all A ∈ V and s ∈ S ∪ {$} add the productions (As, $)→ (As, $)
and (As, $) → (A, s). Finally, any terminating production of P of the form
(A, s) → a, for s ∈ S ∪ {λ} and a ∈ T ∪ {λ}, is replaced with the production
(A, s) → (a′, $) if s ∈ S and (A, $) → (a′, $) if s = λ. To prolong and termi-
nate the derivation accordingly, the rules (a′, $)→ (a′, $), (a′, $)→ (Xa, $), and
(Xa, $) → a for all a ∈ T ∪ {λ} are added. The use of the Xa base nontermi-
nals ensures that the grammar is in standard normal form. Since the original
axiom I is a non-synchronizing nonterminal its occurrence on the left-hand sides
of productions was replaced by (I, $) according to the above given construction.
Thus, we introduce a new axiom I ′ together with the rule I ′ → (I, $) in order to
start the derivation process. This completes the description of the synchronized
context-free grammar G.
We illustrate the idea behind the given construction by the following example.

Let (A, r) → (B, λ)(C, s) be a rule in P with r, s ∈ S. Then by construction,
we obtain the production (A, r) → (B$, $)(Cs, $). Applying this rule introduces
the $ in the synchronizing sequence along the two branches, which can be filled by
further $ symbols using the prolongation rules (B$, $) → (B$, $) and (Cs, $) →
(Cs, $). The insertion of $ symbols in both branches can be stopped by the
productions (B$, $) → (B, $) and (Cs, $) → (C, s). Therefore, it is possible to
insert an arbitrary number of $ symbols in the synchronizing sequences induced
by a tree t of G. This enables us to show that for every tree t of G which is
z-acceptable, for z ∈ {p, e}, there is a corresponding tree t in G and vice versa.
Thus, Lz(G) = Lz(G), for z ∈ {p, e}, holds and the stated result follows. ��
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Combining the normal form conversions of Lemmata 5 and 6 exactly in this
order, we obtain the following corollary.

Corollary 7. Let G = (V, S, T, I, P ) be a synchronized context-free grammar.
Then there exists a synchronized context-free grammar G′ in binary normal form
without non-synchronizing nonterminals, except the axiom, such that Lz(G′) =
Lz(G), for z ∈ {p, e}. ��
Finally, we want to mention that all normal form conversions of this subsec-

tion can be done by a deterministic Turing machine within logarithmic space.

3.2 Inclusion Relations

At first we recall that the family of synchronized context-free languages is the
same in p- and e-mode of derivation. Then we alter this proof accordingly, such
that it works also in case of counter synchronized context-free languages, thus
proving also equivalence of p- and e-derivation mode. Finally, it is shown that
the family of counter synchronized context-free languages is a proper subset of
the family of synchronized context-free languages. To this end, we show how to
simulate a counter synchronized context-free grammar by some sort of indexed
grammar. Thus, the limitation to use only one synchronizing and an end marker
symbol is a real restriction in the generative power of synchronized context-free
grammars.

Theorem 8. Lp(cSCF) = Le(cSCF) and Lp(SCF) = Le(SCF).

Proof. The proof of Lp(SCF) = Le(SCF) has been given in [Jürgensen and
Salomaa 1997]. We only sketch the ideas, adjusting them to the purposes of the
present paper by some very simple modifications, in particular concerning the
size of the constructed grammars.

1. Le(SCF) ⊆ Lp(SCF) (confer [Jürgensen and Salomaa 1997, Lemma 4.1]).
Given a synchronized context-free grammar G = (V, S, T, I, P ), a new syn-
chronizing symbol $ is added to S and, in the rules, every terminal symbol a
is replaced with a corresponding new nonterminal (Xa, $) that can be rewrit-
ten only by the production (Xa, $)→ a. Now, p-acceptable derivations of the
grammar constructed this way simulate exactly the e-acceptable derivations
of G, since, for any two words w1, w2 ∈ S∗, we have w1$ 	 w2$ if and only
if w1 = w2.

2. Lp(SCF) ⊆ Le(SCF) (confer [Jürgensen and Salomaa 1997, Lemma 4.3]).
Let G = (V, S, T, I, P ) be a synchronized context-free grammar working in
p-mode of derivation and let N denote the set (V × (S ∪ {λ}) of all non-
terminals. By Lemma 4 we may assume that G is in standard normal form.
First, for each symbol X ∈ (V ∪ T ), a primed version X ′ is added to the
alphabet of base nonterminals, and the base nonterminal of the axiom is
replaced with its primed counterpart. Then, to each nonterminating produc-
tion (A, s)→ Y1Y2 . . . Ym ∈ P with Y1Y2 . . . Ym ∈ N+, all productions of the
form (A′, s)→ Z1Z2 . . . Zm are associated, where Zi = Yi holds except that
exactly one base nonterminal appearing on the right-hand side is replaced
with its primed version. Thus, in every nonterminal sentential form, exactly
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one (nondeterministically selected) symbol of N is present such that its base
nonterminal is primed.
Now, each terminating production of the form (Xa, s)→ a, for a ∈ T ∪ {λ},
is replaced with the two productions

(X ′
a, s)→ (a′, $) and (Xa, s)→ a′.

Finally, for all a ∈ T ∪ {λ}, s ∈ S, and r ∈ S ∪ {$}, the productions
a′ → (a′, r), (a′, s)→ (a′, r), and (a′, $)→ a are added.
The idea is to guess (by selecting the nonterminals with primed base non-
terminals) the longest path in a derivation tree t and to attach the new syn-
chronizing symbol $ as suffix to the synchronizing sequence corresponding to
that path. Other paths of t can now be prolonged such that the resulting tree
is e-acceptable if and only if t is p-acceptable. For more details, the reader
may consult [Jürgensen and Salomaa 1997].

In both constructions above, a new synchronizing symbol $ is introduced
which is not present in the synchronizing alphabets of the given grammars. In
order to prove the equality for counter synchronized context-free grammars, a
few further modifications are needed such that we can re-use the end marker
of the given grammars for the purpose of $, keeping in mind that the same end
marker may or may not occur as least synchronizing symbol in valid synchro-
nizing sequences.

3. Lp(cSCF) ⊆ Le(cSCF). Let G = (V, {f,#}, T, I, P ) be a counter synchro-
nized context-free grammar in standard normal form. We construct an equiv-
alent counter synchronized context-free grammar G = (V , {f,#}, T, I, P )
such that Le(G) = Lp(G).
For all Xa ∈ V2, add the productions Xa → (Xa, f), Xa → (Xa,#),
(Xa, f)→ (Xa, f), and (Xa, f)→ (Xa,#).
Consider a p-acceptable derivation tree of G and let t1 = inner(t). If there
is no leaf of t1 which is labelled by a nonterminal of the form (A,#), i.e.,
by a nonterminal with the end marker, then t is p-acceptable. Clearly, there
is a corresponding derivation tree of G which is e-acceptable. Now, let µ be
a leaf of t1 labelled by some nonterminal with the end marker. If there is
another leaf µ′ of t1 labelled by a nonterminal with the end marker, then
seqt1(µ) = seqt1(µ

′) has to hold. Therefore, such paths do not need any
further treatment. If there is a leaf ν of t1 with seqt1(ν) = f

k, the path from
the root to ν can be prolonged with nodes labelled by nonterminals with f
or # such that there is a derivation tree t of G with a corresponding path
from the root to a leaf ν of the inner tree t2 of t such that seqt2(ν) = f

n# and
n ≥ k. Clearly, tree t is e-acceptable if and only if, for all such leaves of the
inner tree, n can be chosen such that fk ≤p seqt1(µ). Hence, Le(G) = Lp(G).

4. Le(cSCF) ⊆ Lp(cSCF). For any counter synchronized context-free gram-
mar G = (V, {f,#}, T, I, P ) in standard normal form, we construct an equiv-
alent counter synchronized context-free grammar G = (V , {f,#}, T, I, P )
such that Lp(G) = Le(G).
Set V = V ∪ V ′ ∪ V ′′ ∪ T ′, where the unions are disjoint, and we define
V ′ = {A′ | A ∈ V }, V ′′ = {A′′ | A ∈ V }, and T ′ = { a′ | a ∈ T ∪ {λ} }.
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In order to establish P , replace any nonterminating production of P of the
form

(A, s)→ Y1Y2 . . . Ym,

where s ∈ {f, λ} and Y1Y2 . . . Ym ∈ (V × {f,#, λ})+, with the production
(A, s)→ Z1Z2 . . . Zm,

where

Zi =
{
(B′, r) if Yi = (B, r) with r ∈ {f, λ}
(B′′, f) if Yi = (B,#).

Moreover, for all B ∈ V , add the productions
(B′, f)→ (B, f), (B′, λ)→ (B, λ), and (B′′, f)→ (B,#).

Finally, any terminating production of P of the form (Xa, s) → a with s ∈
{f, λ} and Xa ∈ V2, is replaced with the production

(Xa, s)→ (a′,#),

and the terminating rules
(a′,#)→ a

are added for all a ∈ T ∪ {λ}, whereas terminating productions of P which
are of the form (A,#)→ w with w ∈ T ∪ {λ} are kept in P .
To any derivation tree of G corresponds a unique derivation tree t of G such
that the following holds. Let µ be a leaf of t1 = inner(t) and µ be the corre-
sponding leaf of t2 = inner(t). If seqt1(µ) = f

k, then seqt2(µ) = f
2k#, and

if seqt1(µ) = f
k#, then seqt2(µ) = f

2k+1#. Now, it is an easy exercise to
verify that Lp(G) = Le(G). ��
In each of the four constructions given in the proofs above, the equivalent

(counter) synchronized context-free grammars are effectively constructed and,
moreover, the size of the resulting grammar is polynomial in the size of the
given grammar.
For the next lemma we need the notion of indexed grammars, which was

introduced in [Aho 1968]. A context-free indexed grammar is a five-tuple G =
(N,T, I, P, S), where N , T , and I are the finite pairwise disjoint alphabets of
nonterminals, terminals, and index symbols, respectively, S ∈ N is the start
symbol, and P is a finite set of productions of the form

A→ α or Af → α

with A ∈ N , f ∈ I, and α ∈ (NI∗∪T )∗. An indexed grammarG = (N,T, I, P, S)
is an indexed counter grammar, if and only if I = {f,#} and the productions
in P are of one of the forms

1. S → A# or S → λ, where S does not appear in any other production in P,
2. A→ α or Af → α with A ∈ N , and α ∈ (Nf∗ ∪ T )∗, or
3. A#→ α with A ∈ N and α ∈ (Nf∗# ∪ T )∗.
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Observe, that if G is an indexed counter grammar, the index words in the senten-
tial forms are of the form f i#, for some i ≥ 0. Finally, the indexed grammar G is
called restricted, if N = N1 ∪N2 with N1 ∩N2 = ∅, and P contains productions
of two forms:

1. A→ α with A ∈ N1 and α ∈ (N1I
∗ ∪N2I

∗ ∪ T )∗, or
2. Af → α with A ∈ N2, f ∈ I, and α ∈ (N2I

∗ ∪ T )∗.
The derivation relation for indexed grammars is defined as follows: Let word

α = u1A1γ1u2A2γ2 . . . unBnγnun+1 with ui ∈ T ∗ for 1 ≤ i ≤ n + 1, Aj ∈ N ,
and γj ∈ I∗ for 1 ≤ j ≤ n with n ≥ 0, be an element of (NI∗ ∪ T )∗, and let
δ ∈ I∗, we set

α : δ = u1A1γ1δu2A2γ2δ . . . unBnγnδun+1.

A sentential form α ∈ (NI∗ ∪ T )∗ directly derives β, α ⇒ β, if and only if
α = α1Afδα2 and β = α1(γ : δ)α2 with α1, α2 ∈ (NI∗ ∪ T )∗ and Af → γ in P
with f ∈ I ∪ {λ}.
The language generated by an indexed (counter) grammarG = (N,T, I, P, S)

is the set L(G) = {w ∈ T ∗ | S ∗⇒ w }, where ∗⇒ is the reflexive transitive closure
of the relation⇒. A language L is called an indexed (counter) language if and
only if L = L(G) for some indexed (counter) grammar G. Now we are ready to
state the following lemma.

Lemma9. Let G = (V, S, T, I, P ) be a counter synchronized context-free gram-
mar. Then there exists a context-free restricted indexed counter grammar G′,
such that L(G′) = Lz(G), for z ∈ {p, e}.
Proof. According to Theorem 8, it is sufficient to give the proof for z = p. Let
G = (V, S, T, I, P ) be a counter synchronized context-free grammar working in
p-mode of derivation. Due to the construction used in the proof for Le(cSCF) ⊆
Lp(cSCF), we can assume without loss of generality that, for any p-acceptable
derivation tree t of G, we have seqt1(µ) = f

k#, for k ≥ 0, for all leaves µ of
t1 = inner(t). Moreover, we can assume that G is in standard normal form.
We construct an equivalent context-free restricted indexed counter grammar

G′ = (N,T, J, I, P ′), where N = N1 ∪N2, as follows. Set

N1 = {I ′, I ′′},
where I ′ and I ′′ are new nonterminals,

N2 = (V × (S ∪ {λ})) ∪ {A′ | A ∈ V } ∪ {A′′ | A ∈ V },
and let P ′ is determined as follows.
First, introduce the productions I ′ → I ′′#, I ′′ → I ′′f , and I ′′ → I. Next,

any production
(A, s)→ Y1Y2 . . . Ym

in P with Y1Y2 . . . Ym ∈ (V × (S ∪ {λ}))+ is replaced with
(A, s)→ Z1Z2 . . . Zm,

where

Zi =

{
Yi if Yi is non-synchronizing
B′ if Yi = (B, f)
B′′ if Yi = (B,#).
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Moreover, add the rules B′f → (B, f) and B′′# → (B,#) as well as all termi-
nating productions from P .
With help of the rules replacing I ′ and I ′′, in a beginning phase a synchroniz-

ing sequence is guessed, which is then inherited by all nonterminals introduced
in the next phase. Then, the simulation starts where an index symbol is (locally)
erased whenever a synchronizing symbol is introduced in a derivation according
to G, and termination is allowed at any time during the simulation. This proves
L(G′) = Lp(G). ��
Finally, we conclude that the family of counter synchronized context-free

languages is a strict superset of the family of context-free languages and a proper
subset of the family of synchronized context-free languages.

Theorem 10. L(CF) ⊂ Lz(cSCF) ⊂ Lz(SCF) for z ∈ {p, e}.
Proof. The inclusions are obvious. For the strictness of first inclusion consider
the non-context-free language

L = { a2n | n ≥ 1 },
which is generated by the counter synchronized context-free grammar G =
(V, {f,#}, T, I, P ) with V = {I, A}, T = {a}, and the following set of pro-
ductions:

I → (A, f)
(A, f)→ (A, f)(A, f) | (A,#)
(A,#)→ a,

in either p- or e-mode of derivation.
The strictness of the second inclusion is seen as follows: Let

L = { u$u$uR | u ∈ {a, b}∗ }.
Language L is generated in either e- or p-mode of derivation by the synchronized
context-free grammar G = (V, S, T, I, P ) with V = {I, A,B}, S = {f, g,#},
T = {a, b, $}, and the following set of productions:

I → (A, λ)(B, λ)
(A, λ)→ (A, f) | (A, g) | (A,#)
(A, f)→ a(A, λ)
(A, g)→ b(A, λ)
(A,#)→ $

(B, λ)→ (B, f) | (B, g) | (B,#)
(B, f)→ a(B, λ)a
(B, g)→ b(B, λ)b
(B,#)→ $.

In [Duske, Middendorf, and Parchmann 1992] it was shown that L is not
an indexed counter language. Since by Lemma 9 every counter synchronized
language is also a restricted indexed counter language, we conclude that L is not
a counter synchronized language, too. Thus, the claim follows. ��
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4 Fixed Membership

We consider the fixed membership problem for counter synchronized context-
free and synchronized context-free languages. It turns out that in the former
case we obtain a LOG(CF)-complete problem, while in the latter case it be-
comes intractable, i.e., NP-complete. This shows that restricting the alphabet
of synchronizing symbols to be singleton (except the end marker #) essential re-
duces the fixed membership complexity for synchronized context-free languages.

Theorem 11. The fixed membership problem for counter synchronized context-
free languages working in p- or e-mode of derivation is LOG(CF)-complete.

Proof. Since L(CF) ⊆ Lz(cSCF), for z ∈ {p, e}, it follows that the fixed mem-
bership problem for counter synchronized context-free languages working in p- or
e-mode of derivation is LOG(CF)-hard. Thus it remains to show that the family
of languages under consideration is contained in LOG(CF). In Lemma 9 it was
shown that for every counter synchronized context-free grammar G there exists
a context-free restricted indexed counter grammar G′, such that L(G′) = Lz(G),
for z ∈ {p, e}. Observe, that without loss of generality we may restrict ourselves
to leftmost derivations in indexed grammars [Aho 1968]. Next we give an al-
gorithm on a nondeterministic auxiliary pushdown automaton which solves the
membership problem for context-free (restricted) indexed counter grammars. To
this end, let G′ = (N,T, I, P, S) be a context-free (restricted) indexed counter
grammar, whose productions are in normal form, i.e., the production set contains
only productions of the form

A→ BC | a
A→ Bf

Af → B

A#→ B#

where A,B ∈ N , a ∈ T ∪{λ}, and # denotes the index bottom symbol (see [Aho
1968]).
A nondeterministic auxiliary pushdown automatonM simulates a leftmost

derivation (as in the context-free case) in a top-down manner on the pushdown.
We assume that nonterminal A with index string fk#, for some k, is stored as
Afk# in the pushdown, where A is on top of the pushdown. In the initial config-
uration nonterminal S is stored in the pushdown. Then M starts the simulation
by guessing a productions. Productions of the form A→ a, A→ Bf , Af → B,
and A# → B# can be directly applied to the sentential form stored in the
pushdown; observe, that simulating A → a results in popping A and removing
the index string associated with nonterminal A from the pushdown. A problem
arises whenever a production of the form A→ BC is guessed and should be ap-
plied, because the index string of A must be passed to B and C simultaneously.
The machine overcomes this situation as follows: Symbol A is popped and the
number of consecutive f ’s on the pushdown is counted with a binary counter
implemented on the auxiliary work-tape. Then it is no problem for M to re-
construct the original index string of A for both nonterminals B and C, and to
push the word Bfk#Cfk# if the index string of A was exactly fk#. The au-
tomatonM accepts the input if and only if the whole input was read and the
pushdown’s bottom symbol is popped.
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In [Duske, Middendorf, and Parchmann 1992] it was shown that for every
indexed counter grammar G′, there exists a constant c, such that

maxind(w) ≤ c ·max{1, |w|}
for all words w that belong to L(G′), where

maxind(w) := min{maxind(tw) | tw is a derivation tree of w }
and

maxind(tw) := max{ k | Afk# is a label of a node in tw }.
Therefore, M ’s work-tape is logarithmically space bounded by the above given
upper bound on maxind, and the polynomial time bound immediately follows
form the top-down simulation. Therefore, the stated claim on the LOG(CF)-
completeness of the fixed membership problem on counter synchronized context-
free languages follows. ��
In the remainder of this section we prove that for synchronized context-free

languages the membership problem becomes intractable. We want to mention
that the below given proof is similar to the proof of the NP-completeness of
the fixed membership problem for ET0L (extended tabled 0L) languages, given
in [van Leeuwen 1975].

Theorem 12. The fixed membership problem for synchronized context-free lan-
guages working in p- or e-mode of derivation is NP-complete.

Proof. Since the family of synchronized context-free languages is a subset of
the NP-complete family of context-free indexed languages it immediately fol-
lows that NP is also an upper bound for the fixed membership problem for
the family of languages under consideration. It remains to prove NP-hardness.
To this end we reduce the NP-complete satisfiability problem for Boolean for-
mulas in conjunctive normal form (SAT) to the fixed membership problem for
synchronized context-free languages.
Let ϕ = C1 ∧ · · · ∧ Cm be an instance of SAT consisting of m clauses and n

variables. Each clause Ci, for 1 ≤ i ≤ m is a disjunction of a literal xj or its
negation x̄j , for 1 ≤ j ≤ n. A clause Ci, with 1 ≤ i ≤ m, is encoded by a word
code(Ci) of length n in the following way: The jth letter, with 1 ≤ j ≤ n, of
code(Ci) is (i) 0, if variable xj is not contained in the clause Ci, (ii) 1, if literal xj

is contained in Ci, and (iii) 2, if literal x̄j is contained in Ci. The coding of clauses
naturally extends to the coding of Boolean formulas, by defining the coding of
ϕ = C1 ∧ · · · ∧ Cm as

code(C1)#code(C2)# . . .#code(Cm)#.

Now the idea is to construct a synchronized context-free grammar which
generates all satisfiable Boolean formulas in conjunctive normal form. To this
end define the synchronized context-free grammar G = (V, S, T, I, P ), with base
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nonterminal set V = {I, F, T}, alphabet of synchronizing symbols S = {0, 1, f},
terminals T = {0, 1, 2,#}, and P = P1 ∪ P2 ∪ P3, where

P1 = {I → (F, λ)I, I → (F, λ)},
P2 = {(F, λ)→ (F, 0), (F, λ)→ (F, 1)}

∪ {(F, 0)→ 0(F, λ), (F, 0)→ 1(F, λ), (F, 0)→ 2(T, λ)}
∪ {(F, 1)→ 0(F, λ), (F, 1)→ 1(T, λ), (F, 1)→ 2(F, λ)}

and
P3 = {(T, λ)→ (T, 0), (T, λ)→ (T, 1)} ∪ {(T, λ)→ (T, f)}

∪ {(T, 0)→ 0(T, λ), (T, 0)→ 1(T, λ), (T, 0)→ 2(T, λ)}
∪ {(T, 1)→ 0(T, λ), (T, 1)→ 1(T, λ), (T, 1)→ 2(T, λ)}
∪ {(T, f)→ #}.

This completes the description of the synchronized context-free grammar.
To start the derivation process one uses rules from P1 leading to

I ⇒∗ (F, λ) . . . (F, λ),

where the non-synchronizing nonterminal F appears at least once, and is respon-
sible for producing the coding of a satisfiable clause. A single letter 0, 1, or 2 of a
clause coding is produced either by rules from P2 or P3 in a two step process, first
guessing an assignment, which is stored in the synchronizing sequence, and then
to partially evaluate the clause from left to right up to the considered variable.
Whether a clause is false or true is simply stored in the nonterminal F or T ,
and the derivation process, which produces a clause coding, can only terminate
if the clause under consideration is already true. Each clause coding is produced
independently of each other, but in the {0, 1}∗f synchronizing sequence of the
right-linear subtree rooted at the appropriate nonterminal F from above, an
assignment to the Boolean variables will be stored. Then the synchronization
mechanism of the grammar ensures that all these stored assignments have to be
equal, and thus all clauses are evaluated over the same assignment. Therefore,
the coding of a Boolean formula in conjunctive normal form is satisfiable if and
only if its coding belongs to Lz(G), for z ∈ {p, e}.
To make the work of the grammar clearer consider the Boolean formula

ϕ = (x1 ∨ x̄3 ∨ x4) ∧ x2. Clause C1 = x1 ∨ x̄3 ∨ x4 is coded as code(C1) = 1021
since the number of overall variables is 4, and code(C2) = 0100 because C2 = x2.
Thus, the coding of the Boolean formula reads as 1021#0100#. Next consider
clause C1 in more detail. The rules from P2 and P3 act on a sentential form
(F, λ) producing the terminal string 1021# as follows:

(F, λ)⇒ (F, 0)⇒ 1(F, λ)⇒ 1(F, 1)⇒ 10(F, λ)⇒ 10(F, 0)
⇒ 102(T, λ)⇒ 102(T, 0)⇒ 1021(T, λ)⇒ 1021(T, f)⇒ 1021#.

Observe, that the synchronizing sequence equals 0100f , which tells us that vari-
able x1 was set to false, variable x2 to true, variable x3 to false, and variable x4

to false, too. Therefore,

I ⇒ (F, λ)I ∗⇒ 1021#I ⇒ 1021#(F, λ)
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holds, where the subtree whose yield equals 1021# induces the synchronizing
sequence 0100f . This synchronizing sequence must be the same for all root-
to-leaf paths, and hence also for the subtree which is responsible for the second
clause C2 = x2. Therefore, clause C2 is also evaluated under the same assignment
to the variables as listed above, and a sample derivation starting at (F, λ) looks
as

(F, λ)⇒ (F, 0)⇒ 0(F, λ)⇒ 0(F, 1)⇒ 01(T, λ)
⇒ 01(T, 0)⇒ 010(T, λ)⇒ 010(T, 0)⇒ 0100(T, λ)⇒ 0100(T, f)⇒ 0100#.

Thus,
I ⇒ (F, λ)I ∗⇒ 1021#I ⇒ 1021#(F, λ) ∗⇒ 1021#0100#

is a z-acceptable derivation, for z ∈ {p, e}. Since 1021#0100# is the coding of
the Boolean formula ϕ, it is shown that ϕ is satisfiable.
The given construction shows that the fixed membership problem for syn-

chronized context-free languages in p- and e-mode of derivation isNP-complete.
��

5 General Membership and Non-emptiness

In this section we consider the computational complexity of the general mem-
bership and non-emptiness problem for counter synchronized context-free and
synchronized context-free languages. For ordinary context-free languages it is
well-known that general membership and non-emptiness is computational equiv-
alent. The next lemma shows that for the language families under consideration
we find the same situation. Since the result follows by standard arguments as in
the case of context-free languages we omit the straight-forward proof.

Lemma13. For synchronized context-free languages working in p-mode (e-mode,
respectively) of derivation the general membership problem is logspace many-one
equivalent to the non-emptiness problem. The statement remains valid for the
family of counter synchronized context-free languages. ��
The next two lemmata show that the non-emptiness problems for counter

synchronized context-free and synchronized context-free grammars are some-
how related to the non-emptiness problems for one-way alternating finite au-
tomata. An one-way alternating finite automaton [Chandra, Kozen, and Stock-
meyer 1981; Chandra and Stockmeyer 1976; Kozen 1976] is a quintuple A =
(Q,Σ, q0, δ, F ), where Q is a finite set of states, Σ is a finite input alphabet,
q0 ∈ Q is the initial state, F ⊆ Q are the accepting states, and δ : Q×Σ → 22

Q

is the transition function. Here 2Q denotes the power set of Q. If for example,
δ(q, a) = {{q1, q2}, {q2}}, for some q ∈ Q and a ∈ Σ, it is to be thought of
as the Boolean formula δ(q, a) = (q1 ∨ q2) ∧ q2. As the input is read (from left
to right), the automaton “builds” a propositional formula, and on reading an
input a, replaces every q ∈ Q in the formula by δ(q, a). The input w is accepted
if and only if the formula that is built up by starting from q0 and reading the
whole input w is true on substituting true for q if q ∈ F , and false otherwise.
Observe, that the propositional formula that is built up by the automaton is
constructed in a top-down and evaluated in a bottom-up manner.
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For our further investigations we need the non-emptiness problem for alter-
nating finite automata, which is defined as follows:

– Given an alternating finite automaton A, i.e., an encoding 〈A〉, is L(A) �= ∅?
Now we are ready to relate non-emptiness for alternating finite automata with
non-emptiness for synchronized context-free grammars. At first we consider al-
ternating finite automata with singleton input alphabet.

Lemma14. The non-emptiness problem for alternating finite automata with
singleton input alphabet is logspace many-one reducible to the non-emptiness
problem for counter synchronized context-free grammars working z-mode of de-
rivation, with z ∈ {p, e}.
Proof. Let A = (Q, {1}, δ, q0, F ) be an alternating finite automaton. We con-
struct a counter synchronized context-free grammar G = (V, S, T, I, P ), where
V = Q∪ 2Q ∪ {I}, the unions being disjoint, alphabet of synchronizing symbols
S = {f,#}, and terminal set T = {1} such that Lz(G) �= ∅, for z ∈ {p, e}, if
and only if L(A) �= ∅. The set of productions P contains the following rules: To
start the derivation

I → (q0, λ).

is used. Moreover, for every p ∈ Q with δ(p, 1) = {Mp,1, . . . ,Mp,np}, where
Mp,i ⊆ Q, for 1 ≤ i ≤ np, the following productions are in P :

(p, λ)→ (Mp,1, f) . . . (Mp,np , f)
and

(Mp,i, f)→ (q, λ) for 1 ≤ i ≤ np and q ∈Mp,i.

These rules simulate a single step of the alternating finite automaton A reading
letter 1. Finally, to terminate the derivation process, for every p ∈ F , the rules

(p, λ)→ (p,#) and (p,#)→ λ

are in P . This completes the description of G.
By induction one verifies that 1n ∈ L(A) if and only if there is a deriva-

tion tree t of G whose yield is λ and every leaf µ of t1 = inner(t) satisfies that
seqt1(µ) = fn#. This shows that L(A) �= ∅ if and only if Lz(G) �= ∅, with
z ∈ {p, e}. Since grammar G can be constructed within logarithmic space from
a suitable description of the alternating finite automaton A, the stated result
follows. ��
Next, we consider alternating finite automata in general, i.e., where the input

alphabet size is not restricted. There we find the following situation.

Lemma15. The non-emptiness problem for synchronized context-free gram-
mars working z-mode of derivation, with z ∈ {p, e} is logspace many-one re-
ducible to the non-emptiness problem for alternating finite automata.
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Proof. Without loss of generality we assume that the given synchronized context-
free grammar G = (V, S, T, I, P ) is in binary normal form without non-synchro-
nizing nonterminals and working in e-mode of derivation. If this is not the case,
we first apply the conversion of p-acceptance to e-acceptance as shown in Theo-
rem 8, followed by the normal form transformation. Since these constructions can
be performed within deterministic logarithmic space as mentioned after Corol-
lary 7 we are left with a synchronized grammar that suits our needs. Observe,
that it is essential in the below given construction that the synchronized context-
free grammar is in normal form without non-synchronizing nonterminals, since
the synchronizing sequence induced by an e-acceptable tree will become the
input of the alternating finite automaton. We construct an alternating finite
automaton A = (Q,Σ, δ, q0, F ), where

Q = { qY | Y ∈ (V × S) } ∪ { pY1 , pY1Y2 | Y1, Y2 ∈ (V × S) } ∪ {q0, qacc, qrej},
input alphabet Σ = S∪{$}, where $ is a new symbol not contained in S, and the
set of accepting states F = {qacc}, such that L(A) �= ∅ if and only if Le(G) �= ∅.
The transition function δ is defined as follows: Since G is in binary normal form
without non-synchronizing nonterminals, all rules with left-hand side I are of
the form I → Y with Y ∈ (V × S) due to the construction as given in the proof
of Theorem 6. Let I → Y1, . . . , I → Ym, for some m, be all productions in P
with left-hand side I. Then we define

δ(q0, $) = {{qY1 , . . . , qYm}}.
Assume that (A, s)→ α1, . . . , (A, s)→ αn, for some n, be all productions in P
with left-hand side (A, s), for A ∈ V and s ∈ S. Because of the binary normal
form αi ∈ (V × S) ∪ (V × S)2 ∪ T ∪ {λ}, for 1 ≤ i ≤ n. We set

δ(q(A,s), s) = {{pα1, . . . , pαn}}
and for 1 ≤ i ≤ n define

δ(pαi , $) =




{{qY1}, {qY2}} if αi = Y1Y2 with Y1Y2 ∈ (V × S)2
{{qY1}} if αi = Y1 with Y1 ∈ (V × S)
{{qacc}} if αi = a for a ∈ T ∪ {λ}.

Finally, for q ∈ {qacc, qrej} and s ∈ S ∪ {$} let
δ(q, s) = {{qrej}}.

This completes the description of the alternating finite automaton A.
The idea behind the given construction is to use alternation to guess a possi-

ble derivation tree, and thus it is quite similar to the ordinary context-free gram-
mar case—the application of a rule corresponds to an existential node while the
check whether all nonterminals in a sentential form may terminate is done by
universal nodes. The verification that the induced synchronizing sequences from
the guessed derivation tree are all equal, is done by the (synchronized) work of
the alternating finite automaton. To make this a little bit clearer, consider the
rules (A, s) → (B, t1)(C, t2) and (A, s)→ (D, t3)(E, t4). Then, by construction,
δ(q(A,s), s$) is expressed by the formula (q(B,t1)∧q(C,t2))∨(q(D,t3)∧q(E,t4)). This
reflects the fact, that nonterminal (A, s) derives a word in G if and only if the
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sentential form (B, t1)(C, t2) or (D, t3)(E, t4) derives a word in G. The senten-
tial form (B, t1)(C, t2) ((D, t3)(E, t4), respectively) derives a word if and only
if (B, t1) ((D, t3), respectively) and (C, t2) ((E, t4), respectively) derive words
in G and the induced synchronizing sequences appropriately fit together. Having
this in mind one can prove the following result.
Let h : S → S ∪ {$} be a homomorphism defined by h(s) = s$ for s ∈ S.

Then, by induction, one verifies that $h(w) ∈ L(A) if and only if there is a
derivation tree t in G whose yield is in T ∗ and for every leaf µ of t1 = inner(t)
satisfying seqt1(µ) = w. This shows that L(A) �= ∅ if and only if Le(G) �= ∅.
Since automaton A can be constructed with logarithmic space from a suitable
description of the synchronized context-free grammar G, the stated result fol-
lows. ��
Finally, we state the main theorem of this section.

Theorem 16. The following problems are PSpace-complete under logarithmic
space many-one reductions:

1. The non-emptiness problems for both counter synchronized context-free and
synchronized context-free grammars.

2. The general membership problems for both counter synchronized context-free
and synchronized context-free grammars.

Proof. 1. In [Jiang and Ravikumar 1991] it was shown that the non-emptiness
problem for alternating finite automata is PSpace-complete under logspace
many-one reductions. Moreover, the problem remains PSpace-complete if
the underlying devices are restricted to have singleton input alphabet [Holzer
1996]. Thus, by Lemmata 14 and 15 it immediately follows that non-empti-
ness for both counter synchronized context-free and synchronized context-
free grammars is PSpace-complete, too.

2. The PSpace-completeness follows from Lemma 13 and the above given re-
sult on the complexity of the non-emptiness problems. ��

6 Conclusions

We have studied the computational complexity of the fixed, the general, and the
non-emptiness problem for counter synchronized and synchronized context-free
languages. Here a counter synchronized context-free grammar is only allowed to
use one synchronizing and an end marker symbol. It is shown that the genera-
tive power of these devices induces a family of languages which lies properly in
between the family of context-free and the family of synchronized context-free
languages. From the computational point of view, the fixed membership problem
for counter synchronized languages is easy, i.e., LOG(CF)-complete, while that
for synchronized context-free languages becomes intractable, i.e., NP-complete.
In the case of the general membership problem we obtain PSpace-completeness
for both, counter synchronized and synchronized context-free grammars in gen-
eral. A similar result holds for the non-emptiness problem of the grammars under
consideration.
There are several directions for future research. One might be to consider

a counter version of block-synchronized context-free grammars and languages
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from the formal language as well as the computational complexity point of view.
Here it is worth to mention, that the membership and non-emptiness prob-
lem is decidable for block-synchronized context-free grammars, while it is an
open problem for strong block-synchronized context-free grammars—we refer
to [Jürgensen and Salomaa 1997]. Counter block-synchronized context-free gram-
mars may be useful to attack this problem, due to the simple structure of the
synchronizing sequences.
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