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Abstract: We consider disjunctive sequences, that is, infinite sequences (ω-words)
having all finite words as infixes. It is shown that the set of all disjunctive sequences
can be described in an easy way using recursive languages and, besides being a set of
measure one, is a residual set in Cantor space.
Moreover, we consider the subword complexity of sequences: here disjunctive sequences
are shown to be sequences of maximal complexity.
Along with disjunctive sequences we consider the set of real numbers having disjunctive
expansions with respect to some bases and to all bases. The latter are called absolutely
disjunctive real numbers. We show that the set of absolutely disjunctive reals is also a
residual set and has representations in terms of recursive languages similar to the ones
in case of disjunctive sequences. To this end we derive some fundamental properties of
the functions translating a base r-expansion of a real α ∈ [0, 1] into α.
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Following Jürgensen, Shyr and Thierrin [Jürgensen et al. 83, Jürgensen and
Thierrin 83] we say that an infinite sequence is disjunctive if it contains any
(finite) word, or, equivalently, if any word appears in the sequence infinitely
many times. “Disjunctivity” is a natural qualitative property; it is weaker, than
the property of “normality” (introduced by Borel; see, for instance, [Calude 94,
Hertling 96]).

In this paper we derive some properties of the set of all disjunctive sequences
(ω-words). Here we focus on the properties in relation to the Chomsky and arith-
metical hierarchies of sets of ω-words (ω-languages) (see [Thomas 90, Staiger 97])
and also on topological and information theoretic properties.

As is well known (see [Oxtoby 71]) a set is large in topological sense if is of
second Baire category, and it is large in measure theoretic sense if it has nonzero
measure. The latter implies also largeness in information theoretic sense.

Using a characterization of the set of disjunctive ω-words by means of so-
called regular ω-languages, that is, ω-languages definable by finite automata, we
show that the set of disjunctive ω-words is large as well in sense of category as
in sense of measure.

Disjunctivity can be carried over to real numbers interpreting an ω-word ξ
as an expansion of the number 0.ξ in a certain positional system. It appears
that, under this interpretation, a property (e.g. disjunctivity, Borel normality
etc.) may depend on the particular base chosen. It was shown in [Cassels 59,

1 C. S. Calude, K. Salomaa, S. Yu (eds.). Advances and Trends in Automata and
Formal Languages. A Collection of Papers in Honour of the 60th Birthday of Helmut
Jürgensen.

2 A preliminary version of this paper appeared as [Staiger 01].
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Schmidt 60] that Borel normality and, implicitly, disjunctivity are not invari-
ant under changes of the base r. For detailed information see [Hertling 96]. In
contrast to the preceding cases, randomness and Kolmogorov complexity of real
numbers, which are defined also via expansions, are base invariant properties
(see [Calude and Jürgensen 94, Hertling and Weihrauch 98, Staiger 99]).

Real numbers disjunctive with respect to all bases are called absolutely dis-
junctive. Utilizing a specific translation technique based on considerations in
[Staiger 99] we prove in a constructive way that the set of absolutely disjunctive
reals is large in the sense of Baire category.

The paper is organized as follows. After presenting the necessary background
on ω-words and ω-languages in Section 1, we derive in recursion theoretic prop-
erties of the ω-language of disjunctive sequences, D. Then, Section 3 is devoted
to topological and information theoretic properties of disjunctive sequences. Her
we show a close relationship between the subword complexity of ω-words and
the entropy of finite-state ω-languages, and we prove that the set D is large with
respect to category and measure.

In the fourth section we turn to the consideration of real numbers. We in-
vestigate in detail topological properties of the canonical mapping νr(ξ) := 0.ξ
describing reals in terms of r-ary expansions. These properties allow us to trans-
late the results of the previous section to the case of real numbers.

The final section, on the one hand, deals with constructive results in base r
to base b conversion yielding a description of the set of absolutely disjunctive
real numbers in terms of recursive languages, and, on the other hand, presents
an example showing that the class of finite-state ω-languages is not invariant
under base conversion.

1 Notation and Preliminaries

By IN = {0, 1, 2, . . .} we denote the set of natural numbers. In order to treat
arbitrary finite alphabets we let Xr := {0, . . . , r − 1} be our alphabet of cardi-
nality #Xr = r, r ∈ IN, r ≥ 2. If there is no danger of confusion we will omit
the subscript and simply write X for alphabets.

By X∗ we denote the set of finite strings (words) on X , including the empty
word e. We consider also the space Xω of infinite sequences (ω-words) over X .
For w ∈ X∗ and η ∈ X∗∪Xω let w ·η be their concatenation. This concatenation
product extends in an obvious way to subsets W ⊆ X∗ and B ⊆ X∗ ∪Xω.

We extend the operations ∗ and ω to arbitrary subsets W ⊆ X∗ in the usual
way :

W ∗ :=
⋃

n∈IN

Wn where W 0 := {e} , and

Wω :=
{
w0 · w1 · · ·wi · . . . : i ∈ IN ∧ wi ∈W \ {e}}

is the set of ω-words in Xω formed by concatenating members of W .
We will refer to subsets of X∗ and Xω as languages or ω-languages, respectively.

By “�” we denote the prefix relation, that is, w � η if and only if there is an η′
such that w·η′ = η, and A(η) := {w : w ∈ X∗∧w � η} and A(B) :=

⋃
η∈B A(B)

are the languages of finite prefixes of η and B, respectively.
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The set of subwords (infixes) of η ∈ X∗ ∪ Xω will be denoted by T(η) :=
{w : w ∈ X∗ ∧ ∃v(vw � η)}.

In the study of ω-languages it is useful to consider Xω as a metric space
(Cantor space) with the following metric.

ρ(η, ξ) = inf {(#X)−|w| : w ❁ η ∧w ❁ ξ} (1)

It is easily verified that ρ is indeed a metric which, in addition it satisfies the
ultrametric inequality.

ρ(ζ, ξ) ≤ max {ρ(ζ, η), ρ(ξ, η)} (2)

Open (in view of Eq. (2) they are simultaneously closed) balls in this space
(Xω, ρ) are the sets w ·Xω. Then open sets in Xω are of the form W ·Xω where
W ⊆ X∗. From this it follows that a subset F ⊆ Xω is closed if and only if
A(ξ) ⊆ A(F ) implies ξ ∈ F .

The closure of a subset F ⊆ Xω in Cantor space, that is, the smallest closed
subset of Xω containing F is denoted by C(F ). One has C(F ) = {ξ : A(ξ) ⊆
A(F )}.

Having defined open and closed sets in Xω, we proceed to the next classes
of the Borel hierarchy (see [Kuratowski 66]):

Fσ is the set of countable unions of closed subsets of Xω,
Gδ is the set of countable intersections of open subsets of Xω.
Fσδ is the set of countable intersections of Fσ-subsets of Xω,
Gδσ is the set of countable unions of Gδ-subsets of Xω, and so on.3

For W ⊆ X∗ the δ-limit of W , W δ, consists of all infinite sequences of Xω

that contain infinitely many prefixes in W ,

W δ = {ξ ∈ Xω : #(A(ξ) ∩W ) =∞}.
For Gδ-sets we have the following characterization via languages (see [Tho-

mas 90, Staiger 97]).

Theorem 1. In Cantor space, a subset F ⊆ Xω is a Gδ-set if and only if there
is a language W ⊆ X∗ such that F = W δ.

The preceding theorem explains also why W δ is called the δ-limit of the language
W .

For B ⊆ X∗ ∪ Xω we define the state B/w of B generated by the word
w ∈ X∗ as B/w = {b : wb ∈ B}. A set B is called finite-state if its set of states
{B/w : w ∈ X∗} is finite.

A finite-state language W ⊆ X∗ is also called regular.4 An ω-language F is
called regular provided there is an n ∈ IN and regular languages Wi, Vi (1 ≤ i ≤
n) such that

F =
n⋃

i=1

WiV
ω
i . (3)

3 Borel classes are also defined for larger countable ordinals than natural numbers,
but since we will not need higher level Borel classes, we refer the interested reader
to some textbook on topology, as e.g. [Kuratowski 66].

4 In fact, regularity of W ⊆ X∗ is usually defined in a different way, but it is well
known that a language W is regular if and only if it is finite state.
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Along with the Cantor spaces (Xω
r , ρ), r ∈ IN, r ≥ 2, we consider the unit

interval [0, 1] with the usual metric. For η ∈ X∗
r ∪ Xω

r we denote by νr(η) :=
0.η the real number with (finite or infinite) base r expansion η. The surjective
mapping νr : Xω

r → [0, 1] is continuous and nearly one-to-one5. In particular, all
mappings νb are one-to-one outside the set of all ultimately periodic ω-words,
Ult := {w · vω : w , v ∈ X ∗

b }.

2 The ω-Language of Disjunctive Sequences

In this section we will present a few simple properties of the ω-language of all
disjunctive sequences over X , D = {ξ : T(ξ) = X∗}. Some of the results in this
section are reported in [Calude et al. 97].

2.1 Basic Properties

From the very definition of disjunctive sequences we obtain

D =
⋂

w∈X∗
X∗wXω . (4)

Our next lemma shows that D is an example of a finite-state ω-language which
is not a regular one.

Lemma2 ([Jürgensen and Thierrin 83]). The ω-language D is finite-state
but not regular.

Proof. Since wξ ∈ D if and only if ξ ∈ D, the ω-language D satisfies D/w = D,
for all w ∈ X∗. Thus D has only a single state. Next, D is nonempty and does not
contain an ultimately periodic sequence wvω . Following Eq. (3) the ω-language
D cannot be regular. ✷

The representation of Eq. (4) verifies that D is a Gδ-set in Cantor space.
Next we are going to show that its topological complexity cannot be decreased.
To this end we quote Theorem 21 from [Staiger 83].

Theorem 3. If F ⊆ Xω is finite-state and simultaneously an Fσ- and a Gδ-set,
then F is regular.

Combining Theorem 3 with Lemma 2 and Eq. (4) we get:

Proposition4. In Cantor space, D is not an Fσ-set.

2.2 Recursion Theoretic Properties of D

We turn our attention to recursion theoretic properties of D. To this end we
introduce the first classes of the arithmetical hierarchy of ω-languages. As usual
we say that an ω-language E ⊆ Xω is Π1-definable provided E is representable
in the form

E = {ξ ∈ Xω : ∀w(w � ξ ⇒ w ∈WE)}, (5)

5 Only real numbers of the form i · r−j , 1 ≤ i < rj have two base r expansions.
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where WE ⊆ X∗ is a recursive language, and we say that an ω-language F ⊆ Xω

is Π2-definable provided F is representable in the form

F = {ξ ∈ Xω : ∀w(w ∈ X∗ → ∃u(u � ξ ∧ (w, u) ∈MF ))}, (6)

where MF is a recursive subset of X∗ ×X∗.
It is well-known that in Cantor space, Π1-definable ω-languages are closed

sets and Π2-definable ω-languages are Gδ-sets.

Lemma5. The ω-language of all disjunctive sequences D is Π2-definable.

Proof. We have D = {ξ ∈ Xω : ∀w∃v(vw � ξ)}. So it suffices to put MD =
{(w, vw) : w, v ∈ X∗} in Eq. (6). ✷

In [Staiger 97], Lemma 2.12, it is shown that an ω-language F ⊆ Xω is Π2-
definable if and only if there is a recursive language W ⊆ X∗ such that F = W δ.
In case of D we construct WD explicitly.

Proposition6. Let

WD = {wx : w ∈ X∗ ∧ x ∈ X ∧ ∃n(n ≤ |w|+ 1 ∧T(wx) ⊇ Xn ∧T(w) �⊇ Xn)}.
Then WD is a recursive language and D = W δ

D.

Proof. It is obvious that WD is recursive. Let ξ be a sequence such that T(ξ) =
X∗. Then for every n ≥ 1 there is a shortest prefix wn � ξ such that T(wn) ⊇
Xn. Thus {wn : n ≥ 1} is an infinite subset of WD. The converse implication
follows from the observation that if u, v ∈ WD and u ❁ v, then Xm ⊆ T(u)
implies Xm ⊆ T(v), and there is an n ∈ IN satisfying T(u) �⊇ Xn ⊆ T(v).✷

3 Complexity and Density

In this section we relate disjunctivity to an information theoretic size measure
called entropy and to (topological) density in Cantor space.

3.1 Density and Baire Category

We first introduce the concept of topological density and Baire category for
complete metric spaces (X , ρ) such as the Cantor space Xω or the unit interval
[0, 1].

A subset M ⊆ X is called dense in X provided its closure cl(M) is the whole
space X . A set M ⊆ X is nowhere dense in provided its closure cl(M) does not
contain a nonempty open subset.

As for any nonempty open subset O ⊆ X such that O �⊆ cl(M2) the inclusion
cl(M1) ∪ cl(M2) = cl(M1 ∪ M2) ⊇ O implies cl(M1) ⊇ O \ cl(M2), where
O \ cl(M2) �= ∅ is open, the family of nowhere dense sets is closed under finite
union.

A set M is of first Baire category iff it is a countable union of nowhere dense
sets, otherwise it is of second Baire category. The complements of sets of first
Baire category are called residual.

It holds the Baire category theorem.
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Theorem 7 (Baire category theorem). If a subset M of (X , ρ) is of first
category then X \M is dense.

This theorem has several consequences (see [Kuratowski 66, Oxtoby 71]).

Property 1 If O is a nonempty open subset of (X , ρ) and M ⊆ X is of first
category then

cl(O \M) ⊇ O . (7)

Particular properties hold also for Gδ-sets.

Property 2 1. A Gδ-set M ⊆ X of first Baire category is already nowhere
dense.

2. A subset M ⊆ X is residual iff it contains a dense Gδ-set.

3.2 Subword Complexity

Next we investigate a concept of complexity of infinite sequences ξ which is
intimately related to disjunctive ω-words. This concept is based solely on the
sets of subwords T(ξ). It turns out that the subword complexity τ(ξ) of a word
ξ ∈ Xω is also closely related to the entropy and density of the ω-languages
containing ξ.

For a language W ⊆ X∗ let

sW (n) = #W ∩Xn

be its structure function (cf. [Kuich 70]), and

HW = lim sup
n→∞

log# X(1 + sW (n))
n

be its entropy. Define sF = sA(F ) and HF = HA(F ), for F ⊆ Xω.
The entropy of languages is monotone with respect to “⊆”. Moreover, it has

the following properties.

HW∪V = HW ·V = max {HW ,HV } whenever W · V �= ∅ , (8)
HW/w ≤ HW , and (9)
HC(F ) = HF . (10)

We call τ(ξ) = HT(ξ) the subword complexity of the word ξ ∈ Xω. From the
obvious relation # (T(ξ) ∩Xn+m) ≤ #(T(ξ) ∩Xn) ·#(T(ξ) ∩Xm) we obtain
the following property of τ(ξ).

τ(ξ) = lim
n→∞

log# X sT(ξ)(n)
n

= inf
{ log# X sT(ξ)(n)

n
: n ∈ IN ∧ n ≥ 1

}
(11)

The subword complexity of an ω-word ξ is closely connected to the entropy of
finite-state ω-languages containing ξ.

Proposition8. Let F be a finite-state ω-language. Then τ(ξ) ≤ HF , for every
ξ ∈ F .
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Proof. Since
⋃

w∈A(F ) F/w is a finite union and T(ξ) =
⋃

w�ξ A({ξ}/w) ⊆⋃
w∈A(F ) F/w for ξ ∈ F , in view of Eqs. (8) and (9) we have τ(ξ) ≤ max

w∈A(F )
HF/w.

The assertion follows from HF/w ≤ HF . ✷

Consequently, if ξ ∈ F , HF < 1 and F is finite-state then ξ is not disjunctive.
We are going to prove that the converse is also true.

Theorem 9. An ω-word ξ ∈ Xω is disjunctive iff ξ ∈ F implies HF = 1 for
every finite-state ω-language F ⊆ Xω

Proof. One direction is explained above. Let τ(ξ) < 1. Then there is a word
w /∈ T(ξ). Consequently, ξ ∈ Xω \ X∗ · w · Xω ⊆ (X |w| \ {w})ω. Now the

assertion follows from H(X|w|\{w})ω = log# X (# X|w|−1)

# X|w| < 1. ✷

3.3 Entropy and Density in Xω

The final part of this section brings together all three introduced concepts, den-
sity, entropy and subword complexity.

We start with special properties of ω-languages nowhere dense in Xω. Here,
in particular, a nowhere dense set contains no subset of the form wXω . This
condition can be reformulated as follows.

Property 3 A set F ⊆ Xω is nowhere dense if and only if for every w ∈ X∗
there is a vw ∈ X∗ such that wvwX

ω ∩ F = ∅.
Remark 1 If the ω-language F ⊆ Xω satisfies the condition ∀w(F/w⊆F ) then,
apparently, we may choose all words vw to coincide with v := ve.

For finite-state ω-languages we obtain the following connection between entropy
an density.

Lemma10 ([Staiger 85]). A finite-state ω-language F ⊆Xω is nowhere dense
iff HF < 1.

Proof. Clearly, as HwXω = 1, Eq. (10) shows that HF = 1 if F is not nowhere
dense.

Conversely, let F be nowhere dense and finite-state. Then all states F/w and
also F ′ :=

⋃
w∈X∗ F/w (as a finite union of nowhere dense sets) are nowhere

dense. Since F ′ ⊇ F ′/w is satisfied for all w ∈ X∗, according to Remark 1 there
is a word v ∈ X∗ such that F ⊆ F ′ ⊆ Xω \X∗vXω ⊆ (X |v| \ {v})ω. Now, as in
the proof of Theorem 9 one obtains HF < 1.✷

The final theorem of this section summarizes properties relating (topological)
density, entropy and disjunctivity. For a more detailed exposition see [Staiger 98].

Theorem 11. Let F ⊆ Xω be closed and finite-state. Then the following prop-
erties are equivalent.

1. HF < 1
2. F is nowhere dense.
3. τ(ξ) < 1 for all ξ ∈ F .
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Proof. The equivalence of 1 and 2 is Lemma 10, and Proposition 8 shows that 1
implies 3.

In order to prove that 3 implies 2, we observe that in view of Property 2 a
closed set is nowhere dense iff it is of first Baire category. Then this implication
is a part of Theorem 3 in [Staiger 98]. ✷

Our theorem shows that Xω \ D is the union of all finite-state nowhere
dense ω-languages6. Utilizing Eq. (4) and the proof of Theorem 9 we obtain
the following representation of D in terms of special regular nowhere dense ω-
languages.

Xω \D =
⋃

w∈X∗
(Xω \X∗wXω) =

⋃
w∈X∗

(X |w| \ {w})ω . (12)

3.4 Measure

We add a short consideration of the measure of D. The representation of Eq. (12)
yields the following short proof that D has measure one for all non-vanishing
product measures, thus establishing that D is also a large set in sense of measure.

Here, as usual, we refer to a measure µ on Xω as a non-vanishing product
measure derived from a measure µ : X → (0, 1), where

∑
a∈X µ(a) = 1, provided

µ(waXω) = µ(a) · µ(wXω) for all w ∈ X∗ and a ∈ X . We obtain immediately

µ((X |w| \ {w})ω) = 0 (13)

for all non-vanishing product measures. This yields the announced result via
Eq (12)

Lemma12. Let µ be a non-vanishing product measure on Xω. Then µ(D) = 1.

4 Disjunctive Real Numbers

So far we considered only disjunctive ω-words. In this section we consider the
real numbers which have in a positional system a notation which is disjunctive.
In particular, we are interested in the set of absolutely disjunctive reals,

From the considerations in the preceding sections we know that for a partic-
ular base r the set of disjunctive ω-words Dr is residual, moreover, its comple-
ment Xrω \Dr is the countable union of all (closed) nowhere dense finite-state
ω-languages.

We translate these results by the natural interpretation of ω-words in Xω
r as

the r-ary positional notation of real numbers to the unit interval [0, 1]. As a result
we obtain that the set D of real numbers having disjunctive expansions with re-
spect to all bases b ∈ IN, b ≥ 2 is also a large set in the sense of category, although
its complement has not the nice characterization as developed in Eq. (12) for Dr.
Similar results were obtained in [Calude and Zamfirescu 95, Calude et al. 97]
but without using the results on disjunctive ω-words and the translation results
derived below.
6 Since the closure of a nowhere dense ω-language F , C(F ), is again nowhere dense,
we can drop the requirement “closed”.

355Staiger L.: How Large is the Set of Disjunctive Sequences



4.1 ω-Words as Expansions of Real Numbers

First we investigate in more detail some fundamental properties of the mapping
νr : Xω

r → [0, 1]. A simple property is

|νr(ξ)− νr(η)| ≤ ρ(ξ, η) (14)

Thus νr is a continuous mapping. Since the spaces Xω
r and [0, 1] are compact,

we have also the following.

Property 4 The mapping νr satisfies the identity

νr(C (F )) = cl(νr (F )) , (15)

where F ⊆ Xω
r and cl(M ) denotes the closure of the set M ⊆ [0, 1].

Next, consider the ambiguity set of νr, Aνr := {ξ : ∃η(η �= ξ ∧ νr(ξ) = νr(η))}.
It holds

Lemma13. Aνr is of first Baire category.

Another property deals with the images of balls wXω in Xω. To this end let I(F )
be the interior (largest open subset) of F ⊆ Xω and let int(M) be the interior of
M ⊆ [0, 1]. Here the identity cl(int(νr(wXω))) = νr(wXω) is obvious. Moreover,
we have the following.

Lemma14. If F ⊆ Xω
r then νr(I(F )) ⊆ cl(int(νr(F ))).

Proof. We have I(F ) = W · Xω
r for W := {w : wXω

r ⊆ F}. Then νr(I(F )) =
νr

( ⋃
w∈W wXω

r

)
=

⋃
w∈W νr(wXω

r ), whence, in view of cl(int(νr(wXω
r ))) =

νr(wXω
r ), the inclusion

νr(I(F )) =
( ⋃

w∈W

cl(int(νr(wXω
r )))

) ⊆ cl
(
int

(
νr

( ⋃
w∈W

wXω
r

))) ⊆ cl(int(F )))

follows. ✷

It should be mentioned that Property 4, Lemma 13 and Lemma 14 hold like-
wise for the d-dimensional version of νr mapping the space (Xr × · · · ×Xr︸ ︷︷ ︸

d times

)ω to

the d-dimensional unit cube [0, 1]d considered in [Jürgensen and Staiger 01].
Observe that for w ∈ (Xr × · · · ×Xr︸ ︷︷ ︸

d times

)∗ the set νr(w · (Xr × · · · ×Xr︸ ︷︷ ︸
d times

)ω) is

a so-called mesh cube in an r−|w|-coordinate mesh of the unit cube [0, 1]d (see
Section 3.1 in [Falconer 90]). An r−|w|-coordinate mesh in the unit interval is
simply the collection of all intervals νr(wXω

r ) where |w| = n. These observations
will turn out to be useful in Section 5.2.
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4.2 Translation Results for General Metric Spaces

Next, we consider the relative density of a subset F ⊆ Xω
r or M ⊆ [0, 1]. Our

aim is to show that F and νr(F ) are either both nowhere dense or both not. In
contrast to the preliminary version [Staiger 01] we are going to show this in the
more general context of complete metric spaces (X , ρ).

To this end let f : (X , ρ)→ (X ′, ρ′) be a mapping between the spaces X and
X ′, and let Af := {x : x ∈ X ∧ ∃y(x �= y ∧ f(x) = f(y))} be the ambiguity set
of f .

Lemma15. Let (X , ρ) be a complete metric space, f : X → X ′ and let Af be
of first Baire category. Then O ⊆ f−1 ◦ f(F) implies O ⊆ F whenever O ⊆ X
is open and F ⊆ X is closed.

Proof. Since f is one-to-one on X \ Af we have O \ Af ⊆ F . Then, in view of
Eq. (7), cl(O \ Af ) ⊇ O, and the assertion follows. ✷

We get our first result for mappings satisfying an identity analogous to
Eq. (15), cl(f(M)) = f(cl(M)), where cl denotes the closure as well in (X , ρ) as
in (X ′, ρ′). Such functions are referred to as closed mappings. Closed mappings
are also continuous, hence the preimage f−1(O′) of an open subset O′ ⊆ X ′ is
again open.

Theorem 16. Let f : X → X ′ be a closed mapping and let Af be of first Baire
category. If F is nowhere dense, then f(F) is also nowhere dense.

Proof. Assume f(F) to be not nowhere dense in f(X ′). Then there is an open
set O′ ⊆ X ′ such that cl(f(F)) ⊇ f(X ′) ∩ O′ �= ∅. Hence, f−1(cl(f(F))) =
f−1(f(cl(F))) ⊇ f−1(O′) �= ∅. According to Lemma 15 we have cl(F)⊇f−1(O′),
and F contains a nonempty open subset. ✷

Similar to cl let int denote the interior operation in both spaces.

Theorem 17. If f : X → X ′ is closed and satisfies the inequality f(int(M)) ⊆
cl(int(f(M))) for arbitrary M ⊆ X then the preimage f−1(F ′) of a nowhere
dense set F ′ ⊆ X ′ is nowhere dense in X .

Proof. Assume F := f−1(F ′) to be not nowhere dense. Then there is a nonempty
open set O ⊆ cl(f−1(F ′)). Hence, ∅ �= int(cl (f−1(F ′))). Applying the inequality
and the fact that f is closed yields f(int(cl(f−1(F ′))))⊆cl (int(cl(f(f−1(F ′))))).
But cl(int(cl(f(f−1(F ′))))) ⊆ cl(F ′), and thus cl(F ′) contains the nonempty
open set int(cl(f(f−1(F ′)))).✷

In the previous Section 4.1 we have seen that the function νr satisfies the
hypotheses of Theorems 16 and 17. Thus we obtain the following.

Theorem 18. Let F ⊆ Xω
r . Then F is nowhere dense, iff νr(F ) is nowhere

dense.

4.3 Absolutely Disjunctive Reals

Now, we use our translation results to show that the set of absolutely disjunctive
reals is residual.

As a corollary to Theorem 18 we obtain immediately the following.
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Lemma19. The set of all absolutely disjunctive real numbers is a residual Gδ-
set in [0, 1], and for every r ∈ IN, r ≥ 2 the set ν−1

r (D) is a residual Gδ-set in
Xω

r .

Proof. Since D =
⋂

r≥2 νr(Dr), it suffices to show that every νr(Dr) is a residual
Gδ-set in [0, 1]. Following Eq. (12), Xω

r \Dr is an Fσ-set of first Baire category
and the ambiguity set of νr, Aνr , satisfies Aνr ⊆ Xω

r \Dr. Thus we have νr(Dr) =
[0, 1]\νr(Xω

r \Dr). In view of Theorem 18 and Property 4, the image νr(Xω
r \Dr)

is also an Fσ-set of first Baire category.
The second assertion follows from the fact that νr is continuous and D is a

residual Gδ-set. ✷

5 Base conversion

In the previous sections we have seen that the sets Dr of disjunctive sequences
in Xω

r as well as the preimages ν−1
r (D) of the set of absolutely disjunctive reals

are residual Gδ-sets. From the papers [Cassels 59, Schmidt 60, Hertling 96] it is
known that the property to be disjunctive is not invariant under base conversion
νb ◦ ν−1

r : Xω
r \Aνr → Xω

b .
Thus Dr ⊃ ν−1

r (D), and the constructive description of the set Dr obtained
in Proposition 6 cannot be carried over directly to ν−1

r (D). The aim of this
section is to give a constructive description of the set of r-ary expansions of all
absolutely disjunctive reals, ν−1

r (D).
We conclude this section using Theorem 11 and the non-invariance of disjunc-

tive reals under base conversion to show that the class of finite-state ω-languages
is also not invariant under base conversion.

5.1 The Constructivity of D
It is known that, in general, it is not possible to continuously (as a mapping from
Cantor space (Xω

r , ρ) to (Xω
b , ρ)) convert base r expansions of real numbers to

base b expansions. Even, if we exclude the set of ultimately periodic ω-words,
Ult , from this conversion. More specifically, the size of the smallest ball v · Xω

b
for which νb(v · Xω

b ) ⊇ νr(w · Xω
r ) does not only depend on the length of w.

For instance, if b = 10, r = 2 and w ❁ ξ with ν2(ξ) = 1
5 we have |v| = 0

independently of w.
In [Staiger 99] it is explained that admitting a small ambiguity in our con-

version we can solve the problem in the following way:
For every w ∈ X∗

r we find in a constructive way at most two words v−, v+ ∈ X∗
b

both of length !|w| · logb r" such that νb(v− · Xω
b ) ∪ νb(v+ · Xω

b ) ⊇ νr(w · Xω
r ).

Moreover, if two words are really necessary, then v−, v+ ∈ X∗
b can be chosen in

such a way that v+ is the successor of v− in the quasilexicographical ordering of
X∗

b .
Thus we define the following computable mappings hr→b

+ , hr→b− : X∗
r → X∗

b

such that hr→b
− (w) := v− and hr→b

+ (w) := v+ where the computation of v− and
v+ is carried out as described above or in [Staiger 99].

The following lemma shows that the sets of infixes of successors in quasilex-
icographical do not deviate too much from each other.
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Lemma20. Let w,w′ ∈ Xr and let w′ be the successor of w in the quasilexi-
cographical ordering of X∗

r . Then |(T(w) \T(w′)) ∩Xn
r | ≤ n + 1 and |(T(w′) \

T(w)) ∩Xn
r | ≤ n + 1 for all n ≤ |w|.

Proof. In case |w| < |w′| we have w = (r − 1)|w| and w′ = 0|w|+1 whence
|(T(w) ∩Xn

r | = |(T(w′) ∩Xn
r | = 1, and the assertion is trivially satisfied.

Assume |w| = |w′| = l. Since w′ is the successor of w, there is a common
prefix u ❁ w, u ❁ w′ such that w = u·x·(r−1)l−|u|−1 and w′ = u·(x+1)·0l−|u|−1.

The infixes of w and w′ can be estimated as

T(w) ∩Xn
r ⊆ (T(u) ∩Xn

r ) ∪ {uix(r − 1)n−i−1 : 0 ≤ i < n} ∪ {(r − 1)n} ,
T(w′) ∩Xn

r ⊆ (T(u) ∩Xn
r ) ∪ {ui(x+ 1)0n−i−1 : 0 ≤ i < n} ∪ {0n}

where ui is the suffix of length i of u. ✷

Now we state our main theorem proving the constructivity of the set D of
absolutely disjunctive reals in recursion theoretic terms analogous to the one of
Dr given in Section 2.2.

Theorem 21. For every r ∈ IN, r ≥ 2 there is a recursive language Wr such
that νr(W δ

r ) = D.

Proof. The following explicit construction of the language Wr is similar to the
one in the proof of Proposition 6.

Wr :=
{
wx : w ∈ X∗

r ∧ x ∈ Xr ∧
∀b (

2 ≤ b ≤ n→ T(hr→b
+ (wx)) ⊇ Xn

b ∨T(hr→b
− (wx)) ⊇ Xn

b

) ∧
∃b (

2 ≤ b ≤ n ∧ T(hr→b
+ (w)) �⊇ Xn

b ∧T(hr→b
− (w)) �⊇ Xn

b

) }

Let ξ ∈ W δ
r and let ηb := ν−1

b (νr(ξ)). It suffices to show that ηb ∈ Xω
b is

disjunctive. By construction, for all sufficiently large n ∈ IN there is a prefix
wn ❁ ξ such that hr→b

+ (wn) or hr→b− (wn) is a prefix of ηb and T(hr→b
+ (wn)) = Xn

b

or T(hr→b
− (wn)) = Xn

b .
In view of Lemma 20 this implies #T(hr→b

+ (w)) ∩ Xn
b ≥ bn − (n + 1) and

#T(hr→b− (w))∩Xn
b ≥ bn− (n+1). Accordingly, #(T(ηb)∩Xn

b ) ≥ logb(b
n−n−1)
n

for infinitely many n ∈ IN, and Eq. (11) proves τ(ηb) = 1.
Conversely, let ξ ∈ Xω

r and νr(ξ) ∈ D. Then every ηb := ν−1
b (νr(ξ)) is

disjunctive. It suffices to prove that for every n ∈ IN there is a prefix wn ❁ ξ
such that ∀b (

2 ≤ b ≤ n→ T(hr→b
+ (w)) ⊇ Xn

b ∨T(hr→b− (w)) ⊇ Xn
b

)
. (Then wn

has a prefix in vn ∈Wr which has |vn| ≥ n, thus Wr ∩A(ξ) is infinite.)
Choose n ∈ IN and for every ηb , 2 ≤ b ≤ n, a prefix vb ❁ ηb such that

T(vb) ⊇ Xn
b . If un,b ❁ ξ has length |un,b| ≥ |vb| · logr b then hr→b

+ (un,b) $ vb or
hr→b
− (un,b) $ vb. Now define wr to be the longest of the words un,b , 2 ≤ b ≤ n.

✷
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5.2 Non-invariance of Finite-State ω-Languages

This last part uses results of the non-invariance of disjunctivity under base con-
version to show that the class of finite-state ω-languages is also not invariant
under base conversion.

In order to achieve this goal we introduce the concept of box-counting dimen-
sion in [0, 1] (see [Falconer 90]). To this end let Nε(M) be the smallest number
of intervals of length ε (balls of diameter ε) which cover m ⊆ [0, 1]. The upper
box-counting dimension of M ⊆ [0, 1] is defined as

bdimM := lim sup
ε→0

logrNε(M)
− logr ε

.

This formula, in some sense, resembles the definition of the entropy of ω-lan-
guages. If we define N ′

r−n(M) as the smallest number of intervals of the form
[ i
r−n ,

i+1
r−n ] (mesh cubes in an r−n-coordinate mesh as in [Falconer 90]) which

cover M , we observe that

N ′
r−n(νr(F )) ≤ sF (n) ≤ 3 · N ′

r−n(νr(F )) . (16)

Proof. On the one hand, the intervals νr(wXω
r ), |w| = n where wXω

r ∩ F �= ∅
cover νr(F ) and are of the required form. Thus the first inequality is evident.

On the other hand, if w ∈ A(F ) and |w| = n there are at most three intervals
of the form [ i

r−n ,
i+1
r−n ] not disjoint to νr(wXω

r ). Thus at least 1
3 ·sF (n) mesh cubes

are necessary to cover νr(F ), which yields the second inequality. ✷

Eq. (16) yields

HF = lim sup
n→∞

logrN ′
r−n(νr(F ))
n

for F ⊆ Xω
r . (17)

From the results of Section 3.1 of [Falconer 90] we have the following.

Lemma22. bdimM = lim supn→∞
logr N ′

r−n (M)

n

As a consequence of Eq. (17) and Lemma 22 we obtain that the entropy of ω-
languages is invariant under base conversion.

Lemma23. Let F ⊆ Xω
r , E ⊆ Xω

b and νr(F ) = νb(E). Then HF = HE.

Now Theorem 6 of [Hertling 96] and Theorem 11 yield the announced example.

Example 1. Let F := {0, 1}ω ⊆ Xω
4 . Then HF = 1

2 . Hence τ(ξ) ≤ 1
2 for all ξ ∈ F .

Consider ξ0 ∈ F where ν4(ξ0) =
∑

i∈IN 4−i!−i. Theorem 6 of [Hertling 96]
shows that η0 ∈ Xω

3 with ν4(ξ0) = ν3(η0) is disjunctive. Hence τ(η0) = 1.
Now assume E := ν−1

3 (ν4(F )) to be finite-state. Since η0 ∈ E this implies
HE = 1, contradicting Lemma 23.✷

Remark 2 Unfortunately, the example presented above does not represent a
“nice” subset of the unit interval [0, 1]. In contrast to the situation of the previous
example, it is shown in [Jürgensen and Staiger 01] the class of finite-state (in
fact, regular) ω-languages F ⊆ (Xr × · · · ×Xr︸ ︷︷ ︸

d times

)ω encoding geometric figures is

invariant under base conversion.
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