Journal of Universal Computer Science, vol. 8, no. 10 (2002), 881-891
submitted: 24/4/02, accepted: 15/10/02, appeared: 28/10/02 © J.UCS

Design for All as a Challenge for Hypermedia Engineering

Volker Mattick
(Chair of Programming Systems and Compiler Construction
FuLLDIT Research Group
University of Dortmund, Germany
mattick@ls5.cs.uni-dortmund.de)

Abstract: Design for All is an important challenge for hypermedia engineering. We
analyze this challenge and show that it is necessary to find a way of describing partially
designed hypermedia documents that can then be transformed into different hyperme-
dia applications according to user needs and call this concept “semi-documents”. We
sketch similarities and differences to existing formalisms and conclude that there are
three areas in which functional languages can make a contribution: the development
of an embedded special-purpose language for describing semi-documents, the building
of generators which produce hypermedia applications from semi-documents, and the
realization of support tools for the development of semi-documents.

Key Words: Hypermedia Engineering, Functional Programming, Design Techniques
Category: H.5.4, D.1.1, D.2.2

1 Introduction

Design for Allis an important challenge for hypermedia engineering.

Firstly, a law has been passed in Germany a few months ago which obligates
public institutions to ensure that all their newly created internet pages are barrier
free, and that existing ones will be modified accordingly over the next years
(“Bundesgleichstellungsgesetz fiir Behinderte” ). While this is the first law of its
kind in Europe, other countries such as Switzerland and France are preparing
similar regulations. In the US, comparable anti-discrimination laws have been
in existence for about six years. Discriminations, which abound in the non-
virtual world, may be at least partially compensated with hypermedia, e.g. in
the growing field of e-government.

Secondly, it is to be expected that an increasing number of elderly people will
use the internet. While most of them are not handicapped, many have limited
physical abilities in certain areas. This market segment also presents an enormous
economic potential which is hardly being addressed at present.

Thirdly, an increasing number of people want to access the internet while
away from optimal resources. Mobile devices often have very small screens, and
are used under difficult conditions.

Hence, both social responsibility and economic considerations make it impor-
tant to present hypermedia content such that it is accessible to all people under
all conditions. This is the aim of Design for All



882 Mattick V.: Design for All as a Challenge for Hypermedia Engineering

The first two sections analyze this challenge. First, we summarize the mean-
ing of Design for All for hypermedia, and its relationship to the more popular
terms barrier-free internet and web accessibility. In addition, we give the reasons
why we hope that Design for All has a much better chance to be realized in
the “virtual world” than in the “real world” (Section 2). We then embed this
paradigm in the hypermedia engineering design process (Section 3). Next, we
discuss the possible uses of functional programming languages in this context
(Section 4). In the following section, we conclude that we need a possibility to
describe semi-designed documents, called semi-documents for short. We present
ideas on how semi-documents can be described (Section 5.1), what a generator
must do to produce hypermedia applications from a semi-document (Section 5.2)
and how a development tool for semi-documents could be realized (Section 5.3).
All these ideas stem from the area of functional and functional-logic languages.

2 Design for All

Design for All means the designing of products, services and systems such
that they are flexible enough to be used directly, without assistive devices or
modifications, by people with the widest range of abilities and circumstances
[Trace Center (96)]. It is thus a design methodology that helps achieve the aim
of barrier-freeness. In the area of hypermedia, barrier-freeness means accessibil-
ity of the produced applications. Accessibility, as defined by the World Wide
Web Consortium (W3C), means that the content of a web page can be used by
someone with a disability [W3C (99)].

In the “real world”, a product is designed and produced once. You cannot
save the blueprint of a bridge and build it every time someone want to cross
the river, adapting it to her or his needs. A person in a wheelchair will need an
elevator, whereas someone with an elevator phobia will ask for stairs. To reach
the Design-for-All goals, it is often necessary to design a lot of redundant means
of doing the same thing, according to the abilities of the user. Or you must
find a solution which caters for several groups of users, a ramp in our example.
Both options can be expensive and need an extremely foresighted design process,
because once the product is finished, there is little chance to change it.

In the “virtual world” of hypermedia, it is possible to save a blueprint, that
is, nothing but a specification, and produce customized applications. Customiza-
tion means creating applications tailored to the abilities of the user. All infor-
mation and all possibilities of navigation should be available for every user. The
presentation and, at least in part, the structure should be adjusted to fit each
individual situation. This is possible because hyperdocuments differ radically
from traditional documents not only conceptually but also in their realization.
Conceptually, traditional documents are organized in a linear fashion, whereas



Mattick V.: Design for All as a Challenge for Hypermedia Engineering 883

hyperdocuments are organized according to a non-linear link structure. Vari-
ous models focus on this difference, and there are numerous tools to support
the navigational design of hyperdocuments. The realization of a linear text is
usually some kind of book or article which is designed once, printed out and
not changeable afterwards. Hyperdocuments are typically realized as pieces of
software and are therefore adaptable by nature.

The Web Accessibility Initiative (WATI) is a W3C activity which among other
things seeks to ensure that the core technologies of the Web are accessible, in-
cluding HTML, CSS, XML, SMIL, SVG and DOM. Moreover, WAI has com-
piled extensive accessibility guidelines. In principle, all these guidelines describe
rules that help achieve barrier-free web pages with the HTML or XML markup
languages in conjunction with stylesheets. In other words, they all address the
problem at the source code level. This is a very “real-world” approach which has
its advantages and disadvantages. On the positive side, this concept is easy for
developers to understand and can be realized with little additional effort. How-
ever, there is the significant disadvantage that often a lot of different alternatives
must be coded to achieve a satisfactory result. This can lead to large source code,
presenting a problem e.g. when there is a very slow internet connection. Such
problems rarely affect users on the grounds of disabilities, but they do present a
problem when using mobile access devices. This means that the Design for All
paradigm is not respected.

Another approach is the development of tools such as screen readers or the
text-based browser Lynx in an attempt to transform the code adequately. How-
ever, this can be extremely difficult. Nearly all hypermedia applications are de-
veloped for a two-dimensional display. If they are developed in a markup lan-
guage, the two-dimensionality is encoded in the application at a very early stage.
Translating it for one-dimensional output devices would need linearization infor-
mation. The author of a document usually has such knowledge, but it cannot be
saved in the markup language. Markup languages, and Java or Flash even more
so, require far more complete and more restrictive information than is desirable
or necessary for the application as such.

We therefore propose to design a specification which is sufficiently concrete
to generate an application, and sufficiently underdetermined to customize the
output application for the widest range of users.

3 Hypermedia Engineering

Hypermedia applications are a special kind of software often mainly developed
with rapid prototyping. This is frequently done with only very basic use of
engineering methods, or totally ad hoc. The positive aspect of rapid prototyping
is that customers can quickly get an impression of the look and feel of their



884 Mattick V.: Design for All as a Challenge for Hypermedia Engineering

application. The drawback is that this look and feel may only work on the
specific customers’ hardware and with their abilities. This is acceptable for a
local hypermedia application, but usually hypermedia is designed for distribution
over the World Wide Web and must be fit to be displayed on several different
output media. This is even more important if barrier-freeness is an aim.

To realize more structured approaches, some years ago hypermedia engineer-
ing came into being as a particular field of software engineering. [Lowe, Hall (99)]
single out its two major components: The product itself and the design process.

Hypertext research has gained extensive experience with more or less formal
descriptions of product models. There are three basic kinds of product models (cf.
[Lowe, Hall (99), p.2211f]), the programming language-based, the information-
centered and the screen-based models. The programming language-based ap-
proach, which uses any general-purpose programming language starting from
scratch, was used in the past due to the lack of more sophisticated models, and
is of little or no importance at present. For a long time, the information-centered
model has dominated. The most popular product model for hyperdocuments,
the “Dexter Hypertext Reference Model” [Halasz, Schwartz (90)], is informa-
tion centered. Dexter or one of its modifications, e.g. [Grenbaek, Trigg (94)] or
[van Ossenbruggen and Eliens (95)], describes the structure of a hyperdocument,
divided into its logical structure, its linkage, and its style. A hyperdocument can
import components from a “within-component layer” via an anchor mechanism
and can contain a “presentation specification” stating how it is to be presented.
Similar ideas are implemented in an object-oriented style in the so-called “Tower
Model” [de Bra, Houben (92)], that adds a hierarchization according to which
components can include other components. The markup languages, too, obvi-
ously have their roots in the information-centered paradigm, even though many
designers use them in a screen-based way (cf. Section 2). Screen-based means
that the focus is not on the logical structure of the document, enriched with
some display attributes, but on the display of the document itself.

An overview of several process models can also be found in [Lowe, Hall (99)].
If we abstract from a concrete process model, we can distinguish two main phases,
the requirement engineering phase, whose output is usually a requirement spec-
ification, and the design phase itself, whose output is usually a prototypical
hypermedia application which is then iteratively improved. With such tools, a
document is only described by its representation in a markup language, in other
words, the source code of the application. They do not provide a special de-
scription formalism for the document, other than the graphical representation
on the screen. The popularity of this approach might result from the benefits of
rapid prototyping or of the wide-spread authoring tools, especially screen-based
tools like Frontpage, Netscape Composer or Bluefish, which have no separation
between the description and the implementation of a hyperdocument.



Mattick V.: Design for All as a Challenge for Hypermedia Engineering 885

4 Functional Programming and Hypermedia

This section discusses the possible uses of functional programming languages in
the context of Design for All in Hypermedia Engineering. Both markup languages
and functional languages are usually declarative, such that they can easily be
used together. Programming languages are better suited for structuring prob-
lems and building abstractions. The goal of working at the high level of structural
markup, where documents are specified in terms of their logical features rather
than of particular rendering procedures, is similar to the ideals of functional
programming, where computations are specified in mathematical rather than
machine-oriented terms. Documents described with a markup language can be
seen as trees, and functional languages usually offer extensive facilities for rep-
resenting and manipulating trees. Moreover, if a typed functional language is
used, the type system can provide additional structure and integrity. In the last
years, some interesting approaches have been presented which combine markup
languages (mainly the Extensible Markup Language (XML) [W3C (00b)]) and
functional languages. They follow two strategies, both based on the design of a
library of combinators for the selection, generation and transformation of XML
trees (cf. [Wallace, Runciman (99)]). A more detailed discussion of XML can be
found in [Parsia (01)].

The first strategy consist in extending the functional language with adequate
libraries and utilities. Hypermedia developers can use this extended language the
same way as the original functional language. A prominent example is HaXml
[Mertz (01)], which is a collection of utilities for the combined use of Haskell
[Jones, Hughes (99)] and XML. Its basic features include a parser and a validator
for XML, a separate error-correcting parser for HTML and pretty-printers for
both. It contains a combinator library for generic XML document processing,
including transformation, editing, and generation.

The second strategy consist in developing embedded domain-specific lan-
guages. Hypermedia developers who use such a special-purpose language may
not even notice that they are using a functional language. An interesting ex-
ample of this is the Web Authoring System Haskell (WASH) [Thiemann (01)].
It is a family of embedded domain-specific languages for programming HTML
and XML applications. Each language is embedded in the functional language
Haskell and is implemented as a combinator library. A similar idea underlies
the modeling of basic HIML in the context of server-side web scripting in the
functional-logic language Curry [Hanus (00)], [Hanus et al. (00)].

Our research group “Functional-Logic Development and Implementation Tech-
niques” has implemented a Dexter-based hypertext reference model in the func-
tional language ML, as part of a research project in the area of design au-
tomation. It is called the HMD Model [Mattick, Wirth (99)]. This prototype is
not powerful enough, and the choice of ML leads to some language-inherent



886 Mattick V.: Design for All as a Challenge for Hypermedia Engineering

problems, but we believe that a revised implementation with Haskell or Curry
will overcome these difficulties.

Currently we are experimenting with these different above mentioned strate-
gies on a small but realistic application. The results will influence the strategies
to choose for our further work.

5 Semi-Documents

To achieve the aims of Design for All, documents must be specified in a way that
makes it possible to derive applications; but the specification must not be fully
determined, in order to permit customization of the applications for the widest
range of users (cf. Section 2). Typical hypermedia engineering strategies and tools
coerce the designer to determine things at the “implementation level”, because
markup languages are used as the only description formalism (cf. Section 3).

Therefore, the design phase must be split into two phases. The first one is
the design process of the semi-document. The output of this phase should not be
an application but an executable specification. To achieve this, it is advisable to
start with a maximal number of possibilities, which means that a lot of informa-
tion is not given. In the process, this information must be interactively filled in
until you reach a stage where enough details are given to produce automatically
adapted hypermedia applications. So what we need is a new adequate descrip-
tion language, based on a hypermedia model in which things can be left variable
for as long as possible. The second phase generates browsable applications from
these specifications.

In principle, a document is made up of media objects such as blocks of text,
pictures, sound files or animations. There normally exist some restrictions on
the order in which these media objects should be presented, e.g. because certain
pieces of information must be consumed before certain others in order to under-
stand the document in any of its forms. We call the minimal necessary set of
sequence constraints the meaningful structure of the document.

The specification mechanism we propose must make it possible to describe the
meaningful structure of a document. We call such a specification a semi-designed
document or semi-document for short. A semi-document describes a class of
applications. A semi-document must contain a list of the basic media objects
used, a meaningful structure, and a set of links. We assume that media objects
are produced by media designers appropriately. That means that a picture is
created with an audio description for blind users or a sound file also has a
textual representation to give deaf people an idea of its content. The constraints
are defined according to the requirement specification. The links are the result
of a Navigational Design Phase.

These semi-documents can be stored on a server. Of course they are not
browsable, at least not with current technology. When documents become semi-



Mattick V.: Design for All as a Challenge for Hypermedia Engineering 887

documents, browsers become constraint-solving generators, which dynamically
produce documents from a semi-document according to a user profile and with
the help of certain rules. Theoretically this is good approach, but in practice
it will not work: we are not very confident that all producers of browsers will
follow our theory and produce new tools which can generate applications from
semi-documents.

Therefore, we propose another solution. A provider who wants to support
barrier-freeness can develop semi-documents and store them locally, together
with a generator. This generator can be used to produce all possible applica-
tions that comply with the chosen formal product model of hyperdocuments,
respect the given constraints and contain all given media objects and links. If
there are too many constraints, this class may be empty. If there are too few
constraints, the class might be huge but obviously finite, as long as the list of
media objects used is reasonably finite. Usually, the class will contain more than
one application. So the next step is to choose applications that satisfy a given
user profile. In principle, a user profile is a further set of constraints. It must be
checked which of the generated implementations can actually be used. While the
generation process should be automatic, in this phase interactivity with the user
appears necessary (cf. Section 5.2). The chosen application can then be trans-
ferred to a web server and downloaded from there like any other hypermedia
document. Variants that are needed frequently can be generated offline to speed
up the delivery.

Obviously, semi-documents cannot be produced with What You See Is
What You Get editors. According to its name, the WYSIWYG philosophy
means that you produce an artifact that every user sees in the same way as
the author. This does not even work well for HTML or XML documents, be-
cause with the use of stylesheets they can appear in very different ways. So these
tools are not suitable for creating semi-documents, whose appearance is even less
strongly determined than that of XML documents. It is therefore necessary to
develop hypermedia engineering methodologies and tools to support the design
of semi-documents (cf. Section 5.3).

We do not want to conceal the fact that our approach will most probably
not work for every kind of hypermedia application. It focuses on applications
which present structured information, not on hypertext fiction, multimedia art
or highly interactive network-based interfaces.

5.1 Describing Semi-Documents

The descriptions of semi-documents should be as human readable as possible, as
abstract as possible and as concrete as necessary. As human readable as possible
means either a good textual description with terms from the area of hyperme-
dia rather than the programming-language world, or a graphical representation



888 Mattick V.: Design for All as a Challenge for Hypermedia Engineering

into which a possibly less readable textual format can be transformed and vice
versa, or both. As abstract as possible means covering all invariant information
of a document, including all media objects used, but avoiding to describe any-
thing that is not strictly necessary. Finally, a formalism must be concrete enough
to enable the semi-automatic and rule-based creation of valid documents that
can be delivered. In short, we need a formalism to describe propositions over
collections of documents. In an earlier project, located in the area of design au-
tomation, we have specified a product model for hypermedia, called the HMD
Model [Mattick, Wirth (99)], that is described with algebraic specifications and
with the help of Swinging Types [Padawitz (00b)]. Because of the affinities be-
tween algebraic specifications and functional languages, we have implemented
a prototype in the functional language ML [Paulson (96)]. This yields an em-
bedded domain-specific language for the domain described by our HMD Model.
Because of its roots in design automation, the HMD Model contains represen-
tatives for documents at any stage of the design process. As semi-documents
are not fully designed documents, we need to find the right stage in the design
process to declare the representative a semi-document and save it for further
processing by the generator. This is by no means a trivial task.

Of course there are similarities between the HMD model and the XML
Schema definition language [W3C (01)]. Both cover the same domain, and both
describe classes of executable hyperdocuments. A detailed examination of the
differences and similarities is still an open issue. It is, however, clear that in
order to use the XML Schema description language instead of our proprietary
HMD Model, one would have to embed XML Schema in a (preferably functional)
language in the way WASH handles XML or HaXml is enriched with libraries
for XML.

5.2 Generating Hypermedia Applications from Semi-Documents

We need to evolve strategies and tools for transforming semi-documents into
browsable documents which are valid w.r.t. a given semi-document.

In general, there are two means of ensuring that a document is valid w.r.t. a
specification. Firstly, you can create a document description and then check the
result, e.g. with a validator like the one included in HaXml or with some kind of
model-checking approach. Secondly, you can build documents with a generator
that can only produce correct documents, following the principle of “correctness
by construction”.

To build such a generator, the description formalism for the semi-documents
must be embedded into a system of editing functions. It must be extended with
strategies that help build a document description from the semi-document de-
scription in a step-by-step manner. In these strategies, constraint solving plays
a major role, and this is a professed domain of functional-logic languages. In the



Mattick V.: Design for All as a Challenge for Hypermedia Engineering 889

above-mentioned design-automation project [Mattick, Wirth (99)], basics of this
idea have also been formulated and prototypically realized with ML. Of course,
this is also possible with a domain-specific language based on XML Schema
instead of the HMD Model.

5.3 Developing Semi-Documents

“The need for a ‘universal accessibility’ engineering tool” has already been
pointed out by [Lindenberg, Neerincx (99)]. With the concept of “semi-docu-
ments”, this need becomes a concrete demand for tools and techniques to design
a semi-document from a requirement specification and a navigational model.
Because semi-documents cannot be graphically represented with a WYSIWYG
strategy, and purely text-based development is not satisfactory, we need new
approaches.

UML-like notations appear promising, and can be specialized for the hy-
permedia domain (e.g. [Baumeister et al. (99)]). This does not come as a great
surprise, because the most important data structures of UML-like notations are
trees and forests. Roughly speaking, a semi-document also can be described as
a tree, together with constraints and rules. A collection of semi-documents can
be connected by hyperlinks into a graph in which every node contains a semi-
document. So a support tool for the development of semi-documents must essen-
tially be a tool for developing certain trees and forests, possibly at a graphical
level. UML can be combined with an algebraic representation [Padawitz (00a)].
It is therefore likely that it can be combined with a functional language as well.
Functional languages are known to be very powerful tools for tree manipulation.
Moreover, state-of-the-art functional languages are enriched with graphical pos-
sibilities and interactivity. An example is the object-oriented extension of Haskell
named O’Haskell [Nordlander (n.d.)].

Apart from UML, a further possibility would be concept maps [XTM (01)], an
ISO International Standard for device- and implementation-independent record-
ing of information about any subject matter.

We should not forget that web accessibility and Design for All mean that not
only the applications must be accessible, but also the tools needed to produce
them. Therefore, the W3 Consortium has developed an “Authoring Tool Acces-
sibility Guideline” [W3C (00a)] which presents rules for building an authoring
tool. How can UML-like notations or concept maps be made accessible to blind
people? We don’t know. But we believe that with a well-designed description
language for semi-documents, other facilities can be designed, which will make
it equally convenient for visually impaired persons to create these artifacts. So
the goal “as human readable as possible” is really needed, not a nice add-on.



890 Mattick V.: Design for All as a Challenge for Hypermedia Engineering

6 Conclusion

Design for All is an important challenge for hypermedia engineering. An analysis
of this challenge has shown that it can be met by describing partially designed
hypermedia documents that can then be transformed into different hyperme-
dia applications according to user needs. We have called this concept “semi-
documents” and sketched its similarities and differences to existing formalisms
such as the XML Schema description language. We can conclude that there
are three areas in which functional or functional-logic languages can make a
contribution: the development of an embedded special-purpose language for de-
scribing semi-documents, the building of generators which produce hypermedia
applications from semi-documents, and the realization of support tools for the
development of semi-documents.

There already exist some promising approaches at the intersection of func-
tional programming and hypermedia development. In industry, probably under
the influence of the new laws, there is a notable intersection between hyper-
media development and basic principles of Design for All, which however has
received little attention in research so far. We do not know of any project at the
intersection of all three paradigms (functional programming, hypermedia devel-
opment and Design for All). We have only had this idea very recently. We have
since started work on a few small case studies, but we do not have a presentable
prototype yet.

Apart from all technical considerations: Design for All is a challenge for
all, not only for Hypermedia Engineering. Computer science and hypermedia
research can develop tools and techniques. The goals of Design for All constitute
a multidisciplinary task, in which everybody who wants to overcome the barriers
of today’s hypermedia reality needs to make a contribution.

References

[Baumeister et al. (99)] Hubert Baumeister, Nora Koch, Luis Mandel. Towards a
UML Extension for Hypermedia Design. Proceedings of UML ’99, Springer LNCS
1723 (1999), 614-629. www.pst.informatik.uni-muenchen.de/projekte/forsoft/
pubs/uml99.ps.gz.

[de Bra, Houben (92)] Paul de Bra, Geert-Jan Houben. An Extensible Data Model
for Hyperdocuments. Proceedings of the ACM Conference on Hypertext’92 (1992),
222-231.

[Gronbaek, Trigg (94)] K. Grgnbaeck and R. H. Trigg. Design Issues for a Dexter-
Based Hypermedia System. Communicatios of the ACM, 37(2)(1994), 40-49.

[Halasz, Schwartz (90)] F. Halasz, F. Schwartz. The Dexter Hypertext Reference
Model. Proceedings of the Hypertext Standardization Workshop, National Insti-
tute of Technology (NIST) (1990), 95-133.

[Hanus (00)] Michael Hanus. Server Side Web Scripting in Curry. Workshop on (Con-
straint) Logic Programming an Software Engineering, LPSE2000, London, 2000.
[Hanus et al. (00)] Michael Hanus et al. PAKCS: The Portland Aachen Kiel Curry

System, 2000. www.informatik.uni-kiel.de/ pakcs.



Mattick V.: Design for All as a Challenge for Hypermedia Engineering 891

[Jones, Hughes (99)] Simon Peyton Jones and John Hughes (eds). Haskell 98:
A Non-strict, Purely Functional Language. Microsoft Research, Cambridge,
Chalmers University of Technology, February 1999. www.haskell.org/definition/
haskell98-report.pdf.

[Jones, Peterson (99)] Mark P. Jones and John C. Peterson. The Hugs user manual.
http://cvs.haskell.org/Hugs/downloads/hugs.ps.gz.

[Lindenberg, Neerincx (99)] J. Lindenberg and M.A. Neerincx. The need for a uni-
versal accessibility’ engineering tool. Interact 99, 1999.

[Lowe, Hall (99)] David Lowe and Wendy Hall. Hypermedia & the Web. An engineer-
ing approach. Wiley, 1999.

[Mattick, Wirth (99)] Volker Mattick and Claus-Peter Wirth. An Algebraic Dexter-
Based Hypertext Reference Model. Technical report, FB Informatik, Universitat
Dortmund, Dec 1999. 1s5.cs.uni-dortmund.de/ mattick/pub/gr719.ps.gz.

[Mertz (01)] David Mertz. The HaXml functional programming model for XML.
IBM DeveloperWorks. http://www-106.ibm.com/developerworks/xml/library/
x-mattersi4.html.

[Nordlander (n.d.)] Johan Nordlander. A Survey of O’Haskell. www.cs.chalmers.se/
“nordland/ohaskell/survey.html.

[Padawitz (00a)] Peter Padawitz. Swinging UML: How to Make Class Diagrams and
State Machines Amenable to Constraint Solving and Proving. Proc. UML 2000,
Springer LNCS 1939 (2000), 162-177.

[Padawitz (00b)] Peter Padawitz. Swinging Types = Functions + Relations + Tran-
sition Systems. Theoretical Computer Science 243 (2000), 93-165.

[Parsia (01)] Bijan Parsia. Functional Programming and XML. xml.org, O’Reilly,
2001. http://www.xml.com/pub/a/2001/02/14/functional .html.

[Paulson (96)] Larry C. Paulson. ML for the Working Programmer (2nd edition).
Cambridge University Press, 1996.

[Thiemann (01)] Michael Thiemann. A Typed Representation for HTML and XML
Documents in Haskell. Under consideration for publication in J. Functional
Programming. http://www.informatik.uni-freiburg.de/ thiemann/papers/
modeling.ps.gz.

[Trace Center (96)] Trace Centre. Universal Design: What it is and What it isn’t.
Trace Centre, University of Wisconsin, USA, 1996.

[Wallace, Runciman (99)] Malcom Wallace and Colin Runciman. Haskell and XML:
Generic Combinators or Type-Based Translation? International Conference on
Functional Programming, Paris, 1999.

[van Ossenbruggen and Eliens (95)] J. van Ossenbruggen and A. Eliens. The Dexter
Hypertext Reference Model in Object-Z. Unpublished Paper, Vrije Universiteit
Amsterdam. www.cs.vu.nl/~dejavu/papers/dexter-full.ps.gz.

[W3C (99)] World Wide Web Consortium. Web Content Accessibility Guide-
lines 1.0. W3C Recommendation 5-May-1999. www.w3.org/TR/1999/
WAI-WEBCONTENT-19990505.

[W3C (00a)] World Wide Web Consortium. Techniques for Authoring Tool Accessibil-
ity. W3C Note 4-May-2000. www.w3.org/TR/2000/NOTE-ATAG10-TECHS-20000504.

[W3C (00b)] World Wide Web Consortium. Extensible Markup Language (XML) 1.0
(Second Edition). W3C Recommendation 6-October-2000. www.w3.org/TR/2000/
REC-xm1-20001006.

[W3C (01)] World Wide Web Consortium. XML Schema Part 0: Primer. W3C Rec-
ommendation 2-May-2001. www.w3.org/TR/2001/REC-xmlschema-0-20010502.

[XTM (01)] TopicMaps.Org Authoring Group. XML Topic Maps (XTM) 1.0. Top-
icMaps.Org Specification, 2001. www.topicmaps.org/xtm/1.0/xtm1-20010806.
html.



