
An Object-oriented Approach to Design, Specification,

and Implementation of Hyperlink Structures

Based on Usual Software Development

Alexander Fronk
(Software-Technology, University of Dortmund, Germany

fronk@LS10.de)

Abstract: Different models and methodologies for the development of hypermedia
systems and applications have emerged in the recent years. Software-technical meth-
ods and principles enriched with ideas mainly driven from the applications’ needs are
often sponsor to those models and methodologies. Hence, they deal with very specific
problems occurring in the hypermedia domain, thereby extending design notations like
UML or State Charts and adapting them to modeling this domain. In the present
paper, we propose a very usual software-technical approach to the development of
hyperlink structures which form the basis for navigation in hyperdocuments. Our ap-
proach uses standard UML, algebraic specification and object-oriented implementation
to cover the construction of hyperlink structures, from design through to specification
and realization. We thereby equate the development of hypermedia documents with
usual software development. Instead of adopting software-engineering and notations to
hypermedial concerns, we adopt the latter to the former and show the advantages of
this approach.

Key Words: Hypermedia, Software Engineering, Systems Development, Methodolo-
gies, Object-oriented Languages

Category: I.7.2, D.2, K.6.1, D.2.10, D.3.2

1 Introduction

A hypermedia document, or hyperdocument for short, is understood as a col-
lection of media objects such as texts, graphics, videos, etc. which are con-
nected to each other in a non-linear fashion, that is, they are hyperlinked. In
[Fronk, 2001], an object-oriented document description language for implement-
ing such hyperdocuments, DoDL for short [Doberkat, 1996b, Doberkat, 1998],
was discussed. The object-oriented implementation with DoDL has shown that
hyperdocuments can easily be comprehended as programs, or more generally, as
software, and hence inherently possess both document and program qualities.
This document/program-dualism (c.f. [Fronk, 2000]) can clearly be observed by
the fact that hyperdocuments not only offer non-linearly related media and hence
hyperlinked information. Moreover, navigational aspects, i.e. the hyperlinks of
the document, called its hyperlink structure, are entirely encoded within the
hyperdocument itself. If we understand any browser as a runtime environment
allowing navigation, a hyperdocument encompasses control structure. Hyper-

Journal of Universal Computer Science, vol. 8, no. 10 (2002), 892-912
submitted: 24/4/02, accepted: 15/10/02, appeared: 28/10/02 J.UCS

documents are often treated merely as documents leaving their characteristics
as programs nearly completely aside.
Depending on the specific task a hyperdocument has to satisfy, its media

objects may underlie frequent change. For example, digital libraries, information
kiosks, or hypermedia information systems showing environmental conditions
such as air temperature, water-levels, or radio activity, etc. need to be updated
or supplemented periodically with the latest measuring results. Thereby, the link
structure has to be adapted to the new data. In the view of programs, the control
structure has to be reimplemented. If, however, the link structure depends on
positions within these media objects, and if positions can be described without
referring to specific content (for example, if a certain occurrence of a city name,
regardless of where exactly this name occurs within the media object, is always
linked to a map showing some city details), hyperlinks can be captured abstractly
without referring to concrete media objects. In the view of programs again,
the control structure can be specified. Hence, an adequate implementation of
a document’s link structure can be reused, if it is given without reference to
concrete data. Analogously, programs are implemented without referring to their
concrete input data. Exactly here, the object-oriented implementation of link
structures finds its place.
In HTML/XML, hyperlinks and media objects are assembled within one

single document. Using tags directly embedded within media objects makes it
impossible to separate the description of hyperlinks from them. Our approach
allows in contrast to describe the link structure abstractly and separately from
media objects. Thereby, we strictly follow the principle of separation of concerns,
and contribute to maintaining hyperdocuments [Fronk, 1999] immediately on the
level of maintaining software. A suitable compiler system allows to generate a
hyperdocument by binding concrete media objects to the description of a link
structure. Thus, our approach is open to changing media objects frequently with-
out neither touching the hyperdocument itself nor its implementation. Some ad-
vantages become obvious here: By exchanging the values given in a binding and
hence obeying the principle of locality, we are able to generate arbitrary many hy-
perdocuments underlying a certain link structure; further, the code is written in
an object-oriented fashion and is thus open to inheritance, polymorphism, over-
loading, etc., and thus to high-level implementation of hyperdocuments. More
details can be found in [Fronk and Pleumann, 1999] and [Pleumann, 2000].
The notion of position is vital to obtain an object-oriented description of a

hyperdocument. Therefore, media objects were given a simple tree-like structure
which allows us to easily determine positions serving as link anchors, and there-
upon hyperlinks as pairs of positions. By introducing positions only based on this
structure, we do not need to use coordinate systems laid upon media objects,
and establish a uniform mechanism fitting to any kind of media object. This idea

893Fronk A: An Object-Oriented Approach to Design, Specification, and Implementation ...

is vital for the description of hyperdocuments by using an object-oriented ap-
proach, which contrasts very much to the common HTML/XML implementation
of hyperdocuments.
The construction of hyperdocuments is generally not limited to structuring

the media objects involved and their link structure (c.f. [Lowe and Hall, 1999],
Chapter 9). Moreover, an overall view on hypermedia systems has to be taken into
account including usability and presentation of hyperdocuments. For the time
being, we restrict ourselves to the development of hyperlink structures. Hence,
the visual appearance of media objects, i.e. their layout, is not a concern here,
although we consider it as a very important aspect of a hyperdocument: layout is
undoubtedly responsible for usability and acceptance. In addition to layout, the
presentation of a hyperdocument encompasses the (animated) arrangement of its
media objects in time and space (c.f. [Gloor, 1997], page 264). For our approach,
capturing elements and their relative positions to each other is more important
than their visual representation. This allows to talk about the composition of
media objects, about the notion of subdocuments, and about positions of subdoc-
uments in a document under consideration. Further, we do not discuss models for
hypermedia development (c.f. [Tochtermann, 1994]). Moreover ,the goal of this
paper, which is an extension of parts of the author’s Ph.D. thesis, is to propose
a development process for hypermedia documents, which is based on software-
technical methods and principles employed for usual object-oriented software
construction. We discuss a process that covers design, specification, implemen-
tation, testing and maintenance of hyperdocuments. The lack of testability and
maintenance lowers the quality of a hyperdocument [Lowe and Hall, 1999]. Our
approach supports these tasks and hence contributes to product quality.
The paper is organized as follows. First, we briefly mention some related work

in [Section 2]. To comprehend the basic correlations between usual software de-
velopment and hyperdocument development, we proceed backwards through a
software life cycle, from implementation through to specification and design. We
discuss a simple hypermedial car cockpit as an example, and show its implemen-
tation first [see Section 3], prior to considering its specification in [Section 4]. A
more complex example of such a car cockpit (see [Fronk, 2001], Chapter 13 for
details) is used to motivate its design with standard UML [Section 5] seamlessly
leading to the discussed process encompassing specification and implementation.
We conclude in [Section 6] and sketch further work.

2 Related Work

In [Fronk, 2002b], we discuss some work related to structuring media objects and
locating positions in them, such as the Trellis model [Stotts and Furuta, 1989,
Stotts et al., 1998], XPath and XLink (c.f. [Deitel et al., 2001]) or the Com-

posite design pattern [Gamma et al., 1995]. Chang and Shih give a detailed

894 Fronk A: An Object-Oriented Approach to Design, Specification, and Implementation ...

survey of hypermedia process models [Chang and Shih, 2002] developed in the
recent years, covering different phases in the life cycle of hypermedia appli-
cations. Costagliola et al. [Costagliola et al., 2002] survey hypermedia devel-
opment methodologies, such as HDM [Garzotto and Paolini, 1993], or RMM
[Isakowitz et al., 1995]. OOHDM, an object-oriented hypermedia design method,
is introduced by [Schwabe and Rossi, 1998]. This methodology distinguishes be-
tween the design of content, link structure, and views, followed by the implemen-
tation. These four phases capture content and links abstractly by so called entity
and link types. Entities are structured stepwise before they are connected by con-
crete links. Refinement steps are allowed and lead to a top-down incremental,
prototype-based process model. Our development process is not a process model
but can be embedded into any such model known in software-engineering (c.f.
[Ghezzi et al., 1991]).
Another object-oriented modelling process, called OMMMA, is proposed in

[Engels and Sauer, 2002]. This approach introduces a language, OMMMA-L,
which extends UML for modeling many different aspects of hypermedia applica-
tions. More important, OMMMA provides a method description on how to use
this language in a prototype-based software development process. As an example,
they discuss an automotive information system. The OMMMA-L model devel-
oped is very close to our UML-model of the hypermedial car cockpit discussed
in the present paper. In quite contrast, we do not extend UML.
The Dexter model, as described in [Halasz and Schwartz, 1994], consists of

three layers, the run-time layer, the storage layer, and the within-component
layer. The latter is purposely left unspecified to allow for different structuring
mechanisms as well as different media types. Our tree-like structures can be
seen as a formalization of this layer. The run-time layer is not a concern in
our approach, since presentation and layout are not crucial for discussing the
construction of hyperlink structures.
The storage layer, however, is of greater interest. The entity used here is a

component. It is divided into an information component and a base component.
The former possesses a unique component identifier, UID for short, and a set of
anchors. The latter consists of atomic and compositional media objects, as well
as links. Anchors serve as sources and sinks for links, and are pairs of identifiers
and values. The value describes a certain position within a component. A specifier
consists of a component specification and an anchor identifier (for the time being,
we do not consider direction and presentation). A link is a sequence of specifiers,
such that arbitrary linkage is feasible.
In our approach, links are modeled as pairs on positions. The link set thus

forms a relation. Hence, we allow for arbitrary link structures, too. Positions are
evaluated within media objects. The variable addressing a media object can be
seen as a UID in the Dexter model, since positions are unambiguously assigned

895Fronk A: An Object-Oriented Approach to Design, Specification, and Implementation ...

to media objects. Our approach offers operations to determine positions serving
as an anchoring mechanism, and forming the interface between the storage and
within-component layer. Our positions directly correspond to anchors, since an
anchor value is given by a path within a media object’s tree structure, and the
anchor identifier relates to the node addressed by the path, or, equally, its unique
number within a tree representation.
Similar to the Dexter model, concrete positions depend on concrete media

objects and their structure, and the measuring system is the media object itself.
In [Hardman et al., 1994], the notions of time and context are added to the
Dexter model making it applicable to more complex media. Our approach is
open to extensions by adding further operations and structuring mechanisms
yielding to determining positions in more complex structures than trees.

3 Object-Oriented Implementation of Hyperdocuments

Throughout this paper, we discuss the realization of a hypermedial car cockpit.
With the help of this example, we show how media objects and hyperdocu-
ments are structured, designed, specified, and implemented. We chose a simple
object-oriented language, DoDL. This language has especially been tailored for
describing hyperlink structures in an object-oriented fashion. The languages only
contains those elements necessary for this domain. This allows to keep things
simple and comprehensive, and to concentrate on the development process rather
than on technical details. We introduce DoDL by the aforementioned example
shown in [Figure 1].

10080
60

20 180

140
120

40 160

km/h

78472
113,7reset Info

Do you like to reset the
counter for daily mileage?

Yes No

The reset-button allows
you to reset the daily
mileage counter to 0.

Close

Reset.txt Info.txt
Velocity.dsp

Reset.gif Info.gif

Figure 1: A simple hypermedial car cockpit

For simplicity, the sample car cockpit consists of a speedometer and a mileage
counter, Velocity.dsp, together with two buttons, Reset.gif and Info.gif,
attached to it. Each button is linked to a text. The reset-button resets the dis-
play. Pressing this button corresponds to traversing a hyperlink leading to an

896 Fronk A: An Object-Oriented Approach to Design, Specification, and Implementation ...

informative text, Reset.txt, announcing the reset procedure which can be can-
celed or confirmed. The info-button calls for some information, Info.txt, about
the instrument’s behavior. For the time being, we do not concentrate on the
cockpit’s functionality. We focus on composing media objects and on hyperlink
structures first. [Section 5.2] gives details on how to implement functionality
making this cockpit work.
We structure media objects in a tree-like manner, hereby defining a represen-

tational model for our hyperdocuments. In our approach, atomic media objects
form the smallest units by which we compose larger ones, called compositional
media objects.

Definition 1. Compositional media objects are recursively defined as fol-
lows:

1. Each atomic media object is a compositional media object.

2. Let mi, i = 1 . . . n, n ≥ 2, be compositional media objects, which need not
to be pairwise disjoint. Then, m = compose(m1, . . . ,mn) is a compositional
media object.

Definition 2. Let m = compose(m1, . . . ,mn) be a media objects. Each mi,
i = 1 . . . n, is called a part of m. The set of constituents of m is the set of all
its parts. The set of components of m is recursively defined as follows:

components(m) :=

{m}, if m is atomic

constituents(m) ∪ ⋃n
i=1 components(mi),

if m = compose(m1, . . . ,mn), n ≥ 2

In the sequel, we refer to atomic media objects as atoms, and to compositional
media objects as compositionals. The tree representation of media objects is
given as follows:

– An atom, a, is a tree consisting of a root node only; the root is labeled with
a.

– A compositional, m = compose(m1, . . . ,mn), n ≥ 2, is a tree the root node
of which is labeled with m. The root has exactly n children labeled with mi,
such that mi is the i-th son of the root.

Based on this structure, paths uniquely address components within a media
object. A position in m is such a path, a link a pair of positions:

Definition 3. Let m = compose(m1, . . . ,mn), n ≥ 2, and m′ be two media
objects. A path in m to m′, path(m,m′) for short, is recursively defined as
follows:

897Fronk A: An Object-Oriented Approach to Design, Specification, and Implementation ...

path(m,m′) :=

εm, if m ≡ m′

(i � path(part(m, i),m′))m,

if m′ ∈ components(part(m, i)), i = 1 . . . n,

⊥, else

We use εm to denote the empty path referring to m itself. If m′ occurs more
than once in m, several paths to m′ exist. For more details on compositional
media objects, the reader is referred to [Fronk, 2001, Fronk, 2002b].
We define an interface to media objects which allows to compose them and to

access positions within them. The interface provides the following functionality
predefined in DoDL. A compose-method allows to create compositional media
objects and is defined as in [Definition 1]. The method expects arbitrary many
media objects which may be atomic or composed. To access positions, we re-
strict ourselves to referring the beginning of a media object, getBegin, the end,
getEnd, and the set of occurrences, getOcc, of a specific component within a
media object. Further methods can easily be defined if required by an applica-
tion. Henceforth, let m and m′ be two media objects. The methods’ semantics
are given in the sequel.

Definition 4. The beginning of m, getBegin(m) for short, is the path defined
as follows:

getBegin(m) :=

{
εm, if m is atomic

1� getBegin(part(m, 1))m, else

The end of m, getEnd(m) for short, is the path defined as follows:

getEnd(m) :=

{
εm, if m is atomic

n � getEnd(part(m,n))m, if m = compose(m1, . . . ,mn)

These paths lead to the left-most and the right-most atom of m, respectively.
Since we allow a component to occur more than once in m, we need the set of
all its occurrences:

Definition 5. The set of occurrences of m′ in m, getOcc(m,m′) for short, is
defined as follows:

getOcc(m,m′) := {pm | pm is a path in m to m′}

Each position pm ∈ getOcc(m,m′) is called occurrence of m′ in m.

898 Fronk A: An Object-Oriented Approach to Design, Specification, and Implementation ...

class Cockpit is
documents display, resetbutton, infobutton,

resettext, infotext: MedObj;
construct

MedObj composeDisplay(void){ // compose media objects
return compose(resetbutton, display, infobutton); }

set(link) linkDisplay(void){
// a link from resetbutton to resettext
composeDisplay().getBegin().setLink(resettext.getBegin());
// a link from infobutton to infotext
composeDisplay().getEnd().setLink(infotext.getBegin()); }

set(link) linkResetText(void){
resettext.getOcc(”Yes”).linkAll(display.getBegin());
resettext.getOcc(”No”).linkAll(display.getBegin()); }

end Cockpit;

Listing 1: Implementing the cockpit

Notice that getOcc(m, m’) is empty if and only if m′ does not occur in m.
To define links as pairs of positions, we use a method setLink. The positions

contained in a set of positions determined by getOcc may serve as anchors of
links leading to the same target position. To create such a (n : 1)-relation, we
use a linkAll-method.
We use DoDL-classes to assemble media objects and links between them.

That is, class attributes, introduced by the keyword documents, refer to media
objects, methods, introduced by the keyword construct, are responsible to con-
struct links between the media objects given in the documents-section only. Local
and generic classes can also be defined. Together with relations between classes,
such as aggregation and inheritance, these concepts are employed to structure
code object-oriently. The reader is referred to [Fronk, 2001] and [Fronk, 2002a]
for more details on DoDL.
A hyperlink structure like that of the cockpit discussed above can be imple-

mented in DoDL as shown in [Listing 1]. We define the beginning of a text as
its first word, the end as its last, and the occurrence of a word, w, corresponds
to n, if w is the n-th word in the text. For graphics, we also provide suitable
implementations of these methods. That is, the realization of positions depends
on the type of a media object.
The type MedObj represents media objects. For the time being, we support

simple text, graphics, and applets to display some information given as input to
the applet. Applets are here understood as a kind of animated graphics. Hence,
the type MedObj has subtypes Text, Graphics, and Display, predefined in DoDL
and equipped with a suitable realization of positions.
Class Cockpit introduces five media objects the place holders for which are

899Fronk A: An Object-Oriented Approach to Design, Specification, and Implementation ...

binding Cockpit is
display: Display = Velocity.dsp;
resetbutton: Graphics = Reset.gif;
infobutton: Graphics = Info.gif;
resettext: Text = Reset.txt;
infotext: Text = Info.txt;

end;

Listing 2: Binding concrete media objects

collected in the documents-section. Further, three methods are implemented
to create the hyperlink structure shown in [Figure 1]. Method composeDisplay

creates a compositional media object using three atoms, resetbutton, display,
and infobutton. Method linkDisplay creates a link from the reset button (or,
equally, from the beginning of the media object composed in composeDisplay) to
the first word of the reset text, and from the info button (or, equally, from the end
of the media object composed in composeDisplay) to the first word of the info
text. The method thus yields a set of links. The other method works analogously
without the need to know the concrete structure or content of any media object.
If, for example, a text for resettext is given that does not contain the words
”Yes” and ”No”, method linkResetText cannot create any link. Testing the
hyperdocument can detect such shortcomings and is briefly sketched in the next
section.
To assign concrete media objects to the document variables given, we use

typed bindings that assign each document variable an initial value. [Listing 2]
shows which concrete media objects are assigned to which document variables.
For technical simplicity, we assume that these media objects are taken from a
repository, and that their content is as shown in [Figure 1].
This example clearly shows that arbitrarily many different hyperdocuments

can be generated by exchanging the binding. Maintaining the hyperdocument
is in this approach equated with maintaining the code implemented in usual
software development.
Concluding this section, we define hyperdocuments as follows.

Definition 6. A hyperdocument is a triplet H = (M,P ,L), where
– M is a non-empty set of composed media objects,

– P is any arbitrary set of positions, pm, in media objects m ∈ M,

– L is any arbitrary set of links, (pm, p
′
m′), such that pm, p

′
m′ ∈ P .

900 Fronk A: An Object-Oriented Approach to Design, Specification, and Implementation ...

4 Object-Oriented Specification of Hyperdocuments

Both the composition of media objects and accessing positions is algebraically
specified. That is, we provide an abstract data type, in the sequel called HDOC ,
an implementation of which was sketched in the previous section. [Specification
1] shows some excerpts of a specification HDOC elaborated in [Fronk, 2001] and
[Fronk, 2002b].

ΣHDOC =
sorts MedObj , position, link , set(position), set(link)
opns composen : MedObj n → MedObj , n ≥ 2

partn : MedObj × nat → MedObj , n ≥ 2
ε : MedObj → position,

getBegin : MedObj → position,

getEnd : MedObj → position,

getOcc : MedObj × MedObj → set(position),
setLink : position× position→ link,

linkAll : set(position)× position→ set(link),
source : link → position,

end : link → position

vars m,m1 , . . . ,mn : MedObj , p, q : position, pset : set(position), l : link
axms

partn(composen(m1, . . . ,mn), i) = mi,

composen(partn(m, 1), . . . , partn(m,n)) = m,

getBegin(m) = ε,

getEnd(m) = ε,

getBegin(composen(m1, . . . ,mn))

= 1� getBegin(partn(composen(m1, . . . ,mn), 1)),

getEnd(composen(m1, . . . ,mn))

= n � getEnd(partn(composen(m1, . . . ,mn), n))

(l ∈ linkAll(pset, p)) = (source(l) ∈ pset ∧ sink(l) = p),

source(setLink(p, q)) = p,

sink(setLink(p, q)) = q

Specification 1: Specifying compositional media objects, positions, and links

[Specification 1] essentially specifies the functionality discussed in the pre-
vious section. For simplicity, we assume a specification for sets given as, for

901Fronk A: An Object-Oriented Approach to Design, Specification, and Implementation ...

example, in [Padawitz, 2001]. Details on algebraic specifications can be found,
for example, in [Wirsing, 1990] or in [Ehrich et al., 1989, Ehrig et al., 1999].
With specification HDOC , we can abstractly define the hyperdocument given

in [Figure 1] [see Specification 2]. It is easy to check that Listing 1 properly
implements this specification briefly described in the sequel. For more details
on specifying hyperdocuments, we refer to [Doberkat, 1996b, Doberkat, 1998,
Fronk, 2000, Fronk, 2001, Fronk, 2002b, Fronk, 2002a].

ΣCOCKPIT = import ΣHDOC into
sorts cockpit
opns display : cockpit→ MedObj ,

resetbutton : cockpit → MedObj ,
resettext : cockpit → MedObj ,
infobutton : cockpit→ MedObj ,
infotext : cockpit→ MedObj ,
yes : cockpit → MedObj ,
no : cockpit → MedObj ,
composeDisplay : cockpit→ MedObj ,
linkDisplay : cockpit→ set(link),
linkResetText : cockpit→ set(link)

vars c : cockpit
axms

composeDisplay(c) = compose(resetbutton(c), display(c), infobutton(c)),

linkDisplay(c) =

{setLink(getBegin(composeDisplay(c)), getBegin(resettext(c))),

setLink(getEnd(composeDisplay(c)), getBegin(infotext(c)))},
linkResetT ext(c) =

linkAll(getOcc(resettext(c), yes(c)), getBegin(display(c)))

∪
linkAll(getOcc(resettext(c), no(c)), getBegin(display(c)))

Specification 2: Specifying a hypermedial car cockpit

Specification COCKPIT imports specification HDOC to achieve access to
the elements defined there. We introduce a sort cockpit and represent each
document declaration as a unary operation from this sort to sort MedObj .
Method composeDisplay is represented by an operation from sort cockpit to sort
MedObj , whereas the other methods yield a value in sort set(link). We introduce
axioms for these methods to give them meaning. Operation composeDisplay is

902 Fronk A: An Object-Oriented Approach to Design, Specification, and Implementation ...

equated with a compose-term, whereas the other operations are specified as sets
of links. Methods linkDisplay and linkResetTest create them, respectively.
A binding is respected when such a specification is interpreted by appropriate

algebras. We follow a loose semantics approach. Let C be a ΣCOCKPIT -algebra.
The sort MedObj is interpreted as the set of values given in a binding. We
consider [Listing 2], and use its values together with values Yes and No to
interpret the carrier-set CMedObj :

CMedObj = {Velocity.dsp,Reset .gif , Info.gif ,Reset .txt , Info.txt ,Yes ,No}
The interpretations of document declarations make use of these values. They

are given as follows:

displayC(c) = Velocity.dsp,

resetbuttonC(c) = Reset .gif infobuttonC(c) = Info.gif ,

resettextC(c) = Reset .txt infotextC(c) = Info.txt ,

yesC(c) = Yes, noC(c) = No

The term compose(resetbuttonC(c), displayC(c), infobuttonC(c)) interprets op-
eration composeDisplay , the link-creating operations as follows:

linkDisplayC(c) =

{(setLinkC(getBeginC(composeDisplayC(c)), getBeginC(resettextC(c)))),

(setLinkC(getEndC(composeDisplayC(c)), getBeginC(infotextC(c))))},
linkResetTextC(c) =

linkAllC(getOccC(resettextC(c), yesC(c)), getBeginC(displayC(c)))

∪
linkAllC(getOccC(resettextC(c),noC(c)), getBeginC(displayC(c)))

Together with setLinkC(p1, p2) = (p1, p2) and linkAllC(pset, p) = {(p′, p) |
p′ ∈ pset}, for all p, p1, p2 ∈ position and for all pset ∈ set(position), we can fix
the carrier-sets for position and link by evaluating the above given interpreta-
tions. For example, the beginning of the compositional is εReset.gif , or, equally,
1composeDisplay , since the compose-operation describes a tree with a root labeled
with compose(Reset .gif , . . .) together with three sons labeled with Reset .gif ,
Velocity.dsp, and Info.gif :

Cposition = { εReset.gif , 1Reset.txt , εInfo.gif ,

1Info.txt , 13Reset.txt, 14Reset.txt, εVelocity.gif },
Clink = { (εReset.gif , 1Reset.txt), (εInfo.gif , 1Info.txt),

(13Reset.txt, εVelocity.gif), (14Reset.txt , εVelocity.gif)}

903Fronk A: An Object-Oriented Approach to Design, Specification, and Implementation ...

It is easy to prove that C is a model for ΣCOCKPIT . Further, the last men-
tioned carrier-sets can be model-checked in advance of the hyperdocuments in-
corporation. For example, dangling links or erroneous connections can be de-
tected, reachability checks can be carried out formally. More details on analyzing
hyperlink structures can be found in [Fronk, 2002b]. Following [Definition 6], a
hyperdocument is given by the carrier-sets for MedObj , position , and link .
Algebraic specifications can be adopted to work hand in hand with object-

oriented implementation. In [Fronk, 2001], flat specifications are implemented
by simple classes as shown in this section. Specifications with hidden symbols
prepare the use of local classes, whereas hierarchical specifications allow to spec-
ify subclass relations; parameterized specifications correspond to generic classes.
These details are not vital to understand the development process discussed in
the present paper, although they become important when the process is applied
to more complex hyperlink structures. This is discussed in the next section.

5 Object-Oriented Design of Hyperdocuments

5.1 Using standard UML diagrams

The object-oriented implementation of a hyperdocument exploits classes, at-
tributes, methods, and relations between classes. A class groups media objects
and defines methods to create links between them. Thus, class relations, such
as aggregation or inheritance, relate groups of hyperlinked media objects, called
subdocuments. Apart from its hyperlink structure, a hyperdocument is thereby
given an object-oriented structure.
This immediately raises the question how a complex hyperdocument can be

broken down into subdocuments which are implemented within a single class.
A first approach is not to consider subdocuments at all, but to implement the
entire hyperdocument within one class. This kind of monolithic mapping may be
enforced by certain hardware restrictions. A second approach, in quite contrast,
embeds each media object into a single class. This kind of isomorphic mapping
requires extensive use of aggregation, since media objects, then represented by
class instances, have to be aggregated within a class such that this class can
define links between the aggregated media objects. A third approach is to find
reoccurring patterns of hyperlink structures in which similar link-creating meth-
ods are applied to different media objects, and to group these media objects
within a class. Since DoDL uses bindings, we can instantiate this class by means
of different bindings yielding similar link structures on different media objects.
Each group of media objects, i.e. each subdocument can be specified by means

of a flat specification as shown in the previous section. Relations between those
groups are captured by structured specifications. For example, inheritance allows
to reuse the methods defined in a subclass and to add new link-creating methods.

904 Fronk A: An Object-Oriented Approach to Design, Specification, and Implementation ...

Thus, a subdocument may be seen as an extension of another subdocument
having similar link structures or defining additional links. Aggregation means
that a hyperdocument consists of parts that are themselves hyperdocuments. The
aggregating hyperdocument may define hyperlinks between those subdocuments
and thus connects them.
Summing up, we identify groups of media objects each of them forms a sub-

document. Relating these groups means to set hyperlinks between these docu-
ments. If a group is implemented by a DoDL-class, we can easily denote the entire
link structure by a standard UML class-diagram (c.f. [Fowler and Scott, 1997]).
The methods are specified as shown in the previous section and can be imple-
mented using an object-oriented language like DoDL. Since the algebraic spec-
ifications we use respect object-oriented concepts, the UML class-diagram can
be specified respecting class relations. The implementation then works straight
forward. The development process is graphically captured in [Figure 2].

Hyperlink StructureAnalysis
Algebraic

Specification
Implementation

Object-
Oriented
Language

UML SpecificationDesign

Figure 2: A hyperdocument development process

Other UML diagrams are employed as usual for software development. That
is, sequence diagrams, for example, are used to model the interaction between
some media objects and the driver, state transition diagram, however, show the
individual behavior of media objects within such interactions. In the remainder
of this section, we focus on class diagrams.

5.2 A sample hypermedial car cockpit

A car cockpit as presented in [Figure 1] assembles instruments such as a speedo-
meter and information screens. Additionally, we allow for armature to operate,
for example, a CD player or a navigation device. Each information whether
displayed textually or graphically on the cockpit is represented by a media object.
We assume a car to be supplied with a digital screen such as a touch-screen or
some other device allowing to interact with the cockpit.
An advantage of such a digital cockpit is its flexibility. The set of media

objects displayed may change in correlation with the car’s surroundings. For
example, when driving on a Highway, the cockpit may provide a cruise control,

905Fronk A: An Object-Oriented Approach to Design, Specification, and Implementation ...

whereas driving in a city requires more detailed information on the destination.
Even checking the car at a garage may require to display technical information on
the car’s motor or its safety devices the driver is normally not interested in. We
call these sets of displayed media objects screens. Such a screen the cockpit may
present is shown in [Figure 3]. It consists of a speedometer (Velocity.dsp), a ro-
tation device (Rotation.dsp), as well as a navigation device (Navigation.dsp,
Address.dsp) together with some informative texts.

10080
60

20 180

140
120

40 160

km/h

78472
113,7reset Info

Do you like to reset the
counter for daily mileage?

Yes No

The reset-button allows
you to reset the daily
mileage counter to 0.

Close

Reset.txt

Info.txt

Velocity.dsp

Reset.gif Info.gif

43
2

0 8

6
5

1 7

1000
U/min

Rotation.dsp

Close

Choose a location by
pressing the House

symbol; then press GO to
start navigation.

GoInfo.txt

Help

Time to destination:

Current distance:

Enter Address:

Time
optimized

Distance
optimized

Set

66

Address.dsp Set.gif

Locate.gif

GOHelp.gif

Go.gif

Navigation.dsp

Figure 3: A complex hypermedial car cockpit

We distinguish between two different kinds of hyperlinks: (1) usual links
traversed by clicking some button display on a screen, and (2) links changing the
screen due to external events. For example, the navigation device may know when
the car approaches a city and then automatically switches from a screen showing
information relevant for driving on a Highway to a screen displaying information
important in cities. Here, sensors are responsible to traverse such a hyperlink.
These links may be attributed with values, thereby realizing a browsing behavior.
For example, a link changing from a screen Highway to a screen City may be
annotated with an attribute/value pair (location : city) and is traversed as soon
as a sensor sets the attribute location to the desired value. Monitoring such links
is left to the runtime environment operating the cockpit. Details can be found,
for example, in [Doberkat, 1996a] or [Stotts and Furuta, 1989].

906 Fronk A: An Object-Oriented Approach to Design, Specification, and Implementation ...

These ideas lead to a design process using standard UML briefly discuss in
the sequel. A more elaborated version can be found in [Fronk, 2001].
We apply Use Case-diagrams to model the interaction with the cockpit on

different screens. [Figure 4] grasps three of them in individual Use Cases each of
them can be refined such that the interaction within these screens is precisely
captured.

Driver

Highway

Garage

City

City:

Driver

Velocity

Reset

Info

Figure 4: A Use Case-diagram captures the interaction with the cockpit

The connections between those screens are modeled by a first conceptual
class-diagram. Each screen is model by a class. [Figure 5] shows how screens
are reachable from each other pointed out by UML navigabilities. Navigability
means that there exists at least one media object in screen Highway that is
hyperlinked to a media object in screen City. In the example, a garage screen
is only reachable from a city screen, that is, we do not model a garage aside a
Highway.

Highway City Garage
* *

**

Figure 5: A conceptual class-diagram captures reachability

The next step is to model the screens in more detail. We refer to [Figure 3]
and show its corresponding conceptual class-diagram in [Figure 6]. Each class
represents a media object which may be specialized through inheritance. We omit
some classes and relations for better readability. Aggregation models composed
media objects, whereas navigabilities again denote hyperlinks. Multiplicities in-
dicate how many different instances of concrete media objects can be related to
each other. For example, a reset button may invoke many different informative
texts, and each of these texts may be invoked by many other reset buttons used
in other compositional media objects. Classes in conceptual class-diagrams need
not necessarily to correspond to classes in specifying class-diagrams.

907Fronk A: An Object-Oriented Approach to Design, Specification, and Implementation ...

InfoScreen

Velocity Rotation Navigation

ResetButton InfoButton

1

1 1

1

ResetText InfoText

*

*

*

*

1

1

Help

Locate

Go

*
*

1

1

*

*

HelpText

*
*

Address

1 1

Set

*

1

*

*

Figure 6: A conceptual class-diagram models a screen

The final step is to model the cockpit through a specifying class-diagram.
[Figure 7] shows that a cockpit associates with a presentation. The attributes
and methods defined in class Cockpit are responsible to make the cockpit work.
For example, method selectPresentation is responsible to control sensors and
to trigger a screen changing event. Screens are special presentations. Again, we
omit some classes for better readability. Each screen is equipped with methods to
display compositional media objects such as the speedometer, which is declared
as an attribute of type Velocity in class CityScreen. Layout is encoded within
methods like connectInstruments responsible to both put instruments on the
screen and to set links between them if desired. Class Velocity represents such
a compositional media object. It is a subclass of a generalized display containing
methods to access positions, to set links, and to invoke informative texts.
The methods can be specified using structured algebraic specifications like

discussed in [Section 4]. On the algebraic level, the impact of concrete media
objects on the hyperlink structure can be tested in advance of the hyperdocu-
ments implementation which then equates with usual object-oriented software
development shown in [Section 3].

6 Conclusion and Future Work

We proposed a development process for hyperdocuments using standard UML,
algebraic specification and object-oriented implementation. The process com-
pares to usual software development. Thereby, we did not extend notations like
UML (c.f. [Engels and Sauer, 2002, Garrido et al., 1999]) or State Charts (c.f.
[Paulo et al., 1999]) and still consider specific hypermedial aspects. Moreover,
software-technical principles and ideas were brought into the hypermedia do-
main leading to structured media objects and documents in such a way usual

908 Fronk A: An Object-Oriented Approach to Design, Specification, and Implementation ...

+showInstruments() : set[link]
+showArmatures() : set[link]
+displayAll() : set[link]

Presentation

+isWorking() : bool
+selectPresentation() : Presentation
+main() : set[link]

-current : Presentation
-city : CityScreen
-highway : Highway
-garage : Garage

Cockpit

*

1

+connectInstruments() : set[link]

-vel : Velocity
-rot : Rotation
-navigate : Navigation

CityScreen
+compose(in mobj : sequence[MedObj]) : MedObj
+getBegin() : position
+getEnd() : position
+setLink(in source : MedObj, in sink : MedObj) : link
+showInfo(in message : Text) : link

Display

+reset() : link

-device : MedObj
-resetbutton : MedObj
-infobutton : MedObj
-resettext : MedObj
-infotext : MedObj

Velocity

-device : MedObj

Rotation

1

*

+enterAddress() : MedObj

-device : MedObj
-go : MedObj
-locate : MedObj
-help : MedObj

Navigation

+set() : MedObj

-device : MedObj
-set : MedObj
-timeOpt : MedObj
-distanceOpt : MedObj

Address

1 1

Figure 7: A specifying class-diagram models the entire cockpit

software development can carry over. That is, we rather adapt hypermedia de-
velopment to software development than vice versa.
In [Fronk, 2001], both DoDL and hyperdocuments were subject to formal in-

vestigations concerning the language’s denotational semantics given by algebras,
as well as the hyperlink structure, opening properties of structured media ob-
jects and hyperlinks to verification on a formal, algebraic level. More details on
this analysis phase, which we refer to as the test phase of a hyperlink structure,
can be found in [Fronk, 2002b]. The specification of hyperdocuments proposed in
[Section 4] develops its full power when the number of hyperlinks exceeds a level
that makes it cumbersome to analyze hyperlinks by walking through the entire
hyperdocument manually. Hence, formally testing link structures saves time, is
less error-prone, helps to ensure certain properties, and, last not least, allows
to mathematically prove structural and hyperlink properties. This is important,
for example, in such environments where operating a hyperdocument relies on
reasoning about its security.
Media objects and their behavior as well as browsing are currently under

investigation following the same ideas as sketched in the present paper. We are
developing the car cockpit mentioned in [Section 5]. Apart from implementing

909Fronk A: An Object-Oriented Approach to Design, Specification, and Implementation ...

suitable interfaces to media objects allowing for accessing positions, layout as
well as communication between media objects are considered in greater detail.
We focus on ”active links” which allow to exchange data between media ob-
jects, and to trigger actions. This adds behavior to links which then can become
active when traversed, realizing a browsing behavior given by the link’s individ-
ual implementation. Techniques to implement complex graphical user interfaces
(GUI’s) and hypermedial issues are brought together. This is feasible due to com-
paring the development of hyperdocuments with usual software development. A
hyperdocument can in this approach be understood as a GUI containing hy-
perlinked elements. As much as the implementation of a GUI’s functionality is
separated from its layout, we separate both the hyperdocuments structural and
navigational aspects from the presentation of its elements.

Acknowledgements
We gratefully thank Prof. Dr. E. E. Doberkat, who supervised the author’s PhD
thesis, for his important and constructive remarks on the thesis. The discussions
with Dr. Jörg Westbomke helped to clarify some interesting points concerning
the present paper.

References

[Chang and Shih, 2002] Chang, S. K. and Shih, T. K. (2002). Multimedia software
engineering. In Chang, S. K., editor, Handbook of Software Engineering & Knowledge
Engineering, volume 2, Emerging Technologies, pages 1 – 20. World Scientific.

[Costagliola et al., 2002] Costagliola, G., Ferrucci, F., and Francese, R. (2002). Web
engineering: Models and methodologies for the design of hypermedia applications. In
Chang, S. K., editor, Handbook of Software Engineering & Knowledge Engineering,
volume 2, Emerging Technologies, pages 181 – 199. World Scientific.

[Deitel et al., 2001] Deitel, H. M., Deitel, P. J., Nieto, T. R., Lin, T. M., and Sadhu,
P. (2001). XML How to Program. Prentice Hall.

[Doberkat, 1996a] Doberkat, E.-E. (1996a). Browsing a hyperdocument. Memoran-
dum 87, Universität Dortmund, Fachbereich Informatik, Lehrstuhl für Software-
Technologie.

[Doberkat, 1996b] Doberkat, E.-E. (1996b). A language for specifying hyperdocu-
ments. Software - Concepts and Tools, 17:163–172.

[Doberkat, 1998] Doberkat, E.-E. (1998). Using logic for the specification of hyperme-
dia documents. In Balderjahn, J., Mathar, R., and Schader, M., editors, Classifica-
tion, Data Analysis and Data Highways, pages 205–212. Springer.

[Ehrich et al., 1989] Ehrich, H.-D., Gogolla, M., and Lipeck, U. W. (1989). Algebrais-
che Spezifikation abstrakter Datentypen. Teubner.

[Ehrig et al., 1999] Ehrig, H., Mahr, B., Cornelius, F., Grosse-Rhode, M., and Zeitz,
P. (1999). Mathematisch-strukturelle Grundlagen der Informatik. Springer.

[Engels and Sauer, 2002] Engels, G. and Sauer, S. (2002). Object-oriented modeling of
multimedia applications. In Chang, S. K., editor, Handbook of Software Engineering
& Knowledge Engineering, volume 2, Emerging Technologies, pages 21 – 52. World
Scientific.

[Fowler and Scott, 1997] Fowler, M. and Scott, K. (1997). UML distilled: applying the
standard object modeling notation. Addison-Wesley.

910 Fronk A: An Object-Oriented Approach to Design, Specification, and Implementation ...

[Fronk, 1999] Fronk, A. (1999). Support for hypertext maintenance. IEEE Computer.
Letter to the Editor.

[Fronk, 2000] Fronk, A. (2000). A tool system for an object-oriented approach to
construction and maintenance of hypermedia documents. In Gaul, W. and Ritter,
G., editors, Classification, Automation and New Media, Studies in Classification,
Data Analysis, and Knowledge Organization, pages 265 – 272. Springer, 2002.

[Fronk, 2001] Fronk, A. (2001). Algebraische Semantik einer objektorientierten
Sprache zur Spezifikation von Hyperdokumenten. PhD thesis, Lehrstuhl Software-
Technologie, Fachbereich Informatik, Universität Dortmund, Shaker Verlag, 2002.

[Fronk, 2002a] Fronk, A. (2002a). An approach to algebraic semantics of object-
oriented languages. Memorandum 128, Lehrstuhl Software-Technologie, Fachbereich
Informatik, Universität Dortmund.

[Fronk, 2002b] Fronk, A. (2002b). Towards the algebraic analysis of hyperlink struc-
tures. Memorandum 126, Lehrstuhl Software-Technologie, Fachbereich Informatik,
Universität Dortmund.

[Fronk and Pleumann, 1999] Fronk, A. and Pleumann, J. (1999). Der DoDL-Compiler.
Memorandum 100, Universität Dortmund, Fachbereich Informatik, Lehrstuhl für
Software-Technologie. ISSN 0933-7725.

[Gamma et al., 1995] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995).
Design Patterns: elements of reusable object-oriented software. Addison-Wesley.

[Garrido et al., 1999] Garrido, A., Helmerich, A., Koch, N., Mandel, L., Rossi, G.,
Olsina, L., and Wirsing, M. (1999). Hyper-UML: Specification and modeling of mul-
timedia and hypermedia applications in distributed systems. In 2. Workshop on the
German-Argentinian Bilateral Program for Scientific and Technological Cooperation,
Königswinter, Germany.

[Garzotto and Paolini, 1993] Garzotto, F. and Paolini, P. (1993). HDM – a model-
based approach to hypertext application design. ACM Transactions on Information
Systems, 11(1):1 – 26.

[Ghezzi et al., 1991] Ghezzi, C., Jazayeri, M., and Mandrioli, D. (1991). Fundamentals
of Software-Engineering. Prentice Hall.

[Gloor, 1997] Gloor, P. (1997). Elements of hypermedia design: techniques for naviga-
tion & visualization in cyberspace. Birkhäuser.

[Halasz and Schwartz, 1994] Halasz, F. and Schwartz, M. (1994). The dexter hyper-
text reference model. Communications of the ACM, 37(2):30–39.

[Hardman et al., 1994] Hardman, L., Bulterman, D. C., and van Rossum, G. (1994).
The amsterdam hypermedia model: Adding time and context to the dexter model.
Communications of the ACM, 37(2):50 – 62.

[Isakowitz et al., 1995] Isakowitz, T., Sthor, E., and Balasubramanian, P. (1995).
RMM: A methodology for structured hypermedia design. Communications of the
ACM, 38(8):34 – 44.

[Lowe and Hall, 1999] Lowe, D. and Hall, W. (1999). Hypermedia & the Web - an
engineering approach. Wiley & Sons.

[Padawitz, 2001] Padawitz, P. (2001). Sample swinging types. http://ls5.cs.
uni-dortmund.de/~peter. Manuskript.

[Paulo et al., 1999] Paulo, F. B., Masiero, P. C., and de Oliveira, M. C. F. (1999). Hy-
percharts: Extended statecharts to support hypermedia specification. IEEE Trans-
actions on Software Engineering, 25(1):33–49.

[Pleumann, 2000] Pleumann, J. (2000). dodl2html - Ein Generator zum Erzeugen
von graphspezifizierten Hyperdokumenten. Master’s thesis, Universität Dortmund,
Fachbereich Informatik, Lehrstuhl für Software-Technologie.

[Schwabe and Rossi, 1998] Schwabe, D. and Rossi, G. (1998). An object-oriented ap-
proach to web-based application design. Wiley & Sons.

[Stotts and Furuta, 1989] Stotts, P. D. and Furuta, R. (1989). Petri-net-based hyper-
text: Document structure with browsing semantics. ACM Transactions on Informa-
tion Systems, 7(1):3 – 29.

911Fronk A: An Object-Oriented Approach to Design, Specification, and Implementation ...

[Stotts et al., 1998] Stotts, P. D., Furuta, R., and Cabarrus, C. R. (1998). Hyper-
documents as automata: Verification of trace-based browsing properties by model
checking. ACM Transactions on Information Systems, 16(1):1–30.

[Tochtermann, 1994] Tochtermann, K. (1994). Ein Modell für Hypermedia. PhD the-
sis, Universität Dortmund, Fachbereich Informatik, Lehrstuhl 1.

[Wirsing, 1990] Wirsing, M. (1990). Algebraic specifications. In van Leeuwen, J.,
editor, Handbook of Theoretical Computer Science, volume B: Formal Methods and
Semantics, pages 675 – 788. Elsevier.

912 Fronk A: An Object-Oriented Approach to Design, Specification, and Implementation ...

