
On Second Generation Distributed Component Systems

Klaus Schmaranz
(Institute for Information Processing and Computer Supported New Media

(IICM), Graz, Austria
kschmar@iicm.edu)

Abstract: Two of today’s most used buzz-words in the context of software develop-
ment are the terms Componentware and Distributed Object-System. The combination
of both ideas is then called a Distributed Component-System, meaning a component-
ware approach where the components are distributed across the network. Today’s ap-
proaches fulfill the application developers’ needs only partly. Also, most are more or
less cumbersome to use. I want to call such part-solutions like e.g. Corba, Enterprise
Java-Beans and others first generation distributed component systems. In fact, Corba
has a different origin, but for the moment let me consider it to be a first generation
componentware system, too.

In this paper I want to identify the requirements that have to be fulfilled to design and
implement a second generation distributed component system. There is one main aspect
behind all of the ideas of second generation systems: a good distributed component
system is one that the application programmers don’t notice.

The open-source project Dinopolis is currently in its early implementation phase and
can be considered the first second-generation distributed component system accord-
ing to the requirements that are identified in the following. Therefore the very basic
cornerstones of Dinopolis are discussed at the end of this paper.

Key Words: Distributed Object System, Distributed Component System, Compo-
nentware, Java, Network Transparency Aspects, Robust Globally Unique Handles, Dis-
tributed Relations, Middleware, Dinopolis.

Category: D.1.5, D.2, D.2.6, D.2.7

1 Introduction

Ages ago (in terms of fast-evolving computer-science) the object-oriented soft-
ware development paradigm was introduced. It allowed easy mastering of huge
software packages by proper encapsulation. The OO-paradigm is still the para-
digm of choice for good reasons for most modern programming languages. Prop-
erly applied (and only then!) the OO-paradigm makes, amongst other benefits,
code-reuse easy, thus shortening turnaround times in the software-development
cycle. However, due to the existence of OO programming languages, the term
object-orientation is understood as an implementation of the encapsulation prin-
ciple on the programming-language level today.

It did not take long until software developers wanted more than to reuse code
by linking additional libraries to their software at compile-time and recompile
the whole project. What was really desired was to have reusable entities with well

Journal of Universal Computer Science, vol. 8, no. 1 (2002), 97-116
submitted: 21/12/01, accepted: 16/1/02, appeared: 28/1/02 J.UCS

defined interfaces that could be utilized during runtime. Nowadays these entities
are called components. Software utilizing this paradigm is called componentware.
The logical next step was to build software using the component-based approach
with components that are distributed across a network, resulting in so-called
distributed component systems.

Very soon it was recognized that some sort of standardized framework is
needed which embeds the single components and adds the network-distribution
facilities. Corba was one of the first approaches in this direction (see [OMG]).
With the introduction of Java several other distributed component frameworks
evolved, such as ObjectSpace Voyager (see [Voyager]) or Sun’s approach called
Enterprise Java Beans (see [EJB]). Let me call such systems first generation
distributed component systems to indicate two important points:
– The existing frameworks are great and are definitively a large step into the

right direction.
– Unfortunately all those systems also have some shortcomings creating a

definitive need for what I would like to call second generation distributed
component systems.

I do not want to start a religious discussion with the conclusion that all ex-
isting systems are bad, have to be discarded and something brand-new has to
be invented. In my opinion this would result in “just another system” which
overcomes identified problems but causes others, starting the next religious dis-
cussion. The scientists and developers who thought about and built the first-
generation systems knew very well what they were doing. However, with every
single problem that is solved, new ideas and new needs evolve.

Therefore, before I come to the analysis of what in my opinion really is
essential for a distributed component system to be a second generation system
I want to come straight to one of the conclusions of the following analysis: it
is possible and desirable to build a middleware-layer on top of existing systems.
The architecture proposed in this paper creates a second-generation system as a
combination of existing software with some additional mechanisms.

Why this middleware-layer is desirable, how it works and especially what de-
fines a second generation system in my eyes, is the topic of this paper. Therefore
let me start at the very beginning with the identification of the requirements
from the point of view of developers who write massively distributed applica-
tions, data- and computing-wise, in large scale heterogeneous networks.

2 Transparency – the Key to Distribution

There is a good reason why I started the introducion of this paper by mentioning
the OO-paradigm: no matter if we are talking about classes, objects, modules
or components – application developers want to utilize well-defined objects with

98 Schmaranz K.: On Second Generation Distributed Component Systems

well-defined interfaces in their programs. Whatever happens behind the scenes,
whether or not there are components or distribution, heterogeneous networks or
stand-alone systems, details have to be encapsulated and therefore hidden from
the developer who works on a different abstraction level! The abstraction level
for my considerations at the moment is: everything is encapsulated in an object
and developers do not care what the object encapsulates. The common term for
this kind of hiding complexity by encapsulation is transparency. It means to
let “something” happen behind the scenes without putting the burden on the
developers to distinguish between different situations.

I used the term something above, because there are many important trans-
parency-aspects when considering distributed component systems. This will be
discussed below.

2.1 Component Transparency – Part 1

This paper should be about component -systems and now I am at the level of dis-
cussing OO-aspects – why? The reason is that according to the definition above,
the term component describes a reusable entity with well-defined interfaces that
can be utilized during runtime. It does not have to be linked to a program stat-
ically during compile-time. Considering this definition even a whole application
could be a component, as long as it provides a well-defined interface that makes
it possible to access it from within a different application during runtime.

The goal is it to hide different kinds of components behind the scenes by
encapsulating them. Inside applications the developers always work with objects,
no matter if they are simple statically linked objects or if they encapsulate
dynamically instantiable and accessible components.

At a first glance the requirement for component transparency is fulfilled by
first generation systems. However, this indeed is only true at a first glance if we
consider what happens behind the scenes when using e.g. Enterprise Java-Beans
or Corba:
– Objects inside the so-called client represent external components: this is

what we want.
– However, first generation systems usually do not give you control over the

instances of external components. Usually clients cannot require that a new
remote component shall be instantiated. They can just connect to an already
instantiated component. Depending on the system it is also possible that
components are instantiated on the fly when the first request occurs (e.g.
with RMI’s object-activation mechanism, see also [RMI]). Nevertheless all
following requests from all different clients then refer to the same component.

– The fact that one can connect to instantiated components but not influence
instantiation by means of system-immanent mechanisms leads to situations

99Schmaranz K.: On Second Generation Distributed Component Systems

where special “managing components” have to be written that take over this
task.
Distributed component systems have to be more than just allowing to invoke

methods on remote objects. Inside applications a request to create a new instance
of a class is usual (e.g. in Java my_object = new MyClass();). Requiring com-
ponent transparency an instance of MyClass could also require that a remote
object is instantiated. In this case a remote instance has to be created and en-
capsulated by a local stub. The required instance transparency mechanisms also
have to provide control over access-exclusiveness.

2.2 Network Transparency

Network transparency means that application developers do not have to know
whether they are working with a local or with a remote-object. In order not to
have to distinguish between different programming languages such as e.g. C++
which has pointers and Java which does not, the term object-reference will be
used from now on. Object-reference means that an object is somehow held in an
application. Application-programmers can work with this object exactly in the
way as is pre-determined by the programming-language used.

Speaking in OO-terms we are talking about classes that define data-types
and objects that represent instances of classes. A network-transparent object
is an object that is an instance of a certain class, no matter if the instance is
residing inside the application or on a different computer. It can very well be that
several instances of a certain class are residing on the local machine and several
other instances of the same class are residing on different remote machines.
Nevertheless these instances all look the same to the application programmers:
it is always possible to work with them as if they were residing inside their own
application. The network-aspect is hidden behind the scenes. Therefore local and
remote-objects are fully interchangeable.

The aspect of network transparency is one of the aspects that all first gen-
eration systems fulfill more or less in one way or another. Usually, some sort
of static stub-skeleton model or a dynamic derivative of it is implemented to
achieve this behaviour.

There is one problem remaining with network transparent objects, no mat-
ter how they are implemented: it is always possible that network connections
fail. Therefore, no matter how well-designed and well-implemented the network-
logic may be, some risk remains that requests fail due to network problems.
Whatever topics may be discussed here, e.g. what happens to time-critical ap-
plications, the problem is system-immanent and has to be dealt with for every
single application. Nevertheless it is easier to deal with this system-immanent
problem if possible failure is a well-defined part of all object-interfaces. Fortu-

100 Schmaranz K.: On Second Generation Distributed Component Systems

nately the developers of the first generation systems seem to share this opinion
and all systems provide more or less intelligent error-alert facilities for this case.

No matter how well network transparency is implemented in existing first
generation systems, there are several aspects that are usually overlooked: having
a remote object-reference in hands and working with it is one topic. The other
topic is: how do we obtain such a remote reference? The following transparency
requirements deal with exactly this problem more in detail.

2.3 Component Transparency – Part 2

To be able to find satisfactory answers to questions about obtaining remote ref-
erences and dealing with them, it is necessary to pick up the component trans-
parency thread again and find a detailed and comprehensive definition of the
term component.

All first generation systems have one feature in common: they only deal with
“their” native kind of components. First generation systems are not able to work
with arbitrary content that is stored “somewhere” and consider this arbitrary
content a component. Neither do first generation systems usually deal with other
component systems in a cooperative manner in the sense that it would be possible
to “combine” different systems.

Apparently, designers of first generation component systems did not take an
approach that is general enough. I will now present a more holistic definition for
distributed component systems:
– Looking at the world from inside a distributed component system, everything

in the whole distributed world will be termed a component, no matter how
granular components become. In this definition it does not matter whether
a component represents a simple file in a filesystem (as a wrapper), a real re-
mote object, a database-entry or maybe a remote object of a different system
(e.g. Corba), or an application. It can also be that a component represents
a document, e.g. an XML-document. This document is itself structured as a
DOM-tree using components as nodes.

– Speaking of components that are composed of several sub-components two
different cases can be distinguished:
1. The entity that is represented by the component exists as one single

piece and sub-components represent its logical structure.
2. The entity that is represented by the component is made up of differ-

ent chunks. Sub-components represent the individual chunks and the
component that can be seen is in fact a container combining several
sub-components to one logical virtual composite.

– A component has to be addressable in a globally unique way. This require-
ment applies to simple components (e.g. components wrapping single files)

101Schmaranz K.: On Second Generation Distributed Component Systems

and also to compound components. When addressing a compound compo-
nent only the top-level component (i.e. the container) is addressed and the
rest (i.e. where the parts come from) is hidden behind the scenes. This be-
haviour could be called compound transparancy. However, we must keep in
mind that globally unique addressing in a dynamic world is a topic of its
own (objects can move!). Aspects of globally unique dynamic addressing will
be discussed in section 2.7.

– The world does not consist of arbitrary components hanging around some-
where in a vacuum being accessible just if we know the right key. It has
to be possible to navigate through the componentspace either by means of
directed and bidirectional relations and also by means of search-operations.

– Allowing relations between components means that arbitrary components
can be interconnected, no matter in which system they reside. A detailed
discussion about relations is postponed till section 2.8.

– Additional information like the content-type of the data that is encapsulated
in an object or administrative data like author, creation date, etc. is also
something that has to be handled in a transparent manner. Hence part of
the component transparency requirement is unified handling of meta-data.

– Components have special services that they provide. Considering e.g. Java
Beans, the Beans can be asked for their abilities. In our case components can
also be wrappers for everything from simple content to applications, com-
ponents can be made-up of sub-components, etc. A necessary requirement
is that the abilities of the wrapped resource are passed on transparently to
the components’ users, i.e. the application programmers.

– There are cases where components can become active themselves, e.g. a com-
ponent wrapping a timeplanner application must be able to pass-on triggers
to other components in the system for reminders that come from the appli-
cation.
After the above two rounds of discussion about aspects of component trans-

parency it should be clear where transparency is needed. At a first glance it thus
looks as if we could come to an exact definition of the term component now. How-
ever, some questions still remain if we look at requirements like globally unique
stable addressing, relation-management or compound-components. Therefore let
us first consider the remaining transparency aspects before presenting the final
result.

2.4 Persistence Transparency

As mentioned, components can themselves be composed of several sub-com-
ponents that can reside on different systems. For example it can happen that
documents and meta-data describing the documents reside in different systems.
It can happen that documents are stored in a filesystem, whereas additional

102 Schmaranz K.: On Second Generation Distributed Component Systems

meta-data such as keywords, descriptions, etc. are stored in a database. This
happens e.g. very often in electronic publishing applications.

From the application programmers’ point of view it is desirable to have one
component that encapsulates the existence of different locations of the compo-
nent’s persistent data, making it unnoticable for users. This becomes especially
important if a storage-system is replaced by a different one. As an example it can
happen that meta-data is first stored in the filesystem and later, as the amount
of data increases, all meta-data is moved to a database.

For this reason not only persistence transparency in the sense of static trans-
parency is required. Persistence transparency has to cover the dynamic case too,
where parts of the persistent state of a component can be moved to a differ-
ent location. One more dynamic case would be that e.g. the persistent state of
a component is stored as one single XML file in the filesystem including con-
tent and meta-data. In this case the application works with a simple component
wrapping it. Later, the decision is made to move the meta-data to a database
to make it searchable. Hence a simple component is converted into a combined
component with meta-data from the server and the “rest” from the filesystem.

Back to the question in section 2.2: how do we obtain a reference? The re-
quirement for dynamic persistence transparency rules out the use of addresses
like URLs. The transparency requirements discussed later in section 2.5, sec-
tion 2.6, section 2.7, section 2.8 and section 2.9 back up this conclusion.

2.5 Protocol Transparency

As has already been mentioned – components can reside “anywhere” and can
move around. Cases like first the persistent data of a component was in the
filesystem on computer A and now the component is residing on an http-Server
on computer B and arbitrary many other scenarios are thinkable.

For this reason a protocol as a part of an address for a remote reference, like
in URLs (see also [Berners-Lee et al 1994]), is unusable. The protocol to access
a remote server, be it just a data-provider like an http-Server or a distributed
object system like Corba, has to be completely encapsulated.

2.6 Schema Transparency

More or less the same problem, just from a different point of view, can be
found when having a closer look at address-schemata (see [Terry 1984] and
[Znati, Molka 1992]):

In most of today’s systems addresses are somehow structured hierarchi-
cally, following an implicit or explicit schema. For example, file-systems have
a directory-hierarchy that is used for two different purposes: addressing and

103Schmaranz K.: On Second Generation Distributed Component Systems

navigation. The implicit schema here is the existence of hierarchical subdirec-
tories that form a fully qualified path for addressing data. The explicit schema
here is the way users or administrators structure the subdirectories to allow easy
navigation.

Data in databases is accessed by queries and the queries are also based on a
distinct schema that is designed by the developers. This schema is reflected in the
queries needed to access data. In any case database-access and filesystem-access
are completely different, even if we would encapsulate the protocol transparently
as required in section 2.5. Who does not know the cryptic URL-encoded queries
for accessing databases with a Web-front-end?

Imagine further that data-chunks are moved from one system to another (e.g.
from the filesystem to a database or from one database to a different one with a
different underlying schema). In this case all addresses obtained from the “old”
system are unusable. Therefore it is also necessary to hide the schema from the
developers.

It is worth to have another look at navigation in the address-space: Mixing up
addressing and navigation is definitively a very bad idea, because every attempt
to restructure the component-space would break the schema. Therefore those
two issues, addressing and navigation, have to be strictly separated as will be
pointed out in section 2.8.

2.7 Location Transparency

Several times it has been stated in this paper that moving components around
can break the addressing mechanism. Hence the problems that can arise should
be clear enough by now.

Let us summarize the resulting very strong requirement here: remote handles
have to be robust against all restructuring operations.

These operations include moving components around, splitting them up into
sub-components that are virtually merged in a container, merging split-up sub-
components to one “real” component rather than a virtual container and moving
sub-components around without breaking the virtually merged components.

From this requirement it finally becomes clear that addresses in the form of
pointers are a problem, no matter if we take URLs or any other mechanism that
points to a location.

The solution is what can be called a globally unique handle, which represents a
symbolic name. The mechanism behind these handles is a little more complicated
than it initially looks. There are several aspects of scalability which have to be
considered. A naive lookup-service implementation would not work for a world-
wide distributed componentspace. However, for our further considerations it
is enough to know that in principle globally unique handles solve the location
transparency problem. A detailed discussion how the scalability problems can be

104 Schmaranz K.: On Second Generation Distributed Component Systems

overcome is beyond the scope of this paper. These essential problems are solved
and several algorithms have been developed to keep scalability very well under
control (see [Schmaranz 2002] for details). Such very specialized algorithms do
not fit into this general discussion of second generation distributed component
systems.

2.8 Relation Transparency

There is little need to mention that links between data are an essential part
of every modern document-, information- and knowledge-management system.
However, there is need for discussion what the requirements for a modern imple-
mentation of the node-link paradigm are. From the discussion of the “holistic”
view of the system in section 2.3 it is already known that essential types of appli-
cations built with component frameworks will surely be document-, information-
and knowledge-management systems.

Therefore let us have a closer look at the requirements that such systems
have, to derive the technical requirements for distributed component systems:

– It is clear that hyperlinks embedded in e.g. HTML-documents are not the
solution we all are looking for (see [Andrews et al 1995]). Hyperlinks defini-
tively have to be separated from documents (at least internally).

– It is also clear that hyperlinks have to be robust against moving the desti-
nation to a different location. In this case the hyperlinks have to point to
the new location.

– It has to be possible to interlink arbitrary kinds of documents, no matter
where they reside and no matter which type they have. And this is exactly
the point, why the term hyperlink seems unappropriate. There is much
more behind this requirement than one would suspect. What is definitively
needed, is a general mechanism to define arbitrary kinds of relations between
arbitrary components. By arbitrary kinds of relations things like a link to
a destination or an inclusion or just an interconnection are meant. The
list what a relation can represent is endless and depends on the needs of a
concrete application. Relations cannot only represent navigational structure,
they can also be used for internal structuring purposes, e.g. for combination
of several components into one virtual component.
It should be clear that there is a myriad of examples how data can be con-

nected. Considering the relation-topic from a more technical point-of-view, one
very important group of features comes into mind, resulting in very essential
requirements for distributed component systems:

Components can, amongst other things, also represent functional modules
(as is the case with e.g. Java Beans). Such functional modules are combined
in one way or another to make up whole applications. In our case the single

105Schmaranz K.: On Second Generation Distributed Component Systems

components can be arbitrarily distributed across several computers resulting
in a wholly distributed application. All transparency requirements that have
already been discussed above also fully apply for this case. For example, if a
functional module is moved from one location to the other this must not break
the distributed application!

There is one more requirement that can be derived from the discussions in
section 2.6 and section 2.7: there it was stated that addressing and navigation
are technically and semantically two completely different mechamisms that have
to be strictly separated. The solution for the dynamic location transparency
problem is the use of globally unique handles. Relations are now the method of
choice to implement navigation.

In fact, from the users’ point of view, navigation always comes down to either
moving around in a hierarchy (e.g. the subdirectory-structure of a filesystem)
or in a graph (e.g. hyperlinks on the Web or symbolic links in Unix filesystems).
In case of a hierarchy we have to deal with parent-child relations, in case of a
graph we have to deal with directed relations from one arbitrary point to a dif-
ferent arbitrary point. Relations always represent some kind of logical structure.
Addresses always represent a technical structure.

With these points in mind the requirements for a relation mechanism in
second generation distributed component systems can be formulated as follows:
– For the sake of generality n:m-relations have to be used. In most cases only

1:1 or 1:n-relations will be needed in applications. Nevertheless there are
situations where the general n:m-case applies (e.g. when interconnecting two
version-controlled components). One can simulate n:m-relations by using
many 1:1 relations, but this would cause avoidable overhead. Therefore,
from now on the term relation in this paper is always understood to be an
n:m-relation.

– The endpoints of relations are always attached to components. If endpoints
of relations shall point inside components, e.g. refer to a paragraph in a
document, this can be achieved as well. Two cases exist here:
1. The endpoint of a relation may be a component that represents a part

of a document, e.g. a paragraph.
2. If the granularity of sub-components is not small enough, a relation has

to point to something that is just part of a component. In this case
additional information can be attached to the endpoint of this relation
at issue that reflects this fact.

Jumping a little ahead, the advantage of attaching endpoints to compo-
nents is that robustness concerning component-movement problems can be
achieved easily. If e.g. a paragraph of a document is represented as a com-
ponent and the paragraph is moved inside the document, the relation auto-
matically points to the new location of the paragraph in the document.

106 Schmaranz K.: On Second Generation Distributed Component Systems

– Relations can be of arbitrary kind (directed, bidirectional, inclusion, etc.)
and of arbitrary user- or application-defined type (inline-image, belonging-
together, interesting-additional-information, etc.).

– Arbitrarily many relation-endpoints can be attached to a component
– Relations have to be robust against component-movement problems.
– It has to be possible that relations between relations exist.
– Internally relations have to be implemented bidirectionally, so that it is al-

ways possible to find all n + m endpoints of a relation. This requirement is an
absolute (internal) necessity to fulfill the movement-robustness requirement.

– Relations and single endpoints of relations can have arbitrary meta-infor-
mation attached.
Considering these requirements it becomes clear, why the heading relation

transparency was chosen for this section: with the definitions that “everything is
represented by components” and “relations interconnect arbitrary components”
it is possible to define relations between arbitrary data, no matter if the data-
format natively supports relations or not. If the underlying data-format supports
relations they are passed on to the component transparently. If not, the relations
are managed by the system and stored in a separate database. Arbitrary mix-
tures between implicit and explicit management of relations for one component
are possible.

2.9 Replication Transparency

There are two main factors that make replication of components desirable:
1. If many users want to use one and the same component it can happen that

either the machine where the component resides or even the network in this
area become overloaded.

2. Network connections to a certain location may be slow from parts of the
network.
Thus, since response time may be rather unsatisfactory, some sort of repli-

cation mechanism would be desirable. By using globally unique handles this
can easily be implemented: resolving a handle can return an appropriate remote
reference to a replica of the desired component rather than to the original. There-
fore replication of components is fully transparent in a sense that requestors do
not notice at all whether they obtain a reference to a replica or to the original.

Sofar this mechanism corresponds to a standard caching mechanism as can
be found in every Proxy. The difference between simply caching a component or
having a real replica is that caching is unsynchronized from the point of view of
the original, while replication is not. Replication has to be implemented in a way
that the original knows of existing replicas and can set them dirty if something
changes in the state of the original.

107Schmaranz K.: On Second Generation Distributed Component Systems

From this point of view there exist three kinds of replicas, depending on the
nature of the component itself and depending on the usage of the component:
Unsynchronized replicas: these are replicas, where synchronization is not

necessary at all because the original component is stateless. The mech-
anism in this case corresponds to a standard caching mechanism without
dirty-flagging. However one thing has to be kept in mind that forces real
replication (i.e. the original knows about existing replicas): if a component
is deleted, the replicas have to be deleted too. Therefore just for the case of
component deletion either close synchronization or loose synchronization as
described below are necessary. For this reason unsynchronized replicas may
only exist in systems that do not allow object deletion. Hence such systems
make only limited sense, but for the sake of completeness of the discussion
this case is mentioned here.

Closely synchronized replicas: these are replicas, where updates of the in-
ternal state are essential for working with them. The problem with this kind
of replicas is that delays in setting them dirty influences the result in an
unacceptable way. Therefore it has to be made sure that the actual state of
the original component is always reflected in the replicas. Especially when
dealing with collaboration aspects like concurrent editing, close synchroniza-
tion is the method of choice. It might be suspected that this means that
the original has to be contacted anyway for each request and that there-
fore replication does not make any sense at all in this case. However, this
is not really true. Timestamped requests together with replicated version-
update information reduce network traffic for closely synchronized replicas
enormously.

Loosely synchronized replicas: these are replicas, where delays in updating
the internal state of components are not critical, as long as the delays can
be kept within certain boundaries. Usually some seconds of delay, some-
times even minutes or hours could be considered uncritical. Just think of a
standard WWW-server: when pages are changed it usually does not matter
at all, if some users see the old page rather than the new one, even if the
new page would already be available for some seconds. This kind of delay
is quite usual and commonly accepted today if you consider all the caching
mechanisms in proxies and in common browsers. However, one point has to
be kept in mind when discussing loosely synchronized replicas: it has to be
possible to force a lookup, if an update occured. With this additional forced
synchronization that can be triggered by the replica, one can at least make
sure to obtain an updated version if this is absolutely desired.
Speaking of replications and updates the first thing that usually comes into

mind is the problem that a requestor obtains an outdated version of an ob-
ject. However, also the opposite can be a problem: a requestor could obtain a

108 Schmaranz K.: On Second Generation Distributed Component Systems

version that is “too new”. Just think of the case that the network connection
between requestor and replicating system is slower than the connection between
the replicating system and the system that holds the original. Under certain
circumstances it could happen that at the time when the request was sent, an
older version was valid than at the time when the request arrived at the replicat-
ing system. If the replicating system then sends the newer version of the object
rather than the one that was valid at the time when the request was sent, this
could be a problem. For most applications it is ok or even desirable to always
get the newest available version, for others, e.g. for collaboration purposes, it is
not.

Therefore replication in a second generation distributed component system
has to be implemented in a way that the behaviour can be adapted to the needs
of the application. Different strategies have to be available to choose from,
depending on the requirements.

3 Dinopolis - the First Second-Generation System

The need for systems covering the aspects discussed above led a team of re-
searchers at the IICM to start an open-source framework called Dinopolis (see
[Freismuth et al 1997], [Dallermassl et al 2000a] and [Dallermassl et al 2000b]).
From 1997 on design and prototype-implementation phases have been going
on until in 1999 version 2.0 of a system called DINO (Distributed Interactive
Network Objects) was the core for MTP (Medical Telematics Platform, see
[Aly et al 1998]). MTP is the first system implementing arbitrarily distributed
virtual medical patient records. The first prototype of MTP was introduced at
CeBit 1999 and due to the strong interest among medical institutions and doc-
tors, phase 2 of MTP, the design and implementation of a production release of
the system, started end of 1999. Since then a group of researchers and develop-
ers at German Aerospace and at the IICM have been working closely together
on the design of Dinopolis as the first second-generation distributed component
system, which will be the core for the production release of MTP.

The cornerstones of Dinopolis that make it a full-featured second-generation
distributed component framework can be subsummarized as:
– Dinopolis is designed as a platform independent middleware system, fully

written in Java.
– Due to its concept as a middleware system, Dinopolis is able to embed and

combine arbitrary existing systems, such as databases, Web-Servers or also
ORBs.

– Dinopolis implements a highly sophisticated component-model that fulfills
all transparency aspects discussed in section 2.1, section 2.2, section 2.3 and
section 2.4. Components can reside anywhere on the network or in arbitrary

109Schmaranz K.: On Second Generation Distributed Component Systems

embedded systems. Due to its design as a middleware system Dinopolis
takes over component integration and management.

– Dinopolis implements a highly sophisticated addressing mechanism via glob-
ally unique component-handles that fulfills all the requirements discussed in
section 2.5, section 2.6 and section 2.7. Handles are robust against component-
movement which can e.g. happen due to restructuring of the distributed
component space.

– Dinopolis implements a highly sophisticated relation mechanism that fulfills
all the requirements discussed in section 2.8.

– Replication transparency as discussed in section 2.9 is made possible by Di-
nopolis’ addressing mechanism.
Because a detailed description of the whole Dinopolis system would be far

beyond the scope of this paper, this paper emphasizes the three most important
aspects: the component definition, globally unique handles and relation manage-
ment.

4 Definition: Component

Because the terms component or object have been used as buzz-words for a
very long time, there exist many different and even contradictory definitions. In
the following the definition of component that forms the basis of the Dinopolis
middleware framework will be discussed.

In principle a component in a distributed component system is an addressable
entity with the following properties:

– A component is addressable in a unique way via globally unique handles.
This means that one handle is always resolved to exactly one and the same
component, no matter when and how often it is resolved. It cannot happen
that a component is replaced by a different one by accident, like it can happen
in today’s systems, if one component is deleted and a different component
happens to get the same address at a later stage. If a component is deleted
it is guaranteed that the handle will never be re-used again for a different
component. A more in-depth discussion about handles can be found in
section 5.

– A component can itself be a compound made up of several part-components.
In this case also the parts fully correspond to the whole component-definition
given here. In an OO-sense different models of composing components to a
compound apply, e.g. derivation, inclusion, etc. With this feature arbitrary
component-hierarchies can be modelled.

– A component encapsulates content. Content in this context is everything
that can be considered data in a broad sense, e.g. a document, stream-data
or whatever else could be state-information.

110 Schmaranz K.: On Second Generation Distributed Component Systems

– Arbitrary meta-data (i.e. attributes) can be attached to a component. Meta-
data can e.g. be of descriptive nature like author, type or creation date.
Meta-data can also be dependent on certain applications that need to deal
with the components, e.g. display hints, etc. For this reason meta-data is
defined to be a tree-structured container of keys with values of arbitrary
type that can be accessed through the keys.

– Arbitrary relations can be attached to a component or to parts of it. Rela-
tions can also e.g. be attached to meta-data. As an example there can be a
relation from the author attribute to an address-record in a database that
represents the author.

– A component can provide arbitrary operations. From an OO-point of view
the operations can be seen as the methods of a component.

– Sometimes operations are not enough to deal with components, because it
can happen that too much knowledge about the internals of the component
could be necessary. For example a component could have its origin in a
database that supports very special user access-rights. If an application
would want to provide e.g. a graphical interface that would allow users to
change access-rights, then the application would have to have the knowledge
about the internals of the database. E.g. the syntax of the attributes to
call a method for setting the rights correctly has to be known. For this
reason components can also provide arbitrary so-called services. Services
in the context of Dinopolis are GUI-objects that applications can request
and that provide high-level user-interface functionality for special purposes
that would otherwise require too much internal knowledge. Services deal
with arbitrary user-interface libraries and their look-and-feel is configurable
accordingly, but this is beyond the scope of this paper.

– Components have a standard, uniform interface representing access to their
content, meta-data, relations, methods and services. Therefore applications
need not know the internals of different components to deal with them.
Part of the standard interface is also a possibility to ask components for
their capabilities in a uniform way. For example one can ask a component
whether it supports versioning.
A schematic view how application programmers see components according

to the definition given here, is sketched in figure 1.

5 Globally Unique Handles

From the discussion of the requirements at the beginning of this paper we know
that components have to be accessible through globally unique handles. These
handles have to be robust against component movement and one handle always
refers to one and the same component. Handles can also be stored, e.g. some-
where on a user’s harddisk when bookmarking a component.

111Schmaranz K.: On Second Generation Distributed Component Systems

Component Component

Content Meta−Data Relations

Services Operations

Content Meta−Data Relations

Services Operations

Relation

Figure 1: Schematic view of components

Considering these requirements it becomes clear that there are two ways to
ensure consistency of handles: either moved components leave traces in the form
of forwarders or a lookup service is implemented. The algorithm with forwarders
does not scale at all considering a huge number of objects and a highly dynamic
case. In addition, the requirement for component replication (see section 2.9)
would not work with forwarding anyhow and would definitely require a lookup-
mechanism.

Therefore a lookup-service has to be the implementation of choice. However,
considering a huge number of handles in large and highly dynamic distributed
systems, a naive implementation (e.g. a central lookup service) will not be
enough, because it would not scale either.

The first idea that comes to mind to get control over the situation is to de-
fine hierarchically structured handles and treat them like hostnames are treated
in DNS (see also [Mockapetris, Dunlap 1988]). With this approach the lookup-
service is well distributable. Nevertheless there still exists a huge problem: we
required robustness against object-movement, even if handles are stored “some-
where”. Therefore, if a component is moved from one “domain” to another,
either its handle would change or one lookup-service would have to take over
control of the handle space of a different domain. Both approaches are not
realistic.

It becomes even worse if we consider the case of a heavily growing system.
At the beginning one lookup-service is enough, but as the number of objects in
the system and the number of users of the system grows the lookup-service has
to be split across two or more machines. Also the opposite case is possible and
we have to deal with it in the case of the MTP Project: if a doctor representing
a data-storing institution retires and the system would go offline, the data has
to be stored in a different system, causing a “merge” of two systems. Besides it
can happen that not only a simple merge of two systems takes place, but that
the contents of the system going offline could even have to be split across several
systems.

Thus, everything can move, components, parts of components (in the case of

112 Schmaranz K.: On Second Generation Distributed Component Systems

compounds), servers that store components and even lookup servers. Nonethe-
less globally unique handles have to remain stable and have to be robust against
all dynamic changes that can happen!

For this reason we developed an algorithm calledDOLSA (DistributedObject
of Lookup Service Algorithm) that deals with arbitrarily granular, arbitrarily
distributed lookup-servers and keeps handles stable, no matter which dynamic
changes in the whole component- and lookup-service world take place. The de-
tailed description of this algorithm can be found in [Schmaranz 2002]. Here is
just a summary of its very basic principles:
– Globally unique handles always consist of three parts, which can be partially

empty, if nothing has moved:
1. The Birthplace-ID of the component. This is the part of the handle that

always allows it to find its location. Therefore in a way this is exactly
the globally unique handle that we are looking for and that must never
change. However, just having this ID does not scale for huge numbers
of objects and in the highly dynamic case.

2. The Moved-Birthplace-ID of the component. This ID represents the new
ID, if the birthplace lookup-service is no longer available and a different
lookup-service has taken over control. If this “new” lookup-service is
also no longer available and its responsibility is therefore moved again
to a different server, this ID is overwritten by the actual one. Please
note that overwriting this ID happens for scalability reasons, but it is
not essential for resolving a handle. The Birthplace-ID can always be
resolved. The algorithm also deals with the case that one Birthplace
lookup-service can be split across several systems.

3. The Actual-ID of the component. This ID represents the ID in the
lookup-service that is responsible after a component was moved across
the network.

– Each of the three parts of the ID described above consists itself of two parts:
a Lookup-Service-ID and an Object-ID within the lookup-service.

– Lookup-services are hierarchically organized, but this organization is not
reflected in their Lookup-Service-IDs to remain robust against changes in
the hierarchy. The principle here is the same that led to the separation of
relations and handles. The hierarchy of lookup-services makes sense for scal-
ability reasons: a request to resolve a handle is always sent to the “closest”
lookup-service. Lookup-services can cache resolved handles very similar to
DNS servers and can give authoritative and non-authoritative answers. If
a handle cannot be resolved locally, the request is passed further up the
hierarchy until it can be resolved and the result is cached.

– To make sure that the distributed lookup-services can always be found, the
top of the hierarchy is formed by a set of so-called Master-Lookup-Services.

113Schmaranz K.: On Second Generation Distributed Component Systems

– All IDs, Lookup-Service-IDs as well as Object-IDs are of arbitrary length
in chunks of 64 Bits. This prevents the case of running out of free IDs,
although this may seem unnecessary when using 64 Bits. However, there is
the requirement that IDs must not be used twice and there are components
that travel around a lot (like e.g. mobile agents). Thus they can effectively
“eat up” lots of IDs and having no limit can therefore be essential.

6 Relations

As has been discussed, the most universal case of relations are n:m relations and
for this reason they are implemented this way in Dinopolis.

Relations can interconnect arbitrary components or even other relations.
There are enough examples, where at least one endpoint of a relation is a relation
itself, e.g. a hyperlink that says “have a look at this link”. As is the case with
handles, also relations have to be robust against component movement. The sim-
plest and besides the most logical way to achieve this, is to define the endpoints
of relations by globally unique handles. The further logical consequence is that
relations are components themselves. Relations being components in the sense
of this paper result in a flexibility that cannot be found in any other system:
– Relations between components can be held anywhere and are not bound to

the components’ locations. Therefore it is possible to e.g. use relations for
personal hyperlinks between documents that reside on the users’ desktop-
computers. Additionally those hyperlinks are kept consistent if documents
are moved.

– Arbitrary type and meta-information can be attached to relations.
– Not only meta-information can be attached to relations, they can also pro-

vide methods and services for greater flexibility.
– Internally relations are multi-directional, the endpoints of a relation are sub-

components and the relation-component is the enclosing composite. For con-
sistency reasons, e.g. when restructuring the component-space it is necessary
to find out which components are interconnected.
Because relations are components of their own that can be stored separately,

it is possible to interconnect arbitrary objects that are not even aware of relations
at all. For example it is possible to annotate video-streams or audio-streams.
Even private annotations are possible that are not visible for others.

Typed relations with arbitrary meta-information also make it possible to
have arbitrary many different navigation-paths through huge component-spaces
without having to create many different sets of hyperlinked documents as would
be the case in today’s systems. As an example consider an e-learning application:
re-using existing course-material and structuring it for different audiences by
means of typed relations for navigation is an easy task to do. It is then even

114 Schmaranz K.: On Second Generation Distributed Component Systems

possible to switch back and forth between different navigational structures. This
makes it easy to build adaptive courses, where navigation depends on the skills
of the learners (see also [Dallermassl et al 2000c]).

One of today’s buzz-words is Knowledge-Management. Without going into
details of Knowledge-Management, one of the main goals of KM is to put in-
formation into context to make it knowledge. As knowledge is growing, one
aspect of growth is the number of interconnections between different informa-
tion chunks. The more interconnections between related topics exist, the better
the knowledge-base. However, it does not always make sense to see all the in-
terconnections. One and the same chunk of information can be interesting for
different audiences, but from different points of view. As the number of in-
terconnections grows and as the number of different points of view grows, it
becomes necessary to have adaptive relations, so that users only find relevant
knowledge rather than having to extract relevant parts themselves from a huge
pile of interconnections. There are many different examples where a flexible
relation-mechanism is essential.

7 Conclusion

According to the motto “a good component system is one that the application
programmers don’t notice”, Dinopolis is trying to implement all transparency-
aspects discussed in this paper. Distributed component systems will eventually
become some sort of high-level operating systems that serve as a platform for all
different kinds of applications. If this is the case it would absolutely be desirable
to standardize such frameworks. For this reason and also because different people
have many different ideas about what such a platform should provide, Dinopolis
is an open-source project and the results are available for everyone free of charge.

Dinopolis is not intended to be a huge monolith. Just the opposite is true:
the core of the system is a very slim middleware layer providing the basic func-
tionality of globally unique handles, relations and a highly sophisticated object-
model. Everything else is grouped around this core in the form of modules that
can be loaded dynamically during runtime. Therefore the system is adaptable
for everybody according to the special needs of different applications.

One of the applications that require the implementation of a very robust
system with highly sophisticated access and security-mechanisms is MTP that
the IICM develops together with German Aerospace. The security-, reliability-
and robustness-requirements for medical applications are extremely high because
all the data in the system is extremely sensitive. Therefore Dinopolis is not
developed “quick-and-dirty” but very structured with a very detailed design-
phase and throrough documentation.

Because we want to build a platform that can be used for as wide a range of
different applications as possible, all ideas for necessary or desired modules that

115Schmaranz K.: On Second Generation Distributed Component Systems

can be grouped around the core of the system are very welcome. If you have
ideas or questions please have a look at http://www.dinopolis.org or feel free
to contact us via email at contact@dinopolis.org.

References

[Andrews et al 1995] Andrews K., Kappe F., Maurer H., Schmaranz K.: On Sec-
ond Generation Hypermedia Systems, Proceedings ED-MEDIA 95, Graz
(1995), 75–80.

[Aly et al 1998] Aly F., Bethke K., Bartels E., Novotny J., Padeken D., Schmaranz K.,
Schwartmann D., Wilke D., Wirtz M.: Medical Intranets for Telemedicine
Services: Concepts and Solutions, Proceedings G7 Meeting “The Impact
of Telemedicine on Health Care Management”, Regensburg (1998), avail-
able online at http://www.uni-regensburg.de/Fakultaeten/Medizin/
Uch/g7/program/mon.htm.

[Berners-Lee et al 1994] Berners-Lee T., Masinger L., McCahill M.: RFC 1738: Uni-
form Resource Locators (URL), available online at ftp://ftp.internic.
net/rfc/rfc1738.txt

[Dallermassl et al 2000a] Dallermassl C., Haub H., Maurer H., Schmaranz K., Zambelli
P.: Dinopolis - A Leading Edge Application Framework for the Internet and
Intranets, Proceedings WebNet 2000, San Antonio, TX (2000), 111–116.

[Dallermassl et al 2000b] Dallermassl C. Haub H., Krottmaier H., Schmaranz K., Zam-
belli P.: Using Highly Sophisticated Middleware for Building Arbitrar-
ily Distributed Teaching Environments, Proceedings ICCE/ICCAI 2000:
Learning Societies In The New Millennium: Care ativity, Caring & Com-
mitments, Taipei (2000), 1439–1442.

[Dallermassl et al 2000c] Dallermassl C. Haub H., Krottmaier H., Schmaranz K.,
Zambelli P.: Adaptive Learning Environments, Proceedings ICCE/ICCAI
2000: Learning Societies In The New Millennium: Care ativity, Caring &
Commitments, Taipei (2000), 1443–1446.

[EJB] Enterprise Java Beans Technology, electronically available at http://
java.sun.com/products/ejb.

[Freismuth et al 1997] Freismuth D., Helic D., Meszaros G., Schmaranz K.,
Zwantschko B.: DINO - Distributed Interactive Network Objects – The
Java Approach, Proceedings Ed-Media ’97, Calgary (1997), available on-
line at http://www.iicm.edu/liberation/iicm_papers/edmed97/dino.
html.

[Mockapetris, Dunlap 1988] Mockapetris P., Dunlap K. J.: Development of the domain
name system, Proceedings ACM SIGCOMM 1988, Stanford, CA (1988),
123–133.

[OMG] The Object Management Group’s Home page, electronically available at
http://www.omg.org.

[RMI] Java Remote Method Invocation, available online at http://java.sun.
com/j2se/1.4/docs/guide/rmi.

[Schmaranz 2002] Schmaranz K.: DOLSA - A Robust Algorithm for Massively Dis-
tributed, Dynamic Object-Lookup Services, submitted to J.UCS.

[Terry 1984] Terry D. B.: An analysis of naming conventions for distributed computer
systems, Proceedings ACM SIGCOMM 1984, Montreal (1984), 218–224.

[Voyager] ObjectSpace’s Home page, available online at http://www.objectspace.
com.

[Znati, Molka 1992] Znati T. B., Molka J.: A Simulation Based Analysis of Naming
Schemes for Distributed Systems, Proceedings of the 25th annual Sympo-
sium on Simulation 1992, Orlando, FL (1992), 42–51.

116 Schmaranz K.: On Second Generation Distributed Component Systems

