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Abstract: We study the problem of efficient identification of particular classes of p-
time languages, called uniform. We require the learner to identify each language of
such a class by constantly guessing, after a small number of examples, the same index
for it. We present three identification paradigms based on different kind of examples:
identification on informant (positive and negative information), measure identification
(positive information in a probabilistic setting), identification with probability (po-
sitive and negative information in a probabilistic setting). In each case we introduce
two efficient identification paradigms, called efficient and very efficient identification
respectively. We characterize efficient identification on informant and with probability
and, as a corollary, we show that the two identification paradigms are equivalent.
A necessary condition is shown for very efficient identification on informant, which
becomes sufficient if and only if P = NP . The same condition is sufficient for very
efficient identification with probability if and only if NP=RP . We show that (very)
efficient identification on informant and with probability are strictly stronger than
(very) efficient measure identification.
Key Words: Learning Theory
Category: I.2.6

1 Introduction

In this paper we are concerned with the problem of identifying a class of languages in
efficient time. The main idea is very similar to that adopted in [Fontani 00] for efficient
identification of classes of functions. Efficiency will be synonymous with polynomial
time, and so we will only consider the class of polynomial-time (p-time) languages, PL.
Informally, given a class of p-time languages together with a class of representations
(indexes) for them, we will require the learner to be a p-time function and to become
successful in a number of guesses polynomially bounded in the (length of the) least
index of the unknown language in the chosen representation class.

Indexes for p-time languages will be given by an acceptable indexing for P , the class
of p-time functions [Fontani 00]. In fact, since a language is p-time if and only if its
characteristic function is p-time, each p-time language will be assigned to the same
indexes its characteristic function has with respect to any such indexing.

If we want a “polynomial time” identification, it is reasonable that the learner could
check in polynomial time the consistency of an index h for a p-time language in a
given class with a sample S. In the case of functions, this was possible for a uniform
class (i.e. a class for which there exists a p-time algorithm -universal function - which
uniformly computes all its functions). The same property continues to hold for a class
of languages with an associated uniform class of characteristic functions. So we will
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consider only such classes of languages, ones that we will call uniform. The fixed
universal function will attribute to each language of a uniform class, indexes with
respect to any particular acceptable indexing for P , so it will completely specify the
indexes for these languages.

We will define two efficient identification paradigms for uniform classes of languages.
Namely, for every uniform class W with representation class R, we say that W is effi-
ciently identifiable if the learner becomes successful in a number of steps polynomially
bounded by the least index of the unknown language in R. We will say that W is very
efficiently identifiable, if the learner becomes successful in a number of steps polynomi-
ally bounded by the length of the least index of the unknown language in R. Obviously
very efficient identification will imply efficient identification.

However a question comes immediately to mind: can different kinds of information
affect the “efficiency” of identification (in the previous sense) and what kinds of in-
formation are more reasonable to choose for our purposes? The classical approach
considers identification of languages on positive data (elements of the unknown lan-
guage) or on positive and negative data (values assumed by the characteristic function
of the unknown language). The second seems very adaptable to the efficient case: it is
entirely analogous to the efficient identification of a function. But the first approach
is very difficult to treat in an efficient setting. The reason is that, if in the fixed class
there are two languages L and L′ having a common element i which is given consecu-
tively infinitely many times, then the learner cannot distinguish in a short time L from
L′. A way to overcome this problem is to consider elements of the unknown language
randomly generated by a probability distribution which satisfies certain properties
avoiding the previous situation. To conclude, we will consider “efficient identification”
of uniform classes of languages in the following environments for the unknown language
L:

(1) The learner receives at each time n a piece of positive information (“0”) if n∈L
or a piece of negative information (“1”) about L if n �∈L. The infinite string so
generated is called an informant for L.

(2) The learner receives at each time n a piece of positive information about L (an
element of L) randomly generated by a “probability distribution” on L. The
infinite string so generated will be called a text for L and we will speak about
measure identification.

(3) The learner receives at each time n a couple of values in {0, 1}, the first of which
is the n-th element of the informant of L and the second is generated according
to a random coin drawn. In this case, we will speak about identification with
probability.

In Section 4 we introduce the notions of (very) efficient identification on informant of
uniform classes. We characterize efficient identification. We find a necessary condition
for very efficient identification whose sufficiency turns out to be equivalent to P=NP.
In Section 5 we define (very) efficient measure identification of uniform classes. In both
efficient settings, we prove that identification on informant implies measure identifica-
tion, but the reverse is not true.

In Section 6 we study (very) efficient identification with probability of uniform classes.
We show that it is equivalent to identification on informant in the efficient case. We
find a necessary condition for very efficient identification, which becomes sufficient if
and only if NP=RP.
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2 Preliminaries

ω, ∅ denote, respectively, the set of natural numbers and the emptyset. ω<ω and 2<ω

denote the set of strings of natural numbers and the set of binary strings respectively.
For every a0, ..., an∈{0, 1}, a0a1...an denotes the binary string whose elements are (in
the given order) a0, a1, ..., an. Analogously we interpret (τ0, ..., τn), if τ0, ..., τn ∈ω or
τ0, ..., τn∈2<ω. We use f, g, h, ϕ, ...,Ψ,Φ,Γ,∆, ... for recursive functions. We omit the
arity of a function when it is clear from the context. We write λxi.f(x0, ..., xn) (i≤n)
to mean that f depends on variable xi only.

We use p, q, p′, q′, p, q... to indicate polynomials with positive integer coefficients. In
the case of polynomials in one variable we sometimes omit the argument.

We write minx[· · ·x · · ·] or µx[· · ·x · · ·] (maxx[· · ·x · · ·]) to denote the least (the grea-
test) natural number for which the expression [· · ·x · · ·] is true when “x” assumes this
value. If S is a set, minS (maxS) denotes the least (the greatest) element of S, while
card(S) denotes the cardinality of S.

2.1 Coding sequences

For every a∈ω, we code a by its binary expansion, so, if a=
∑n

i=0
αi2

i, for some n∈ω,
αi∈{0, 1}, where either a=n=α0=0 or αn �=0, we consider a=αnαn−1...α0.

The length of a, |a|, is the number of bits in its binary expansion. So |a|=log2(a+1)�
(the least integer ≥ log2(a+1)), and we approximate |a| by log2(a) (note that |0|=0)).

The code for the numerical sequence a = (a0, ..., an) is constructed by the following
procedure. We write the ai’s in binary notation, obtaining a string of 0, 1 and commas.
We write such a string in reverse order. We replace each 0 by “10”, each 1 by “11”
and each comma by “00”. The resulting string is the binary representation of the
code of a, which we denote by <a0, ..., an >. For example, the code of (3, 2, 4) is the
number whose binary expansion is 101011001011001111. The code of (a) is the binary
expansion of a and the code of the empty sequence is 0.

Notice that, for every (a0, ..., an), |< a0, ..., an > |= 2(|a0| + ... + |an| + n). Moreover
there is a uniform effective method for checking if a number is the code of a finite
sequence, which also works in time polynomial in the length of the input sequence.
The set of codes of finite numerical sequences and the set of codes of finite sequences
of binary strings are denoted by Seq and Bseq respectively.

We use the symbol ∗ to indicate the concatenation of codes of finite numerical se-
quences, i.e. <a0, ..., an > ∗<b0, ..., bm >=<a0, ..., an, b0, ..., bm >. Moreover we write
< a0, ..., an >⊆< b0, ..., bm > if n ≤ m, and, for every i ≤ n, ai = bi. We denote by
#<a0, ..., an> the sequence (a0, ..., an).

If Σ is a finite alphabet of symbols and Σ∗ is the set of finite sequences of symbols in
Σ, we can codify each σ∈Σ∗ in a similar manner. We associate to each a∈Σ a number
(different numbers for different symbols). The code of each σ ∈Σ∗ is the code of the
numerical sequence associated to it. Consider for example Σ={x, |,∧,∨, , (, )}. Each
propositional formula in conjunctive normal form (A∈CNF ) can be represented as a
sequence of symbols of Σ. Associate to each symbol in Σ the following numbers:

x | ∧ ∨ ( )
1 2 3 4 5 6 7
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Hence, if A ≡ x1 ∨ (x2 ∧ x1), we write it as A ≡ x| ∨ ( x|| ∧ x|) and the code of A
is the code of (1, 2, 4, 6, 5, 1, 2, 2, 3, 5, 1, 2, 7). We denote by lth(A) the length of A in Σ
and by A� the code of A. Note that, if A∈CNF , then |A�|≤8n− 2.

2.2 The class P

Throughout the paper we denote by P the class of p-time functions (for a standard defi-
nition see [Buss 86]). Without loss of generality, we consider as a model of computation
deterministic Turing machines (T.m.). We adopt the convention that all functions have
domain ωk and codomain ω. If M is a T.m. and t :ωn+1→ω is any function, then, for all
a0, ..., an∈ω, we write M(a0, ..., an)↓≤ t(a0, ..., an) if M on input (a0, ..., an) converges
within t(a0, ..., an) steps of computation. In particular, M is deterministic polynomial
time if and only if M(a0, ..., an) ↓≤ t(a0, ..., an) where t(a0, ..., an)= p(|a0|, ..., |an|) for
some polynomial p. Sometimes, given a function f :ωn+1→ω for which we have fixed a
T.m. M that computes it, we write, by abuse of language, f(a0, ..., an)↓≤ t(a0, ..., an)
instead of M(a0, ..., an)↓≤ t(a0, ..., an). We recall the following p-time functions:

(1) �x
2
�: the integer part of x

2
(the greatest integer ≤ x

2
).

(2) s(x)=x+ 1: the successor function.

(3) [x]i, i ≤ |x| − 1: the i-th bit of the binary representation of x ([x]i is arbitrarily
defined if i ≥ |x|).
(4)

β(i, < a0, ..., an >)=

{
n+ 1 if i=0
ai−1 if 0 < i ≤ n+ 1

β is arbitrarily defined if i > n + 1 or if the second argument is not the code of any
sequence [Buss 86]. For simplicity, we write n+1 instead of β(0, <a0, ..., an>) and, if
x≤n, we write ax instead of β(s(x),< a0, ..., an >). Moreover, for every n∈ω, we let
(n)x=β(s(x), n) and lth(n)=β(0, n). Note that, in particular, if σ∈Seq (σ∈Bseq) and
σ=<a0, ..., an>, then (σ)x=(<a0, ..., an >)x=ax, lth(σ)= lth(< a0, ..., an >)=n+ 1.

2.3 Identification paradigm

Consider some acceptable indexing π0, ..., πn, ... for the class of partial recursive func-
tions [Shoenfield 58]. We recall a very natural identification paradigm for classes of
total recursive functions (see [Odifreddi 99]).

Definition 1 Let C be a class of total recursive functions. We say that C is EX-
identifiable if there exists a total recursive function g such that, for every f ∈ C,

(∃n0)(∀n≥n0)g(< f(0), ..., f(n) >)= i

for some i ∈ ω such that f=πi.

3 Efficient identification: basic concepts

In [Fontani 00] we introduced a particular indexing for the class P which can be adopted
as an indexing for the class of all p-time languages, PL, as well. We recall the definition
of such an indexing.
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Definition 2 An acceptable indexing for P is an enumeration ϕ0, ..., ϕn of (all of) the
p-time functions that meets the following conditions:

(i) There exist a function Φ(i, x) and a polynomial p(i, x) such that, for every i, x∈ω:
• Φ(i, x) ↓≤p(i, x) (λix.Φ(|i|, |x|) ∈P )

• Φ(i, x)=ϕi(x).

(ii) For every Ψ(i, x) ∈ P there exists h ∈ P strictly increasing such that, for every
i, x∈ω, Ψ(i, x)=Φ(h(i), x)=ϕh(i)(x).

Such a function Φ(i, x) will be called a universal function for P .

Let L be a language and let f be its characteristic function. Since L∈PL if and only
if f ∈P , it is reasonable to associate to L all (and only) those indexes that f has with
respect to some acceptable indexing.

Definition 3 Let Φ(i, x) be an acceptable indexing for P . Let L∈PL and let f be its
characteristic function. If f =λx.Φ(i, x), then we say that i is an index for L and we
write L=Wi.

In the case of efficient identification of p-time functions we restricted our attention to
the so called uniform classes of functions, i.e. classes whose functions are computable
in a uniform and “efficient” way. This definition can be extended in a very natural
way to classes of p-time languages too.

Definition 4 Let C⊆P . We say that C is uniform if there exists Ψ(i, x) such that:

(i) λix.Ψ(i, x)∈P .

(ii) For every i∈ω, λx.Ψ(i, x)∈C.
(iii) For every f ∈C, there exists i ∈ ω such that f=λx.Ψ(i, x).

Such a function Ψ(i, x) is called a universal function for C.
Definition 5 Let W⊆PL. We say that W is uniform if and only if the class C of the
characteristic functions of languages in W is uniform. If Ψ(i, x) is a universal function
for C, we say that Ψ(i, x) is a universal function for W.

Notation 1 (1) By Definition 2 (ii), if W is a uniform class with universal function
Ψ(i, x), then there exists h∈P strictly increasing such that, for every i, x∈ω, Ψ(i, x)=
ϕh(i)(x). We call h a Ψ-indexing for W and we write W=Wh={Wh(i) : i∈ω}.
In this case, the class C of the characteristic functions of languages in W is denoted by
Lh={ϕh(i) : i∈ω} (ϕh(i) is the characteristic function of Wh(i)).

(2) Let Wh={Wh(i) : i∈ω} be a uniform class. For every i∈ω, we define:
m(i)=min{j ∈ ω : Wh(j)=Wh(i)}.

In other words, for every Wh(i)∈Wh, Wh(i)=Wh(m(i)) and the first occurrence of Wh(i)

in the enumeration of the class induced by h is at step m(i) (we refer to m(i) as to the
“least index” of Wh(i) in Wh).

We are now ready to define “efficient identification” of uniform classes of languages. In
each of the next three sections we will present different efficient identification paradigms
according to the type of data the learner receives. All these definitions will however
share the same idea for “efficient identification”. In fact the learner will have to make,
at each step, a guess in time polynomial in the length of the input sequence and to
stabilize on a correct index within a number of guesses polynomially bounded in the
(length of the) least index of the unknown language in the given class.

798 Fontani S.: Efficient Measure Learning



4 Identification on informant

We consider the case in which the learner receives both positive and negative informa-
tion about the unknown language. More precisely, if W is a uniform class and L∈W,
at each step n the learner is given the value “0” if n∈L, “1” if n �∈L.

Definition 6 An informant I is an infinite binary sequence (I∈2ω). If L is a language,
we say that I ∈ 2ω is an informant for L if {n∈ω : In =0}=L, where In is the n-th
bit of I .

Obviously, for every language L, there exists a unique informant I for L.

Notation 2 Let Wh = {Wh(i) : i∈ω} be a uniform class. For every i∈ω, if I is the

informant for Wh(i), we write I=Ih(i).

Let Wh = {Wh(i) : i ∈ ω} be a uniform class. In the previous section we noted that
Lh = {ϕh(i) : i ∈ ω} is the class of the characteristic functions of languages in Wh

and that, for every i ∈ ω, ϕh(i) is the characteristic function of Wh(i). Moreover the
informant for Wh(i) is just the infinite sequence of values assumed by its characteristic
function. This suggests that identification on informant of Wh is equivalent to the
identification of Lh. Such an observation motivates the following definition.

Definition 7 Let Wh={Wh(i) : i∈ω} be a uniform class. We say that:

(i) Wh is EX-efficiently identifiable on informant (Wh∈EXeff
inf ) if there exist g∈P

and a polynomial p such that, for every Wh(i) ∈ Lh, g EX-identifies Wh(i) on

Ih(i) in at most p(m(i)) guesses, i.e.:

(∃n0<p(m(i)))(∀n≥n0)(g(< ϕh(i)(0), ..., ϕh(i)(n) >)= i′)
for some i′∈ω such that Wh(i)=Wh(i′).

(ii) Wh is EX-very efficiently identifiable on informant (Wh∈EXv-eff
inf ) if there exist

g∈P and a polynomial p such that, for every Wh(i)∈Lh, g EX-identifies Wh(i)

on Ih(i) in at most p(|m(i)|) guesses, i.e.:
(∃n0<p(|m(i)|))(∀n≥n0)(g(< ϕh(i)(0), ..., ϕh(i)(n) >)= i′)

for some i′∈ω such that Wh(i)=Wh(i′).

Obviously, for every uniform class Wh, if Wh∈EXv-eff
inf then Wh∈EXeff

inf .

Examples 1 (1) Let Cof = {L : L is a cofinite language}. Let Ψ(n, x) be such that,
for every n, x∈ω:

Ψ(n, x)=

{
[n]x+1 if n is odd, n �=1 and x< |n| − 1
0 otherwise

Ψ(n, x) is a universal function for Cof such that, if h is a Ψ-indexing, for n odd (n �=1),
Wh(n)={x ∈ ω : (x< |n|−1∧ [n]x+1=0)∨ (x≥|n|−1)}, for n even or n=1, Wh(n)=ω.
On the other hand, if L ∈ Cof (L �= ω), σ =max{j ∈ ω : j �∈ L} and a0a1...aσ is the
initial segment of length σ+1 of the informant for L, then L=Wh(n) where n=1a0...aσ

(if L=ω, then L=Wh(n) for every even n or n=1). So Cof =Wh={Wh(n) : n ∈ ω}.
Let g be such that, for every a0, ..., an∈ω:
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g(< a0, ..., an >)=

{
1a0...ai if i=max{j ≤ n : aj =1},

if such i exists
0 otherwise

It is easy to verify that g∈P . Let Wh(n)∈Wh. For n even or n=1, g EX-identifies on
informant Wh(n) after the first guess. For n odd (n �=1), g EX-identifies on informant

Wh(n) in at most |n| − 1 guesses. So Wh ∈ EXv-eff
inf .

(2) Let Fin={L : L is a finite language}. If Ψ(n, x) is a universal function for Cof , let,
for every n, x∈ω, Ψ(n, x)=1− Ψ(n, x). Obviously Ψ(n, x) is a universal function for

Fin. Moreover, if h is a Ψ-indexing, Fin=W
h
and it is readily seen thatW

h
∈EXv-eff

inf .

(3) For every finite uniform class Wh, Wh ∈EXv-eff
inf , since every finite uniform class

of functions is EX-very efficiently identifiable [Fontani 00].

4.1 Main results for EXeff
inf and EXv-eff

inf

Efficient identification on informant of uniform classes of languages is a particular case
of efficient identification of uniform classes of functions (functions assuming 0−1 values).
Hence, in both efficient paradigms, all results obtained for identification of uniform
classes of functions remain true for identification on informant of uniform classes of
languages. If Ψ(i, x) is a universal function for Wh (Lh), consider the following:

(∃ polynomial p)(∀i)(∀j<m(i))(∃x≤p(m(i)))(ϕh(j)(x) �=ϕh(i)(x)) (∗)
(∃ polynomial p)(∀i)(∀j<m(i))(∃x≤p(|m(i)|))(ϕh(j)(x) �=ϕh(i)(x)). (∗′)
In [Fontani 00] we proved that (∗) characterizes EX-efficient identification of uniform
classes of functions, while (∗′) is a necessary condition for EX-very efficient identi-
fication of uniform classes of functions, whose sufficiency is equivalent to P = NP .
Moreover, we there proved that P is not EX-efficiently identifiable with respect to any
acceptable indexing. Hence the following theorems are immediately estabilished.

Theorem 1 Let Wh be a uniform class. Then:

(i) Wh∈EXeff
inf ⇔Wh satisfies (∗).

(ii) Wh∈EXv-eff
inf ⇒Wh satisfies (∗′).

Theorem 2 PL is not EX-efficiently identifiable on informant with respect to any
acceptable indexing.

Theorem 3 The following are equivalent:

(i) Every uniform class of languages satisfying (∗′) is EX-very efficiently identifiable
on informant.

(ii) P=NP.

Condition (∗) is very useful to show that a uniform class of languages is not EX-
efficiently (hence not EX-very efficiently) identifiable on informant.

Example 1 LetW={Li : i∈ω} such that L0=ω and, for every i∈ω\{0}, Li=ω\{2i}.
Let:

Ψ(i, x)=

{
1 if i �=0 and x=2i

0 otherwise

It is readily seen that Ψ(i, x) is a universal function for W and, if h is a Ψ-indexing,

then W=Wh and Wh does not satisfy (∗). Hence Wh �∈EXeff
inf .
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5 Efficient measure learning

As discussed in the introduction, the problem of efficient identification of uniform
classes of languages on positive data becomes meaningful in a probabilistic setting. The
main idea is the following: given a uniform class W and L∈W, a learner g receives,
at each step n, an element of L randomly generated by a probability distribution δL

according to which each element of L is generated with positive probability, while other
elements are generated with probability zero (δL is called a distribution for L). With
high probability, after infinite extractions, all (and only all) of the elements of L will
have been generated and g can learn from the infinite list of such elements (the text
for L). We will say that g (very) efficiently measure identifies L if, for every ε∈ [0, 1],
the set of texts so generated on which g stabilizes on an index for L in a number of
guesses bounded by a polynomial in the least index (in the length of the least index)
of L in W and 1

ε
, has measure > 1−ε. Before making this notion precise, we briefly

recall some concepts of Measure Theory (see [Oxtoby 71]).

5.1 Basic concepts

Definition 8 Let A be a set and let S⊆P(A) be a subalgebra of the Boolean algebra
P(A) of the subsets of A. We call a probability measure (in short: probability) on A a
function µ : S→ [0, 1] such that µ(A)=1 and, for every B,C ∈S such that B∩C=∅,
µ(B∪C)=µ(B) + µ(C).

Definition 9 Let A be a set and let S ⊆P(A) be a subalgebra of the Boolean algebra
P(A) closed under countable unions. We say that a measure µ on A is σ-additive
if, for every family of mutually disjoint elements of S, {Bn : n ∈ ω}, µ(

⋃
n∈ω

Bn) =∑
n∈ω

µ(Bn).

Definition 10 We say that δ : ω → [0, 1] is a probability distribution (in short: a
distribution) on ω if

∑
n∈ω

δ(n)=1 and, for every n∈ω, δ(n)>0.

Definition 11 Let L be a language and let δ be a distribution on ω. We say that δ
is for L if, for every n∈ω, n∈L if and only if δ(n)>0.

Examples 2 (1) Let L �=∅ be a finite language and K=card(L). Consider:

δ1,L(n) =

{
1
K

if n∈L
0 otherwise

δ1,L is a distribution on L called uniform, since each element of L is generated with
the same probability with respect to it.
(2) Let L �=∅ be a language and K =

∑
n∈L

1

22|n|+1 . Consider:

δ2,L(n) =

{
1

22|n|+1 · 1
K

if n∈L
0 otherwise

δ2,L is a distribution for L.

Definition 12 Let Wh = {Wh(i) : i ∈ ω} be a uniform class and let D be a class of
probability distributions on ω. We say that D is for Wh if the following conditions
hold:

(i) For every Wh(i)∈Wh there exists δ∈D such that δ is for Wh(i).

(ii) For every δ∈D there exists Wh(i)∈Wh such that δ is for Wh(i).
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Definition 13 A text t is an infinite sequence of natural numbers (t∈ωω). The set
of numbers occurring in a text t is denoted by rng(t). Moreover if S⊆ω, we say that
a text t is for S if and only if rng(t)=S.

We are almost ready to formalize the identification paradigms informally described at
the beginning of this section. We have only to make precise how we will “measure”
the sets of texts for a certain language L on which the learner “efficiently identifies” L.
There is a very natural choice. It is in fact well-known that, given a language L and
a distribution δ for L, letting for every A⊆ω, ∆δ(A)=

∑
n∈A

δ(n), ∆δ is a σ-additive
measure on ω. Moreover ∆δ induces a product measure µδ on ωω which is σ-additive
and such that, if for every σ∈ω<ω, we let Bσ ={t∈ωω : σ⊆ t}, then:
- For every σ∈ω<ω, if σ=(a0, ..., an), then µδ(Bσ)=

∏
i<lth(σ)

δ(ai).

- For every σ∈ω<ω, rng(σ)⊆L if and only if µδ(Bσ)>0.

- µδ({t∈ωω : rng(t)=L})=1.

Definition 14 Let Wh = {Wh(i) : i∈ω} be a uniform class and let g(x, y) be a total
recursive function. For every ε ∈ [0, 1], Wh(i) ∈Wh, t ∈ ωω and k ∈ ω, we say that g
EX−converges on t, ε to Wh(i) in at most k steps (in short: in<k steps) if:

(∃n0<k)(∀n≥n0)(g(t|n, ε)= i′)

for some i′∈ω such that Wh(i)=Wh(i′).

Remark 1 In the previous definition we can suppose that ε∈ [0, 1] is of the form 1
n
,

where n is a positive natural number. Under this assumption g(t|n, ε) really depends
on natural numbers, t|n and n, according to the initial requirement that g(x, y) is a
total recursive function.

Definition 15 Let Wh = {Wh(i) : i ∈ ω} be a uniform class and let D be a class
of distributions for Wh. We say that Wh is EX-efficiently measure identifiable with
respect to D (Wh ∈EXeff

meas(D)) if there exist a function g(x, y)∈P and a polynomial
p(x, y) such that, for every ε∈ [0, 1], for every Wh(i)∈Wh and for every δ∈D for Wh(i),
g EX-measure identifies Wh(i) in at most p(m(i), 1

ε
) guesses with respect to δ, i.e.:

µδ({t∈ωω :g EX−converges on t, ε to Wh(i) in < p(m(i), 1
ε
) steps})>1− ε.

Definition 16 Let Wh = {Wh(i) : i ∈ ω} be a uniform class and let D be a class of
distributions for Wh. We say that Wh is EX-very efficiently measure identifiable with
respect to D (Wh∈EXv-eff

meas (D)) if there exist a function g(x, y)∈P and a polynomial
p(x, y) such that, for every ε∈ [0, 1], for every Wh(i)∈Wh and for every δ∈D for Wh(i),
g EX-measure identifies Wh(i) in at most p(|m(i)|, 1

ε
) guesses with respect to δ, i.e.:

µδ({t∈ωω:g EX−converges on t, ε to Wh(i) in < p(|m(i)|, 1
ε
) steps})>1− ε.

Obviously, for every uniform class of languages Wh and for every distribution class D
for Wh, if Wh∈EXv-eff

meas (D) then Wh∈EXeff
meas(D).

Angluin showed that a class of languages is measure identifiable if and only if it is
identifiable (on texts) [Angluin 88]. Uniform classes of languages efficiently measure
identifiable with respect to every class of distributions are even rarer. It is in fact
straightforward to verify that, for every uniform class Wh, if Wh is EX-efficiently
measure identifiable with respect to every class of distributions for it, thenWh contains
only mutually disjoint languages. This is the reason why we will be mainly concerned
with measure identification (in both efficient paradigms) of uniform classes with respect
to classes of distributions satisfying particular properties.
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Notation 3 Let L be a language and let δ be a distribution for L. For every n ∈L
and k∈ω, we denote by Pr≤k

δ (n) the probability that n occurs within k steps (with a
number of extractions≤k) with respect to δ. Pr>k

δ (n) denotes the probability that n
does not occur within k steps with respect to δ.

Example 2 Consider Fin, the class of finite languages without the empty language,
with the following representation:

Ψ(i, x) =

{
0 if (i �=0, x< |i| and [i]|i|−1−x=1) or

(i=0 and x=0)
1 otherwise

Obviously Ψ(i, x) is a universal function for Fin which we refer to as “canonical”. In
fact, if h is a Ψ-indexing and L∈Fin, say L={σ1, ..., σr}, then, for every i∈ω \ {0},
Wh(i)=L if and only if i=2σ1 + ...+ 2σr . Moreover, for i �=1, m(i)= i, while for i=1,
m(1)=0. Let D be a class of distributions for Wh for which there exists a polynomial
p(x) such that, for every Wh(i)∈Wh, for every n∈Wh(i), for every δ∈D for Wh(i):

δ(n) ≥ 1
p(σWh(i)

)
&

where σWh(i) =maxWh(i). We prove that Wh∈EXv-eff
meas (D).

Let Wh(i)∈Wh, say Wh(i)={σ1, ..., σr}, and let σ∈D be a distribution for Wh(i). It is
readily seen that, for every k∈ω, the probability that some σj ∈Wh(i) (1≤j≤r) does
not occur within k steps is bounded by

∑
1≤j≤r

Pr>k
δ (σj) and∑

1≤j≤r
Pr>k

δ (σj) ≤ r
(
1− 1

p(|i|)

)k

. (1)

Moreover, by condition (1 − x)< e−x, since r ≤ |i|, then r(1 − 1
p(|i|) )

k ≤ |i| · e−
k

p(|i|) .

But, for every ε∈ [0, 1],

|i| · e−
k

p(|i|) ≤ ε ⇔ k ≥ p(|i|)(ln|i| + ln 1
ε
). (2)

So, if p(x, y)= p(x)(x+ y), for every k≥ p(|i|, 1
ε
), by (2) we have |i| · e−

k
p(|i|) ≤ ε and,

by the previous considerations and (1),
∑

1≤j≤r
Pr>k

δ (σj)≤ε. It follows that every σj

(1≤j ≤r) is generated within k steps (in particular within p(|i|, 1
ε
) steps) with respect

to δ with probabilty>1−ε.

For every σ ∈Seq, if σ=<a0, ...an >, let a=max{aj : j≤n, aj ≤n}. Let sσ = ba...b0
be such that, for every x≤ a, if x= aj for some j ≤ n, then bx =1, otherwise bx = 0.
Note that, for every σ ∈Seq, sσ can be constructed in a number of steps polynomial
in lth(σ). For every ε∈ [0, 1], for every σ∈Seq, let g(σ, ε)= sσ. Obviously g∈P . Let
Wh(i)∈Wh, say Wh(i)={σ1, ..., σr}, and let t be a text for Wh(i) randomly generated
by some δ ∈D for Wh(i). For every ε∈ [0, 1], the probability according to which each
σj (1≤j≤r) occurs within p(|i|, 1

ε
) steps with respect to δ is > 1− ε, so:

µδ({t∈ωω: (∀n)(n ∈ Wh(i) → n ∈ rng(t|p(|i|,1
ε
)−1))}) > 1− ε.

Moreover σj ≤ p(|i|, 1
ε
). Hence, for every k ≥ p(|i|, 1

ε
) − 1, st|k = i and g(t|k, ε) = i. If

A={t∈ωω:g EX−converges on t, ε to Wh(i) in < p(|i|, 1
ε
) steps}, then

A⊇{t∈ωω: (∀n)(n∈Wh(i)→n ∈ rng(t|p(|i|,1
ε
)−1))},

so µδ(A) > 1−ε. It follows that g EX-measure identifies Wh(i) in at most p(|i|, 1
ε
)

guesses (with respect to δ) and Wh∈EXv-eff
meas (D).
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Remark 2 Consider D1={δ1,L : L∈Fin} and D2={δ2,L : L∈Fin} where, for every
L ∈ Fin, δ1,L and δ2,L are the probability distributions defined in Examples 2. It is
easy to verify that D1 and D2 satisfy (&). Hence, if Ψ(i, x) is the canonical universal
function for Fin and h is a Ψ-indexing (Fin = Wh), then Wh ∈ EXv-eff

meas (D1) and
Wh∈EXv-eff

meas (D2).

5.2 Main results for EXeff
meas and EXv-eff

meas

In the present section we give an answer to the following question: what relation-
ships hold between identification on informant and measure identification of uniform
classes of languages in both efficient paradigms? As stated before, such a problem
becomes meaningful only if we refer to particular, even though quite natural, classes
of distributions.

Definition 17 Let Wh = {Wh(i) : i ∈ ω} be a uniform class and let D be a class of
distributions forWh.We say that D is polynomially bounded if there exists a polynomial
p(x) such that, for every Wh(i) ∈Wh, for every n ∈Wh(i), for every δ ∈ D for Wh(i),
δ(n) ≥ 1

p(n)
. In this case we say that D is polynomially bounded by p.

Remark 3 Let Wh = {Wh(i) : i ∈ ω} be a uniform class. For every polynomial p(x)
of degree ≥ 2 there exists a class of distributions for Wh polynomially bounded by p.
Let, for all i∈ω:

δ1,i
p
(n) =

{
1∑

j∈Wh(i)

1
p(j)

· 1
p(n)

if n∈Wh(i)

0 otherwise

It is readily seen that δ1,i
p

is a distribution for Wh(i) and that D1
p={δ1,i

p
: i∈ω} is a class

of distributions for Wh polynomially bounded by p. Note that, for every Wh(i) ∈Wh

there exists a unique δ∈D1
p for Wh(i), namely δ=δ1,i

p
.

Notation 4 Let Wh be a uniform class. We will write Wh ∈ EX v-eff
meas (D1) if, for

every polynomially bounded class of distributions D for Wh,Wh is EX-very efficiently
measure identifiable with respect to D.

The next theorem states that EX-very efficient identification on informant is stronger
than EX-very efficient measure identification.

Theorem 4 Let Wh={Wh(i) : i∈ω} be a uniform class. Then:

Wh ∈EXv-eff
inf ⇒Wh ∈EXv-eff

meas (D1).

The proof of Theorem 4 descends from the definitions, the constructions and the
technical results given below. In this part we will refer to a generic uniform class
Wh = {Wh(i) : i ∈ ω} and to a generic class of distributions D for Wh polynomially
bounded by p and, for every Wh(i)∈Wh, n∈Wh(i), δ∈D for Wh(i), we will indicate by
(†) the condition δ(n)≥ 1

p(n)
.
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Fact 1 There exists a polynomial p(x, y) such that, for every ε∈ [0, 1], for every Wh(i)∈
Wh, for every δ ∈D for Wh(i), for every j, n ∈ ω, if j ∈Wh(i), j ≤ n, then, for every

k≥p(n, 1
ε
), Pr≤k

δ (j)>1− ε
(n+1)2n+1 .

Proof Let ε ∈ [0, 1], Wh(i) ∈Wh, δ ∈ D for Wh(i), j, n ∈ ω with j ∈Wh(i), j ≤ n. By
(†), for every k∈ω, Pr>k

δ (j)≤ (1− 1
p(n)

)k. By condition (1− x)<e−x, it follows that

(1− 1
p(n)

)k≤e
− k

p(n) . Moreover it is readily seen that

e
− k

p(n) ≤ ε
(n+1)2n+1 ⇔ k≥p(n)[ln 1

ε
+ ln(n+1) + a(n+1)]

where a= 1
log2e

. So, letting p(x, y)=p(x)[y + (a+ 1)(x + 1)], for every k≥p(n, 1
ε
), we

have Pr≤k
δ (j)>1− ε

(n+1)2n+1 .

q.e.d.

Let Wh(i)∈Wh and let δ∈D for Wh(i). From a text t for Wh(i) randomly generated by

δ, we want to construct the informant Ih(i) for Wh(i). Informally, at each step k, we
create a binary sequence I of length k+1 in which we put positive information (In=0,
n≤k) if n∈ rng(t|k), and negative information (In =1, n≤k) if n �∈ rng(t|k). For this
purpose, if p(x, y) is the polynomial defined in Fact 1, consider the following functions:

• H : Seq × ω → Bseq such that, for every σ∈Seq and n∈ω:

H(σ, 0) =

{
< 0 > if 0∈rng(σ)
< 1 > otherwise

H(σ, n+ 1) =

{
H(σ, n)∗ < 0 > if n+ 1∈rng(σ)
H(σ, n)∗ < 1 > otherwise

• α :ω×[0, 1]→ω such that, for every k∈ω and ε∈ [0, 1], if k0,ε=p(0, 1
ε
),

α(k, ε) =

{
max{r ∈ ω : p(r, 1

ε
) < k} if k≥k0,ε

0 otherwise

• β :ω×[0, 1]→ω such that, for every n∈ω and ε∈ [0, 1],
β(n, ε)=

⌊
p
(
n, 1

ε

)
+ 1

⌋
.

• I : Seq × [0, 1]→ Bseq such that, for every σ∈Seq and ε∈ [0, 1]:
I(σ, ε)=H(σ,α(lth(σ)− 1, ε)).

Remark 4 (i) For every σ∈Seq and ε∈ [0, 1], I(σ, ε) is the code of the initial segment
of an informant of length α(lth(σ) − 1, ε) + 1, i.e. I(σ, ε) =< i0, ..., iα(lth(σ)−1,ε) >,
where, for every j≤α(lth(σ)− 1, ε), ij ∈{0, 1}, ij =(H(σ, j))j and (I(σ, ε))j =0 if and
only if j∈rng(σ).
(ii) Let Wh(i)∈Wh, let t be a text randomly generated by δ∈D for Wh(i) and ε∈ [0, 1].
It is easy to see that, for every k∈ω, I(t|k, ε) has length α(k, ε)+1 and contains as
positive information elements of Wh(i) and as negative information elements which do
not occur in rng(t|k) yet and which with “high” probability (>1−ε) are not in Wh(i).

In the following, for every ε∈ [0, 1] and t∈ωω, we let:

I(t, ε) =
⋃

k∈ω
#(I(t|k, ε)),

where, if σ=< a0, ..., an >, then #σ=(a0, ..., an).
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Fact 2 (i) H(σ, n)∈P.

(ii) For every ε∈ [0, 1], α(k, ε) is a function increasing in k such that, for every n∈ω,
p(α(n, ε), 1

ε
)<n and α(β(n, ε), ε)=n.

(iii) I(σ, ε)∈P.

(iv) For every ε∈ [0, 1], for every t∈ωω, {j∈ω : I(t, ε)j =0}=rng(t).

Proof Immediate by the previous definitions.
q.e.d.

Definition 18 Let ε∈ [0, 1], Wh(i)∈Wh, t∈ωω randomly generated by some δ∈D for
Wh(i), k∈ω. We say that I(t|k, ε) is wrong, if there exists j ∈Wh(i), j≤α(k, ε), such
that j does not occur within k+1 steps with respect to δ, i.e. j �∈rng(t|k). If I(t|k, ε)
is not wrong, we say that I(t|k, ε) is correct.

Note that, if I(t, ε) is not an informant for Wh(i), then there are j ∈Wh(i) and k ∈ω
such that j≤α(k, ε) and (I(t|k, ε))j =1. This happens only if j �∈rng(t|k). So I(t|k, ε)
is “wrong” according to Definition 18.

Definition 19 Let ε∈ [0, 1], Wh(i)∈Wh, t∈ωω randomly generated by some δ∈D for
Wh(i), n∈ω. Define:

En,ε ≡ (∃k)[α(k, ε)=n ∧ I(t|k, ε) wrong ].

The following results are easily estabilished (proofs are left as exercise).

Fact 3 For every n∈ω, En,ε holds if and only if I(t|β(n,ε), ε) is wrong.

Fact 4 The following are equivalent:

(i) For every n∈ω, En,ε does not hold.

(ii) For every k∈ω, I(t|k, ε) is correct.

Fact 5 I(t, ε) is the informant for Wh(i) with probability >1−ε.

Proof By construction, I(t, ε) is an informant (Remark 3). Moreover, for every j∈ω,
I(t, ε)j =0 if and only if j∈Wh(i) (Fact 2(iv)). It remains to show that the probability
that I(t, ε) is wrong is ≤ ε. Let j, n∈ ω be such that j ≤ n. Since p(j, 1

ε
)<β(n, ε), if

j∈Wh(i), then

Pr
>β(n,ε)+1
δ (j)≤ ε

(n+1)2n+1

(Fact 1). But α(β(n, ε), ε)=n, so the probability that I(t|β(n,ε), ε) is wrong is bounded

by
∑

j≤n
Pr

>β(n,ε)+1
δ (j) and ∑

j≤n
Pr

>β(n,ε)+1
δ (j) ≤ ε

2n+1 .

Therefore the probability that En,ε holds is ≤ ε
2n+1 (Fact 3) and the probability that

there exists n∈ω such that En,ε holds is bounded by
∑

n∈ω
ε

2n+1 =ε. Hence, for every

k∈ω, I(t|k, ε) is a correct initial segment of Ih(i) with probability>1−ε (Fact 4), and

I(t, ε)=Ih(i) with probability>1−ε.
q.e.d.

We are now in a position to prove Theorem 4.
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Theorem 4 Let Wh={Wh(i) : i∈ω} be a uniform class. Then:

Wh ∈EXv-eff
inf ⇒Wh ∈EXv-eff

meas (D1).

Proof Let D be a class of distributions for Wh polynomially bounded by p. Assume

Wh∈EXv-eff
inf and let g∈P and the polynomial q be such that, for every Wh(i)∈Wh, g

EX-identifies on informant Wh(i) in at most q(|m(i)|) guesses. Let q(x, y)=p(q(x), y)+2
(p defined in Fact 1). Let g be such that, for every ε∈ [0, 1], for every a0, ...an∈ω,

g′(< a0, ..., an >, ε)=g(I(< a0, ..., an >, ε)).
Obviously g′ ∈ P . Let ε ∈ [0, 1], Wh(i) ∈Wh and let t be a text for Wh(i) randomly
generated by some δ∈D for Wh(i). Define:

A={t∈ωω:g′ EX− converges on t, ε to Wh(i) in < q(|m(i)|, 1
ε
) steps}

A′={t∈ωω:g EX−identifies Wh(i) on I(t, ε) in < q(|m(i)|) steps}.
It is readily seen that A⊇A′. So, for every k≥ q(|m(i)|, 1

ε
) − 1, I(t|k, ε) is (the code

of) a binary sequence of length ≥ q(|m(i)|). Moreover A′ ⊇ {t ∈ ωω : I(t, ε) = Ih(i)}.
But µδ({t ∈ ωω : I(t, ε) = Ih(i)}) > 1−ε (Fact 5), so µδ(A) > 1−ε. It follows that g′

EX-measure identifies Wh(i) in at most q(|m(i)|, 1
ε
) guesses with respect to δ, hence

Wh∈EXv-eff
meas (D).

q.e.d.

Theorem 5 Let Wh be a uniform class. Then:

Wh ∈EXeff
inf ⇒Wh ∈EXeff

meas(D1).

Proof Analogous to Theorem 4.
q.e.d.

Corollary 1 Let Wh be a uniform class. Then:

Wh satisfies (∗) ⇒Wh ∈EXeff
meas(D1).

Proof Immediate from Theorem 1(i) and Theorem 5.
q.e.d.

Unfortunately, in both efficient paradigms, measure identification does not imply iden-
tification on informant.

Proposition 1 There exist a uniform class W and a universal function Ψ(i, x) for W
such that, if h is a Ψ-indexing, then W=Wh and Wh∈EXv-eff

meas \EXeff
inf .

Proof Let W={Li : i∈ω} be such that, for every i∈ω,
- if i is odd: Li={x∈ω : x∈Pown(i) for some n≥1} where, for every n≥1,

x∈Pown(i) ⇔ x=22..
.2

i

︸ ︷︷ ︸
n

- if i is even: Li=L1.
Define for every i, x∈ω:

Ψ(i, x) =

{
0 if i is odd and x∈Pown(i) for some n≥1

or if i is even and x∈Pown(1) for some n≥1
1 otherwise
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It is easily seen that Ψ(i, x) is a universal function forW such that, if h is a Ψ-indexing,
for i odd (i �=1), Wh(i)=Li (m(i)= i), while for i even or i=1, Wh(i)=L1 (m(i)=0).

Wh �∈EXeff
inf . For every polynomial p, for sufficiently large i, p(i+2)< 2i−1. For one

of these odd i, we cannot distinguish Wh(i) from Wh(i+2) before 2
i−1 steps. Then Wh

does not satisfy (∗) and Wh �∈ EXeff
inf .

Wh∈EXv-eff
meas . For every ε∈ [0, 1] and a0, ..., an∈ω let:

g(<a0, ..., an>, ε) =

{
i if there exists an odd i such that

a0∈Pown(i), for some n≥1
0 otherwise

Obviously g ∈ P . Moreover, for every class of distributions D for Wh, ε ∈ [0, 1] and
Wh(i)∈Wh, if t is a text for Wh(i) randomly generated by some δ ∈D for Wh(i), then
t0∈Pown(i) for some n≥1. Hence g EX-measure identifies Wh(i) after the first guess.

q.e.d.

However not all uniform classes of languages are EX-efficiently measure identifiable
with respect to D1 (hence with respect to every class of distributions for it).

Proposition 2 There exist a uniform class W and a universal function Ψ(i, x) for W
such that, if h is a Ψ-indexing, then W=Wh and Wh �∈EXeff

meas(D1).

Proof Let W={Li : i∈ω} be such that L0=ω and, for every i∈ω \ {0}, Li=ω \ {2i}.
Define, for every i, x∈ω:

Ψ(i, x) =

{
1 if i �=0 and x=2i

0 otherwise

It is readily seen that Ψ(i, x) is a universal function forW such that, if h is a Ψ-indexing,
for i=0, Wh(0)=ω (m(0)=0), otherwise Wh(i)=ω\{2i} (m(i)= i).

We want now to show the existence of a polynomially bounded class of distributions
D for Wh such that, for every g(x, y) ∈ P , for every polynomial q(x, y), there exist
ε∈ [0, 1], Wh(i)∈Wh and δ∈D for Wh(i) such that:

µδ({t∈ωω :g EX−converges on t, ε to Wh(i) in <q(i, 1
ε
) steps}) �>1− ε,

or, equivalently,

µδ({t∈ωω :g does not EX−converge on t, ε to Wh(i) in <q(i, 1
ε
) steps})≥ε.

Let p(x)=(x+1)(x+2) and consider D1
p, the class of distributions for Wh constructed

from p as shown in Remark 2. Let δ0∈D1
p be for Wh(0) (δ0=δ1,0

p
). For every i ∈ ω, for

all x< 2i, δ0(x)≥ 1
p(x)

. The probability that, within k steps, only x<2i are generated

by δ0 is bounded by
(∑

x<2i δ0(x)
)k

. Moreover it is readily seen that

(
∑

x<2i δ0(x))
k≥e

− 2k

2i+1

and, for every ε∈ [0, 1],
e
− 2k

2i+1 ≥2ε⇔ k≤ 2i+1
2

ln 1
2ε

.

For every g(x, y)∈ P and polynomial q(x, y), if ε= e−2

2
, let q′(x) = q(x, 1

ε
). For suffi-

ciently large i, q′(i)<2i and (2i+1)
2

ln 1
2ε

>q′(i) + 1. Hence

808 Fontani S.: Efficient Measure Learning



e
− 2(q′(i)+1)

2i+1 ≥2ε.
Consider Wh(i) for one such i and let δ∈D1

p be for Wh(i) (δ= δ1,i
p
). For every x< 2i,

δ(x)>δ0(x), so:

(
∑

x<2i δ(x))
q′(i)+1 > (

∑
x<2i δ0(x))

q′(i)+1 ≥ 2ε.

Let B=∪{Bσ : lth(σ)=q′(i), rng(σ)⊆{0, 1, ..., 2i − 1}}. Note that
B={t∈ωω: (∃σ∈ω<ω)(lth(σ)=q′(i) ∧ rng(σ)⊆{0, 1, ..., 2i − 1} ∧ t⊇σ)}.

Hence µδ(B) = (
∑

x<2i δ(x))
q′(i)+1 and µδ0(B) = (

∑
x<2i δ0(x))

q′(i)+1. Moreover it is
obvious that:

(1) For every Bσ∈B: µδ(Bσ)>µδ0(Bσ) (2) µδ(B)>µδ0(B)≥2ε.
Let:

B1={t∈B : g(t|q′(i), ε) is an index for Wh(0)}
B2={t∈B : g(t|q′(i), ε) is an index for Wh(i)}

B3=B \ (B1 ∪ B2).

By (1), (2) and the properties of a measure, since B=B1∪B2 ∪B3, one of the following
cases takes place:

(I) µδ(B1 ∪ B3)>µδ0(B1 ∪ B3)≥ε (II) µδ(B2 ∪ B3)>µδ0(B2 ∪ B3)≥ε.

In case (I), if A={t∈ωω :g does not EX-converge on t, ε to Wh(i) in < q(i, 1
ε
) steps},

then A⊇B1 ∪ B3, hence µδ(A)>ε.

In case (II), if A={t∈ωω :g does not EX-converge on t, ε to Wh(0) in < q(0, 1
ε
) steps},

then A⊇B2 ∪ B3, hence µδ0(A)≥ε.

In each case there exist Wh(i) ∈Wh and δ ∈ D1
p for Wh(i) such that g does not EX-

measure identify Wh(i) in at most q(i, 1
ε
) guesses with respect to δ, soWh �∈EXeff

meas(D1).
q.e.d.

6 Probabilistic identification

Measure identification is not the only way to treat identification from a probabilistic
point of view. For example, if W is a uniform class and L ∈W, we can require the
learner g to make, at each step n, a guess on the basis of the initial segment of length
n+1 of the informant for L and of a binary sequence of length n+1, which we can imagine
generated by random coin drawns (coin sequence). This approach aims to represent
the idea that the conjectures of a learner can be not only determined by “exact”
information on L, but also by random and independent external events. Moreover it
“merges” the previous two efficient identification paradigms, since it considers positive
and negative information in a probabilistic setting. We will say that g (very) efficiently
identifies L with probability if, for every ε ∈ [0, 1], on the basis of the two sequences
described above, g stabilizes on an index for L in time polynomial in the (length of
the) least index for L in W with probability>1− ε.

Definition 20 (i) A coin τ is a text such that rng(τ )⊆{0,1}.
(ii) We call σ∈Seq a coin-sequence if rng(σ)⊆{0,1}.

Recall that, if Wh={Wh(i) : i∈ω} is a uniform class, for every i∈ω, Ih(i) denotes the
informant for Wh(i).
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Definition 21 Let Wh= {Wh(i) : i ∈ ω} be a uniform class and let g(x, y) be a total

recursive function. For every s∈2ω, for every k∈ω, for every Wh(i)∈Wh, if t=Ih(i) we
say that g EX-converges on t, s to Wh(i) in at most k steps (in short: in <k steps) if:

(∃n0<k)(∀n≥n0)(g(t|n, s|n)= i′)

for some i′∈ω such that Wh(i)=Wh(i′).

Throughout this part we denote by ∆ a σ-additive measure on the Cantor space 2ω .

Definition 22 Let Wh = {Wh(i) : i∈ω} be a uniform class. We say that Wh is EX-

efficiently identifiable with probability (Wh∈EXeff
prob), if there exist a function g(x, y)∈P

and a polynomial p(x, y) such that, for every Wh(i) ∈Wh, g EX-identifies Wh(i) with

probability in at most p(m(i), 1
ε
) guesses, i.e., for every ε∈ [0, 1], if t=Ih(i):

∆({s∈2ω:g EX−converges on t, s to Wh(i) in < p(m(i), 1
ε
) steps})>1−ε.

Definition 23 Let Wh = {Wh(i) : i∈ω} be a uniform class. We say that Wh is EX-

very efficiently identifiable with probability (Wh ∈ EXv-eff
prob ), if there exist a function

g(x, y)∈P and a polynomial p(x, y) such that, for every Wh(i) ∈Wh, g EX-identifies

Wh(i) with probability in at most p(|m(i)|, 1
ε
) guesses, i.e., for every ε∈ [0, 1], if t=Ih(i):

∆({s∈2ω:g EX−converges on t, s to Wh(i) in < p(|m(i)|, 1
ε
) steps})>1−ε.

6.1 Main results for EXeff
prob

It seems reasonable that identification on informant is related to identification with
probability, since the latter is based on the informant for the unknown language too.
Really the two identification paradigms turns out to be equivalent in the efficient
setting. Let Wh = {Wh(i) : i ∈ ω} be a uniform class, and let Ψ(i, x) and h(i) be a
universal function for Wh and a Ψ-indexing respectively. Recall that (∗) denotes the
following condition:

(∃ polynomial p)(∀i)(∀j<m(i))(∃x≤p(m(i)))(ϕh(j)(x) �=ϕh(i)(x)).

Theorem 6 Let Wh={Wh(i) : i∈ω} be a uniform class. Then:

Wh ∈EXeff
prob ⇔ Wh satisfies (∗).

Proof (⇒) Let Wh ∈ EXeff
prob by g ∈ P . Suppose by contradiction that Wh does not

satisfy (∗), i.e.:
(∀ polynomial q)(∃i)(∃j<m(i))(∀x≤q(m(i)))(ϕh(j)(x)=ϕh(i)(x)). (1)

We want to show that, for every polynomial q(x, y), there exist ε∈ [0, 1], Wh(i) ∈Wh

such that, if t=Ih(i):

∆({s∈2ω :g EX−converges on t, s to Wh(i) in <q(m(i), 1
ε
) steps})�>1− ε

or, equivalently,

∆({s∈2ω:g does not EX−converge on t, s to Wh(i) in<q(m(i), 1
ε
) steps})≥ε.

For every polynomial q(x, y), for every ε< 1
2
, let q′(x)=q(x, 1

ε
). By (1), corresponding

to every q′, there exist i, j∈ω such that j<m(i) and, for every x≤q′(m(i)), ϕh(j)(x)=

ϕh(i)(x). So, if t=Ih(i) and t′=Ih(j), t|q′(m(i))= t′|q′(m(i)). Consider:
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B1={s∈2ω : g(t|q′(m(i)), s|q′(m(i))) is an index for Wh(i)}
B2={s∈2ω : g(t|q′(m(i)), s|q′(m(i))) is an index for Wh(j)}

B3={s∈2ω : g(t|q′(m(i)), s|q′(m(i))) is neither an index for Wh(i) nor for Wh(j)}.
If B=B1 ∪ B2 ∪ B3, then ∆(B)=1 and one of the following cases hold:

(I) ∆(B1 ∪ B3)≥ 1
2

(II) ∆(B2 ∪ B3)≥ 1
2
.

In case (I), if A= {s ∈ 2ω : g does not EX- converge on t, s to Wh(j) in < q(m(j), 1
ε
)

steps}, since q′(m(i))≥q(m(j), 1
ε
), then A⊇B1 ∪ B3 and ∆(A)≥ 1

2
>ε.

In case (II), if A= {s ∈ 2ω : g does not EX-converge on t, s to Wh(i) in < q(m(i), 1
ε
)

steps}, since q′(m(i))=q(m(i), 1
ε
), then A⊇B2 ∪ B3 and ∆(A)≥ 1

2
> ε.

In each case there exists Wh(i)∈Wh such that g does not EX-identify with probability

Wh(i) in at most q(m(i), 1
ε
) guesses, hence Wh �∈EXeff

prob .

(⇐) Suppose thatWh satisfies (∗). By Theorem 1(i),Wh∈EXeff
inf and let g∈P and the

polynomial p be such that, for every Wh(i) ∈Wh, g EX-identifies on informant Wh(i)

in at most p(m(i)) guesses. Define, for every σ, τ ∈Bseq,

g′(σ, τ ) = g(σ).

It is obvious that g′(σ, τ )∈P and, for every ε∈ [0, 1] and Wh(i)∈Wh, g
′ EX-identifies

with probability Wh(i) in at most p′(m(i), 1
ε
) guesses, where p′(x, y)=p(x).

q.e.d.

Corollary 2 Let Wh be a uniform class. The following are equivalent:

(i) Wh satisfies (∗).
(ii) Wh∈EXeff

inf .

(iii) Wh∈EXeff
prob .

Proof Immediate from Theorem 1(i) and Theorem 6.
q.e.d.

Theorem 7 PL is not EX-efficiently identifiable with probability with respect to any
acceptable indexing.

Proof Immediate from Theorem 2 and Corollary 2.
q.e.d.

Corollary 3 Let Wh be a uniform class. Then:

Wh ∈EXeff
prob ⇔Wh ∈EXeff

inf ⇒Wh ∈EXeff
meas(D1).

Proof Immediate from Corollary 2 and Corollary 1.
q.e.d.
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6.2 Main results for EXv-eff
prob

Let Wh ={Wh(i) : i∈ω} be a uniform class, and let Ψ(i, x) and h(i) be respectively a
universal function for Wh and a Ψ-indexing. We recall that (∗′) denotes the following
condition:

(∃ polynomial p)(∀i)(∀j<m(i))(∃x≤p(|m(i)|))(ϕh(j)(x) �=ϕh(i)(x)).

Theorem 8 Let Wh={Wh(i) : i∈ω} be a uniform class. Then:

Wh ∈EXv-eff
prob ⇒ Wh satisfies (∗′).

Proof Analogous to Theorem 6 (⇒).
q.e.d.

As in the identification on informant setting, the reverse implication of Theorem 8 is
a very hard problem.

Theorem 9 The following are equivalent:

(i) Every uniform class of languages satisfying (∗′) is EX-very efficiently identifiable
with probability.

(ii) NP=RP.

The proof of Theorem 9 is based on the following auxiliary proposition.

Proposition 3 Let Ψ(i, x)∈P . For every σ∈Seq, consider:

f(σ)=

{
µi ≤ σ(∀x < lth(σ))((σ)x = Ψ(i, x)) if such an i exists
0 otherwise

If NP=RP, then f is computable by a probabilistic T.m. in time polynomial in |σ|.

Proof We give a hint of the proof, leaving the reader to complete it in detail. Consider
the problem such that, for every σ∈Seq, for every y, z∈ω,
R(σ, y, z) ≡ (y + z ≤ σ) ∧ (∃i ≤ y + z)

[(y ≤ i) ∧ (∀x < lth(σ))((σ)x = Ψ(i, x))]. (1)

Such a problem is obviously in NP. In fact there exists a nondeterministic T.m. which
guesses, for every σ∈Seq and y, z∈ω, a number i≤y+z and checks if such an i satisfies
the right part of (1) (in polynomial time in lth(σ)). So, by hypothesis, this problem
is in RP too. Let Θ(σ, y, z, τ, ε) be a function that decides R(σ, y, z) with probability
≥1− ε in time p(|σ|, |y|, |z|, 1

ε
). It is easy to show that f is computable in polynomial

time by a probabilistic T.m. by means of Θ.
q.e.d.

We are now ready to prove Theorem 9.

Theorem 9 The following are equivalent:

(i) Every uniform class of languages satisfying (∗′) is EX-very efficiently identifiable
with probability.
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(ii) NP=RP.

Proof (i)⇒ (ii) Consider SAT , the problem of deciding the satisfiability of proposi-
tional formulas A in conjunctive normal form (A ∈ CNF ). We want to show that
if condition (∗′) is sufficient for EX-very efficient identifiability with probability of a
uniform class of languages, then this problem is solvable by a polynomial time proba-
bilistic algorithm. Since SAT is an NP-complete problem, this will imply NP=RP ,
showing the statement. For every A∈CNF , we indicate by:

- V arA={xi :xi or xi occurs in A}; kA=card(V arA), the cardinality of V arA.

- τ :V arA→{0, 1}, a truth assignment on A; AssA={τ :τ truth assignment on A}.
- τ (A), the truth value of A on assignment τ ; |τ |, the cardinality of rng(τ ).

- A� (τ�), the code of A (τ ).

We consider CNF -formulas in the alphabet Σ={x, |,∧,∨, , (, )} and we suppose them
coded as shown in the Preliminaries. Recall that, for every n∈ω, one can check if n is
the code of some A∈CNF and, in the positive case, decode it in time polynomial in |n|.
The same properties hold for n∈COD, where COD={<A�, τ�>:A∈CNF, τ ∈AssA}.
Moreover, if n=< A�, τ�>, then |n|=2(|A�|+ |τ�|+1), so |A�|≤|n|≤4|A�|+2.

Let Ψ(n, x) be such that, for every n, x∈ω:
- if n∈COD, n =<A�, τ�> for some A∈CNF , τ ∈AssA:

Ψ(n, x) =

{
[A�]x if x < |A�|
1 if x = |A�|+ 4 and τ (A) = 1
0 otherwise

- if n �∈COD: Ψ(n, x)=0.

Intuitively, if n∈COD and n =<A�, τ�>, Ψ(n, x) assumes values:

[A�]0, ..., [A�]|�A	|−1, 0, 0, 0, 0, τ (A), 0, 0.....

where τ (A)=0 or τ (A)=1. It is readily seen that Ψ(n, x)∈P . So, if h∈P is such that,
for every n, x∈ω, Ψ(n, x)=ϕh(n)(x), then Wh = {Wh(n) : n∈ω} is a uniform class of
languages. Moreover it is easy to verify that Wh satisfies (∗′). Hence, by hypothesis,

Wh ∈ EXv-eff
prob . Let g(x, y) ∈ P and p(x, y) be such that, for every ε ∈ [0, 1] and

Wh(n) ∈Wh, g EX-identifies with probability Wh(n) in at most p(|m(n)|, 1
ε
) guesses.

Consider A ∈ CNF , ε ∈ [0, 1] and let n = max{xi : xi or xi occurs in A}. Define
σA∈Bseq such that, if 1n+1=1, ..., 1︸ ︷︷ ︸

n+1

, then lth(σA)=p(| <A�, 1n+1> |, 1
ε
) and

σA=< [A�]0, ..., [A�]|�A	|−1, 0, 0, 0, 0, 1, 0, ..., 0> .

Note that, for τ ∈AssA, |m(< A�, τ�>)| ≤ |< A�, 1n+1 > |. Moreover, if A∈SAT ,
ρ ∈ Bseq and lth(ρ) = lth(σA), then, for every ε ∈ [0, 1], with probability > 1− ε,
g(σA, ρ) =m, where m=< A�, τ�> for some τ ∈AssA such that τ (A)= 1. On the
other hand, if A �∈SAT , ρ∈Bseq and lth(ρ)= lth(σA), then, for every ε∈ [0, 1], g(σA, ρ)
is not of the type < A�, τ�> with < A�, τ�>∈ COD or τ (A) = 0. Hence, given
A∈CNF , ε∈ [0, 1], for every ρ∈Bseq, such that lth(ρ)= lth(σA), let g(σA, ρ)=s.

If s �=< A�, τ�> with τ ∈AssA, then A �∈SAT . Otherwise, if τ =(s)2, we can check
if τ satisfies A or not (A= (s)1). In the positive case A∈ SAT , otherwise A �∈ SAT .
Moreover the constructions of σA and ρ, the computation of g(σA, ρ) and other checks
can be executed in time polynomial in lth(A), |ρ| and 1

ε
(since |A�| ≤ p′(lth(A)) for
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some polynomial p′). It follows that the problem of deciding if A∈SAT is solvable in
time polynomial with probability>1− ε, hence SAT ∈RP and NP=RP.
(ii) ⇒ (i) Let Wh = {Wh(i) : i ∈ ω} be a uniform class of languages with universal
function Ψ(i, x). Suppose that Wh satisfies (∗′) with the polynomial p. Let g be such
that, for every a0, ..., an∈ω and τ ∈Bseq:

g(<a0, ..., an >, τ )=

{
i where i=µj≤<a0, ..., an> [(∀x ≤ n)

(Ψ(j, x)=ax)], if such an i exists
0 otherwise

If NP=RP, then g is computable by a p-time probabilistic T.m. (Proposition 3). Let
Wh(i) ∈Wh. For every j<m(i), there exists x≤ p(|m(i)|) such that Ψ(j, x) �=Ψ(i, x).
Moreover it is readily seen that m(i) ≤<ϕh(i)(0), ..., ϕh(i)(p(|m(i)|))>, so, for every
n ≥ p(|m(i)|), g(<ϕh(i)(0), ..., ϕh(i)(n)>) = m(i). Hence, for every ε ∈ [0, 1], g EX-
identifies with probability Wh(i) in at most p(|m(i)|)+1 guesses.

q.e.d.

Theorem 10 Let Wh={Wh(i) : i∈ω} be a uniform class. Then:

Wh ∈EXv-eff
inf ⇒ Wh ∈EXv-eff

prob .

Proof Let g ∈ P and the polynomial p be such that, for every Wh(i) ∈ Wh, g EX-
identifies on informant Wh(i) in at most p(|m(i)|) guesses. Let, for every σ, τ ∈Bseq,
g′(σ, τ ) = g(σ). Clearly g′(σ, τ ) ∈ P and, if p′(x, y) = p(x), for every ε∈ [0, 1] and
Wh(i)∈Wh, g

′ EX-identifies with probability Wh(i) in at most p′(|m(i)|, 1
ε
) guesses.

q.e.d.

Remark 5 Note that, if P=NP, then, for every uniform class Wh:

Wh satisfies (∗′) ⇔Wh ∈EXv-eff
inf ⇔ Wh ∈EXv-eff

prob ,

and NP=RP (Theorem 9). On the other hand, if P �=NP and NP=RP, then:
Wh ∈EXv-eff

inf ⇒ Wh satisfies (∗′) ⇔ Wh ∈EXv-eff
prob .

But, under P �=NP, condition (∗′) is not sufficient for EX-very efficient identification

on informant; hence, for some uniform class Wh, Wh∈EXv-eff
prob but Wh �∈EXv-eff

inf .
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