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Abstract: High performance computing (HPC) architectures are specialized machines
which can reach their peak performance only if they are programmed in a way which
exploits the idiosyncrasies of the architecture. An important feature of most such archi-
tectures is a physically distributed memory, resulting in the requirement to take data
locality into account independent of the memory model o�ered to the user. In this pa-
per we discuss various ways for managing data distribution in a program, comparing in
particular the low-level message-passing approach to that in High Performance Fortran
(HPF) and other high performance languages. The main part of the paper outlines a
method for the speci�cation of data distribution semantics for distributed-memory ar-
chitectures and clusters of SMPs. The paper concludes with a discussion of open issues
and references to future work.
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1 Introduction

Programming languages de�ne the level of abstraction at which a user interacts
with a machine. On the one hand, a high level of abstraction provides expressivity
and easy readability as well as veri�ability of programs, but may result in a
performance penalty caused by the gap between language and architecture. On
the other hand, low-level languages oriented towards the properties of a given
architecture may allow the full exploitation of a machine, but at the cost of
increased program complexity and reduced portability.

For von-Neumann machines, which were originally programmed in machine
or assembly languages, the 1950s and 1960s brought about a fundamental change
with the emergence of high-level languages which were generally accepted be-
cause the relatively small performance penalty associated with their use was far
outweighed by the advantages of increased reliability and programmer produc-
tivity. For parallel architectures, this situation is dramatically di�erent. The con-
tinued demand for increased computing power led to the development of highly
parallel scalable multiprocessing systems with distributed-memory (DMMPs)
since the mid 1980's. Such machines are potentially scalable to large numbers of
processors, but their hierarchical memory scheme requires sophisticated data
management strategies in order to maximize the locality of accesses; at the
same time, the workload has to be distributed evenly across the processors.
The standard programming model for these architectures has become the data
parallel Single-Program-Multiple-Data (SPMD) paradigm in which parallelism
is achieved by distributing the data across the processors of the machine, with
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each processor executing a parameterized copy of the same program, essentially
working on its \own" data and communicating with other processors if access
to nonlocal data items is required.

For many years no high-level software infrastructure did exist for these archi-
tectures, forcing users to adopt a low-level programming paradigm based upon a
standard sequential programming language (typically Fortran or C), augmented
with message passing constructs. In this paradigm, the user deals with all as-
pects of the distribution of data and work to the processors, and controls the
program's execution by explicitly inserting message passing operations. MPI [8]
is the current programming standard for this approach.

Early research into high-level programming support focused on the develop-
ment of compilation and runtime technology with the aim of automating some
aspects of program development within the SPMD framework [18]. The idea is to
enable the user to write code using global data references, as for shared memory,
but require the speci�cation of a data distribution, which is then used to guide
the process of restructuring the code into an explicitly parallel SPMD message
passing program for execution on the target machine. This work paved the way
for the development of the �rst generation of High Performance Languages, in-
cluding Fortran D and Vienna Fortran [7, 10, 19, 4], and leading to the de-facto
standard High Performance Fortran (HPF) [11, 12]. HPF o�ers high-level fea-
tures for the declaration of abstract processor sets and the speci�cation of data
distribution, data alignment, and explicitly parallel loop constructs.

In recent years, clusters of symmetric shared-memory machines have become
increasingly important. Such architectures require a hybrid programming para-
digm, combining the coarse-grain distributed-memory level with shared-memory
parallelism inside each node. Even if an architecture provides a NUMA shared
address space interface to the user, locality at the coarse grain level is still an issue
and must be taken into account. The generalization of high level data distribution
features as discussed above to such architectures is relatively straightforward.

This paper is organized as follows. In the next section we will discuss a mo-
tivating example, comparing two formulations { one based on MPI and one on
HPF { for a parallel Jacobi relaxation code. The idea is to demonstrate the
complexity of the message-passing approach even in the case of a very simple
problem, and to illustrate the power and potential simplicity of a high-level data
distribution speci�cation. The following Section 3, which contains the main part
of the paper, introduces a formal model for data distribution semantics in the
context of DMMPs and applies it to a range of regular and irregular distribu-
tions used in current programming language extensions. Section 4 outlines a
generalization of this method to clusters of SMPs and NUMA shared address
space architectures. The paper concludes with a short overview of open problems
(Section 5) and �nal remarks in Section 6.

2 A Motivating Example

The emergence of distributed-memory architectures brought the necessity of
controlling locality into sharp focus. One way is to use an explicitly parallel ap-
proach, e.g., C or Fortran coupled with message passing. As a simple example,
consider a parallel version of a Jacobi relaxation code using Fortran extended
by MPI [8] library calls as shown in Fig. 1. The matrices A;B are partitioned
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by block across the columns (Fig.2). The core of the algorithm consists of the
two-level loop updating the current approximation at a grid point B(I; J) by
computing a weighted average of the values at the neighboring grid points. A
considerable organizational e�ort is necessary to insert the required communi-
cation: any two processors owning adjacent blocks of columns must exchange
the columns at their boundary (marked by the dashed lines in Fig. 2), whereas
special rules apply to the processors owning the �rst and last block of columns.

REAL, ALLOCATABLE A(:,:), B(:,:)
...

CALL MPI COMM SIZE (c,s) ! compute number of processes

CALL MPI COMM RANK (c,myrank) ! compute my process id
! compute local size M { number of columns in each process

ALLOCATE (A(0:N+1,0:M+1), B(N,M))
...

DO WHILE ( .NOT. converged)
DO J=1,M
DO I=1,N

B(I,J) = 0.25*(A(I-1,J)+A(I+1,J)+A(I,J-1)+A(I,J+1))
END DO

END DO
A(1:N,1:M) = B

IF (MOD(myrank,2) .EQ. 1) THEN
CALL MPI SEND (B(1,1),N,MPI REAL ,myrank-1,tag,c)
CALL MPI RECV (A(1,0),N,MPI REAL ,myrank-1,tag, c, status)
IF (myrank .LT. s-1) THEN
CALL MPI SEND (B(1,m),N,MPI REAL ,myrank+1,tag,c)
CALL MPI RECV (A(1,M+1),N,MPI REAL ,myrank+1,tag, c, status)

END IF

ELSE
IF (myrank .GT. 0) THEN
CALL MPI RECV (A(1,0),N,MPI REAL ,myrank-1,tag, c, status)
CALL MPI SEND (B(1,1),N,MPI REAL ,myrank-1,tag,c)

END IF
IF (myrank .LT. s-1) THEN
CALL MPI RECV (A(1,M+1),N,MPI REAL ,myrank+1,tag, c, status)
CALL MPI SEND (B(1,M),N,MPI REAL ,myrank+1,tag,c)
END IF

END IF
...

END DO

Figure 1: Parallel Jacobi using MPI

The idea underlying HPF is to delegate this organizational work to the com-
piler, guided by a user-speci�ed directive expressing the data distribution in an
abstract notation. The core of an HPF-based algorithm specifying the kind of
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Figure 2: Block column distribution of A and B

data distribution shown in Fig. 1 above is given in the program fragment in
Fig. 3.

P is declared as an array of abstract processors whose size is determined by
the system inquiry function NUMBER OF PROCESSORS, which returns the
number of processors being used to execute the program. This code can be run
on varying numbers of processors without recompilation. A static analysis of the
loop shows that no dependences exist, thus it can be parallelized by the compiler.

Note that in HPF the computation is speci�ed using a global index space
and does not contain any explicit data motion constructs. It is the compiler's
responsibility to analyze the code and translate it into an explicitly parallel code
(such as the MPI code given in Fig. 1) with the appropriate communication
statements inserted to satisfy the data requirements.

This example { which discusses a regular code fully analyzable by the com-
piler { illustrates a situation where the high-level notation provided by HPF
{ which is more concise and much simpler than the MPI-based formulation {
does not incur any performance drawbacks. In fact, there exist methods for the
automatic creation of the HPF directives in cases such as this one [14, 13]. In gen-
eral the problem of generating eÆcient code for HPF programs is more diÆcult
however (Section 3.4).
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!HPF$ PROCESSORS P(NUMBER OF PROCESSORS())

REAL, ALLOCATABLE A(:,:), B(:,:)
!HPF$ DISTRIBUTE (*, BLOCK ) ONTO P :: A, B

ALLOCATE (A(0:N+1,0:N+1), B(0:N+1,0:N+1))
...

DO WHILE ( .NOT. converged)
DO J=1,N
DO I=1,N

B(I,J) = 0.25*(A(I-1,J)+A(I+1,J)+A(I,J-1)+A(I,J+1))
END DO

END DO
A(1:N,1:N) = B(1:N,1:N)

...

END DO

Figure 3: Parallel Jacobi with HPF

3 A Data Distribution Model for Distributed-Memory

Systems

3.1 Distributed Memory Systems and the SPMD Paradigm

A Distributed-Memory Multiprocessing System (DMMP) is a homoge-
neous multiprocessing system in which each processor has a separate address
space, its local memory. Each processor can directly access its local memory,
whereas access to the address space of another processor must be managed via
message passing communication. More precisely, we characterize a DMMP (ex-
cluding I/O) by a triple (P;M; L), where

1. P = fp1; : : : ; prg: set of processors
2. M: system memory

M is partitioned into r equal-sized subsets M1; : : : ;Mr, where Mi is the
address space associated with processor pi; 1 � i � r.

3. L : P! P(M): memory mapping
L describes the mapping from processors to their address spaces: L(pi) =Mi

for each i.

We will classify a memory reference in a processor, p, as local i� it targets
L(p), else as nonlocal. Our model assumes that the cost of nonlocal acccesses
in terms of latency and bandwidth is signi�cantly higher than that for local
accesses, thus emphasizing the importance of spatial locality. In the data par-
allel Single-Program-Multiple-Data (SPMD) programming paradigm, the
data domain of the sequential program is partitioned in such a way that each
processor \owns" a segment of data that is allocated in its local memory. The
processors execute a parameterized version of the same program, with each pro-
cessor running a single thread. 1 This organization results in a balance of the

1 This binding of processors to threads remains invariant during execution of the
program allowing the informal identi�cation of processors and threads in this section.
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workload across all processors on the one hand; on the other hand, processors
can operate in parallel on their local data as long as no dependences exist that
require communication.

In contrast to the strictly synchronous, lockstep Single-Instruction-Multiple-
Data (SIMD) model, processors participating in an SPMD scheme operate asyn-
chronously until the need for communication arises, resulting in a characteriza-
tion of this method of execution as \loosely synchronous".

In a real DMMP system, each processor can communicate with every other
processor, but the \distances" between processors may di�er depending on the
network topology and the relative locations of the processors in the network.
This may a�ect communication latency and bandwidth. Our model ignores these
di�erences, taking into account only the dichotomy local/nonlocal: in this sense
it has become common to call the processors in P \abstract". The mapping of
abstract processors to the physical processors of the real machine { which we
assume to be one-to-one { is transparent.

3.2 Data Distribution

3.2.1 Basic Concepts

We assume here a sequential Fortran program to be executed on a DMMP using
the SPMD paradigm. The logical address space of the program is represented by
its data declarations; only arrays are considered as objects for distribution (see
Section 5).

Let the DMMP be given as discussed above: (P;M; L). Following the con-
ventions in most HPC programming languages we represent a set of processors,
P, as an array, R. For example, R(16; 16) de�nes the set of abstract processors
as P = fR(i; j) j 1 � i; j � 16g. Note that according to the remarks at the
end of the previous section this does not imply any information regarding the
topology of the underlying physical processors, such as a mesh.

Each array A declared in a program is associated with an index domain,
denoted by IA. Similarly, for a processor array, R, IR denotes the associated
index domain. In the example above, IR = [1 : 16]� [1 : 16].

De�nition 1 Let A denote an array and P a non-empty set of processors. A
distribution of A, ÆA, is a total function

ÆA : IA ! P(P)� f�g

ÆA is called replication-free i� for all i 2 IA; j ÆA(i) j= 1. 2

De�nition 2 Distribution Segments
Let A, IA, and ÆA be de�ned as above. The distribution segment, �A(p), of
A and processor p with respect to ÆA is given as follows:

�A(p) := fi 2 IA j p 2 ÆA(i)g.

An array element A(i) is said to be owned by processor p i� i 2 �A(p). 2
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If A is an array and ÆA a distribution for A, then each index i 2 IA is
mapped to all processors in the set ÆA(i). The semantics underlying this map-
ping is that for each p 2 ÆA(i), a copy of the element A(i) is to be allocated
in L(p). If ÆA(i) contains more than one processor, we speak of replication. The
compilation/runtime system must keep the values of replicated copies consistent.
Although replication is important under certain circumstances { for example,
scalar values are usually replicated to all processors in order to reduce commu-
nication {, we will in the rest of this paper deal with replication-free distributions
if nothing else is said explicitly.

The function �A inverts ÆA by specifying for each processor, p, the set of all
indices in IA which are mapped to p using ÆA. Each element in �A(p) is allocated
a unique address in L(p).

If ÆA is replication-free, and P = Æ(IA), then �A : P ! P(IA) de�nes a
partition of IA (in the mathematical sense), with all elements mapped to the
same processor belonging to one class.

Ownership is the key to translate references to distributed data: if processor
p owns a data item A(i), then a reference to it in p can be translated to a
reference to the associated location in its local address space L(p). Otherwise, a
bu�er for the element must be provided in L(p), and message passing is required
to perform the transfer between local and nonlocal memory. For example, if a
nonlocal item A(i) is to be read in p, and p0 is the owner of this item, then the
value of A(i) is retrieved via message passing and transferred to the local bu�er.

We noted above that for each element A(i) with p 2 ÆA an instance of A(i) is
allocated in L(p). The actual local adress determined at this allocation is required
in addition to the ownership information in order to complete the translation
from a global array reference A(i) to a physical address in M. For the purpose
of this paper, the details of this mapping are not relevant so we will ignore it.

The owner computes rule is a special version of the SPMD paradigm which
in early work was used in almost all systems. According to this rule, any mod-
i�cation of data (via input or assignment) is executed on the processor which
owns this data. Owner computes provides a very simple (although not always
eÆcient) scheme for transforming sequential programs to SPMD programs [15].

3.2.2 Dimensional Distributions

Assume data array A and processor array R to be given, and ÆA is a distribution
from A to R. Æ is called a dimensional distribution if it speci�es a mapping
for exactly one dimension of IA to exactly one dimension of IR. One or more
dimensional distributions involving disjoint dimensions of IA and IR can be
combined into a multidimensional distribution; alternatively, dimensions of
A may also remain undistributed. The associated formalism has been speci�ed
in detail in [19].

Most distributions actually used in HPC languages are dimensional. For their
de�nition it is suÆcient to consider one-dimensional data and processor arrays.

3.2.3 Alignment

Alignment is a method to determine the distribution of an array, the alignee,
from the known distribution of a target array and an alignment function.
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De�nition 3 Let A, B denote arrays. An alignment of alignee B with target
array A is modeled by means of an alignment function, �BA:

�BA : IB ! P(IA)� f�g, total 2

An alignment maps each index of the alignee to one or more indices of the
target array. Given an alignment function and a distribution of the target array,
this leads to an obvious construction of a distribution for the alignee:

De�nition 4 Let A and B respectively denote a target array and an alignee,
�BA an associated alignment function, and ÆA a distribution of the target array.

Then the distribution, ÆB , of the alignee is de�ned as follows. For all i 2 IB:

ÆB(i) :=
S

j2�B
A
(i)

ÆA(j)2

Alignment is one of the most important ways which allow the construction of
new distributions from already given ones. Examples include identity alignment,
where �(i) = fig for all i, as well as replicating and collapsing speci�c dimensions
in the target array. More general functions, as allowed in languages such as HPF,
may lead to serious implementation problems [2]. A practically useful de�nition
of alignment requires the general version of data distribution which includes
replication.

3.3 Regular Dimensional Distributions

The two elementary types of regular dimensional distributions are block and
cyclic. Block partitions the array into contiguous equal-sized regions mapped
to subsequent processors, whereas cyclic generates a round-robin mapping of
indices to processors.

Assume array A with a one-dimensional index domain IA = [1 : n], and
IR = [1 : m] a one-dimensional index domain for the set of processors.

1. Block Distribution
Assume m j n. Then the block size, q, is de�ned as q := n=m, and

ÆA(i) := fd i
q
e)g for all i; 1 � i � n.

2. Cyclic Distribution
A cyclic distribution is de�ned by

ÆA(i) := fMOD(i� 1;m) + 1g for all i; 1 � i � n.

In general, the assumption m j n is not required for the block distribution,
leading to the need for introducing two di�erent block sizes. A variant of block
distribution used in HPF allows the explicit speci�cation of block size, result-
ing in a mapping that may not involve all processors. Finally, the block-cyclic
distribution combines block and cyclic by generating a round-robin mapping of
contiguous segments of the index domain with a prede�ned length.

Example 1 Let n = 32 and m = 4: A block distribution results in a block size
q = 8 and generates a mapping
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ÆA(8 � (p� 1) + l) := fpg for all p; 1 � p � 4, and all l; 1 � l � 8.

The distribution segment for a processor p; 1 � p � 4, is given as

�(p) = [8 � (p� 1) + 1 : 8 � p]

Example 2 Let A(32; 16) and the processor array be de�ned as R(4; 4). Further
assume that the �rst dimension of A is to be distributed by block, and the second
dimension cyclically. This results in a mapping (see previous example)

ÆA(4 � k + l; j) := fR(k + 1;MOD(j � 1; 4) + 1)g for all k; 0 � k � 7, all
l; 1 � l � 4, and all j; 1 � j � 16.

For example, A(17; 7) is mapped to processor R(3; 3). 2

From the above discussion it can be easily concluded that the representation
of block and cyclic distributions in the compiler and runtime system needs only
a few parameters, and the mapping from indices to processors (Æ) as well as the
inverse mapping (�) can be performed relatively easily and with small runtime
e�ort. Also, scaling with respect to array (dimension) size or processor number
is not a problem.

3.4 Irregular Dimensional Distributions

The block and cyclic distributions introduced in the previous section provide
a simple and easily implementable mechanism which eÆciently supports single
structured grids. Many \real" problems, however, require irregular collections
of regular grids (so-called multiblock problems) or unstructured grids. Regular
distributions, when applied to such grids, may result in severe load imbalances
and large communication overheads. The two types of irregular dimensional dis-
tributions introduced in this section provide eÆcient support for many classes
of irregular grid structures, albeit at an increased cost in memory and time
[1, 16, 15, 9].

As before we assume array A with index domain IA = [1 : n], and processor
array R with IR = [1 : m].

3.4.1 General Block Distributions

In essence, general block distributions generalize the regular block distributions
as introduced above by allowing di�erent block sizes. All other properties, in
particular the contiguity of the index subdomain associated with a distribution
segment, and the mapping of subsequent segments to subsequent processors,
remain the same.

De�nition 5 Let b = (b1; b2; : : : ; bm) denote a strictly monotonic sequence of
array indices, where bp denotes the �rst index of A to be mapped to processor
R(p), 1 � p � m, and b1 = 1. b is called the begin vector.

The associated general block distribution is given as follows:

For all i; 1 � i � n: ÆA(i) := fR(p)g, where p, 1 � p � m, is the smallest
number such that bp � i.
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The distribution segment associated with a processor p can then be determined
as

�(p) = [bp : bp+1 � 1] for 1 � p < m, and
�(m) = [bm : n] 2

General block distributions provide more 
exibility than block distributions
at moderate cost. In combination with array element reordering they can be used
to deal with unstructured grids. Their representation requires O(m) memory
size; access to an element requires time O(log2(m)). Thus, memory consumption
of the representation can be a concern for systems with a very large number of
processors.

3.4.2 Indirect Distributions

Indirect distributions are dimensional distributions that allow an arbitrary map-
ping from an index domain to a processor domain controlled by a mapping
function.

De�nition 6 Let f : [1 : n] ! [1 : m] denote a mapping function. f is total
but not necessarily injective or surjective. The associated indirect distribution is
given as follows:

For all i; 1 � i � n: ÆA(i) := ff(i)g 2

The class of indirect distributions represents the most general dimensional
distributions which are replication-free. In most cases where indirect distribu-
tions are used in practice, the mapping function is determined at runtime by a
partitioning routine; subsequently, the array is partitioned based on the map-
ping function. Indirect distributions provide an elegant means for dealing with
unstructured grids, their implementation is, however, expensive: the mapping
function, which must be stored at runtime, requires O(n) memory. Since the
mapping function will, because of the generally large size of n, be distributed
itself in most cases (normally using a regular block distribution), access to an
array element A(i) may require two communication steps.

3.5 Nondimensional Distributions

Nondimensional distributions allow arbitrary mappings from the set of indices
to the set of processors. Typically, such a distribution may be required when
dealing with a particle-in-cell problem or a sparse matrix. We illustrate the
latter case by an example which introduces a special, problem-oriented method
for representing distribution segments. This representation supports the eÆcient
parallelization of matrix-vector operations (which is not further discussed in this
paper { see [17]).
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Figure 4: Undistributed sparse matrix A

3.5.1 Sparse Matrix CRS Representation

Consider a sparse matrix A(1 : N; 1 : M) with q non-zero elements as given in
Fig. 4: the elements whose value is 0 are omitted there; the non-zero elements
(q = 16) are explicitly indicated (for simplicity, we assume their values identical
with their order in a row-oriented enumeration).
In the Compressed Row Storage (CRS) format, A is represented by three
vectors, D, C, and R:

{ the data vector, D(1 : q), stores the sequence of nonzero elements of A, in
the order of their enumeration;

{ the column vector, C(1 : q), contains in position k the column number, in
A, of the k-th nonzero element in A; and

{ the row vector, R(1 : N +1), contains in position i the number of the �rst
nonzero element of A in that row (if any); else the value of R(i+1). R(N+1)
is set to q + 1.

Based upon this representation, the core loop of the sequential algorithm can
be formulated in Fortran as shown in Figure 5.

3.5.2 Distributed Sparse Representation

The �rst step in developing a parallel version of the algorithm consists of de�ning
a distributed sparse representation of A. This essentially combines a data distri-
bution with a sparse format such as CRS. More speci�cally, a data distribution
is interpreted as if A were a dense array. The distributed sparse representation
is then obtained by representing the submatrices constituting the distribution
segments in the CRS format.
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INTEGER :: C(q), R(N+1)
REAL :: D(q), B(M), S(N)
INTEGER :: I, J
DO I = 1,M

S(I)=0.0
DO K = R(I), R(I+1)-1

S(I) = S(I) + D(K)*B(C(K))
ENDDO K

ENDDO I

Figure 5: Sparse matrix vector multiply: core loop of sequential algorithm

A number of data distributions have been used for this purpose, including
Multiple Recursive Decomposition (MRD) and cyclic distributions [17]. MRD
partitions A into NN rectangular distribution segments, A u; 1 � u � NN ,
where NN is the number of available modules. These segments are constructed
by a recursive algorithm aiming at associating approximately the same number
of nonzero elements with each segment. Fig.6 illustrates an irregular distribution
of our example matrix, A, into four rectangular distribution segments, and their
associated representations.

Based upon a distributed sparse representation using MRD, a data-parallel
algorithm for the sparse matrix vector product can be derived relatively easily
[17].

4 Data Distribution for Clusters of SMPs

In recent years, clusters of SMPs (CSMPs) have become popular platforms
for high performance computing. The essential features of such systems can be
sketched as follows:

1. The basic components are symmetric shared-memory architectures (SMPs).
Each SMP, s, consists of a local memory and a set of identical processors
with equal and direct random access to the local memory of s.

2. A CSMP is a system of SMPs connected by a network which communicate
via message passing.

The step from our DMMP model as introduced in Section 3.1 to a model
for CSMPs can be performed by replacing the role of the processors in DMMPs
by SMPs. More precisely, a CSMP can be characterized by a triple (S;M; L),
where

1. S is a set of SMPs s1; : : : ; sr. The SMPs constituting the set S are also called
the nodes of the system. Each s 2 S contains a set,Ps, of t processors, where
t is a system-constant.

2. M is the set of memory locations in the system. M is partitioned into r
equal-sized subsets M1; : : : ;Mr.

3. L : S ! fMi j 1 � i � rg is a bijective function that associates each SMP,
s, with its local memory L(s).
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L can be extended to de�ne a mapping for processors as well: for any s 2
S and all p 2 Ps, we de�ne L(p) := L(s). Local and nonlocal accesses are
characterized in a similar way as for DMMPs: any access within p to an object
in L(p) is local, whereas accesses from p to objects in a memory L(p0), where
p 6= p0, are nonlocal. As with DMMPs, nonlocal accesses carry a higher cost than
local accesses.

There are a number of ways for generalizing data distribution and alignment
from DMMPs to CSMPs [6, 3]. The simplest and most obvious way is to map
indices to nodes rather than processors. Thus a distribution in a CSMP takes
the form

ÆA : IA ! P(S)� f�g

The concept of the distribution segment can be de�ned analogously, as well as
alignment and other concepts introduced in the context of DMMPs.

The extension of the SPMD programming paradigm to CSMPs is also straight-
forward: a CSMP (S;M; L) can be considered a DMMP (P;M; L), where P =
fp j p 2 Ps for some s 2 S) and all processors belonging to the same SMP are
mapped to the associated memory unit. The DMMP programming model now
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has only to be changed such that an access from p to an object in L(p0), where
p 6= p0, is treated as local i� p and p0 belong to the same SMP.

Virtual shared memory architectures include a range of architectures from
conventional systems such as the SGI Origin'2000 all the way to massively par-
allel Processor-in-Memory (PIM) architectures such as the Gilgamesh machine
[21]. In most cases such systems can be described as NUMA clusters of SMPs
(modules) with a global virtual address space. The concepts developed above
can be applied to such systems as well. One signi�cant di�erence is the necessity
to rearrange the logical address space of an array when applying distribution to
it.

5 Related Issues

This section raises a diverse set of issues related to the topics dealt with in the
main part of the paper. We discuss an object-based view of distributions, extend
the notion of distribution to general data structures, and outline the relationship
of (data) distributions to the distribution of work.

5.1 Distributions as Objects

Our discussion up to now considered distributions only in the context of arrays.
However, the two concepts involved { data structure (array) and distribution
{ can be separated. More speci�cally, data distributions can be de�ned in an
object-based framework. We outline a suitable approach below whose essential
components were proposed in the Vienna Fortran language [19].

1. Distributions can be introduced as functions Æ : I ! P(J), where I and J
are index domains which, in a particular instantiation, must be respectively
associated with an array index domain and a processor index domain.
Thus, a given distribution function can be used for di�erent array and pro-
cessor con�gurations, and a given distribution object can be associated with
di�erent data and/or processor arrays.

2. Assume a distribution, Æ, as sketched above. An application of the method
distribute (A;R; Æ) creates a distribution object based on Æ and the index
domains IA and IR.

3. The basic intrinsic methods applicable to a distribution object are the ones
discussed in Section 3.2: the ownership function and the processor-to-index
mapping �.
Furthermore, a range of additional methods can be de�ned for inquiries,
pre�x, and reduction functions.

4. Alignment, as discussed in Section 3.2.3, can be seen in this context as a
speci�c distribution constructor function. Examples for other such construc-
tors may include incremental redistribution operators as often required in
irregular algorithms.

5.2 Dynamic Distribution Management

An implicit assumption made until now was the existence of a �xed association
between a data structure (array) and a distribution. Howver, there are many

749Zima H.P.: Data Distribution Specification ...



situations involving regular or irregular distributions where the binding between
a variable and a distribution can be modi�ed at runtime. HPC languages usually
o�er two mechanisms for redistribution: (1) redistribution via explicit statements
specifying a new distribution for an array, and (2) redistribution via a proce-
dure call involving an array argument whose formal parameter assumes a new
distribution.

Redistribution is an expensive action which requires global communication
of all involved processors (SMPs); the required e�ort may be amortized by a
reduction in the cost of accesses to the elements of a data structure.

5.3 Data Structures

Distributions can be applied to more general data structures than arrays. We
outline the main idea below [21].

In the �rst step, the atomic components of a data structure can be uniquely
identi�ed. We do this by associating with the data structure a mapping, D :
I! 
, where I is a generalized index domain, and 
 is some \universal" set of
values 2. The idea here is that we can always decompose a data structure into
its \atomic" components, which designate elementary values such as �xed-point
or 
oating-point numbers, logical values, or pointers, and that each of these
components can be 1-1 mapped to a unique \name" in I. For example, if D is a
simple numerical variable, then we can choose for the index domain the singleton
set I = f1g. If D(1 : n; 1 : m) is a two-dimensional Fortran array, then we de�ne
I = [1 : n] � [1 : m]. If D is an n-ary tree of height m, then each leaf can be
uniquely identi�ed by a string i1:i2 : : : :ik, where k � m and all ij are integers
between 1 and n. In this way, we can represent data structures associated with
arbitrary graphs if we include I as a subset of 
 in order to be able to deal with
pointers.

The index domain, generalized as shown above, can now be used to de�ne
distributions in exactly the same way as discussed in earlier sections of this
paper.

Example 3 Distribution of a tree structure
Assume D is a small binary tree with index domain I = f1; 1:1; 1:2; 1:2:1; 1:2:2g,
and P = fp1; p2; p3g a set of processors for a DMMP. A possible distribution,
ÆD, could be de�ned as ÆD1 (1) = ÆD1 (1:1) = fp1g, Æ

D
1 (1:2) = ÆD1 (1:2:1) = fp2g,

and ÆD1 (1:2:2) = fp3g. 2

5.4 Work Distributions

In an earlier section we mentioned the owner computes rule as one particular
way to handle the distribution of work in an SPMD parallel program. This is
not always the best way to organize the work since it may lead to excessive
communication that can be avoided under a more 
exible scheduling strategy.

Consider for example the execution of an independent loop in HPF, i.e., a
loop whose iterations can all be executed in parallel since there exists no loop-
carried dependence [20]:

2 For the purpose of discussing distributions we take this limited view, not dealing
explicitly with such information as the topology of the data structure.
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!HPF$ INDEPENDENT
DO I=1,N

B(I)=A(I)*A(I)/K...
...

ENDDO

The standard method in which code is generated for such a loop is based
on a work distribution which speci�es a mapping from processors to loop
iterations. If enough processors are available, all iterations can be executed in
parallel. Note however that communication is required for all non-local reads
and all non-local writes executed in iterations of the loop. The read communi-
cation can be performed before the actual loop execution begins; similarly, the
write communication can be performed after its end. Since the amount of com-
muncation required can strongly depend on the work distribution, it is useful to
include work distributions and their explicit manipulation in the model. Quite
often the work distribution can be tied to a data distribution. For example, the
on-clause ON HOME (A(I)), when attached to the �rst line of the above ex-
ample, expresses a work distribution which requires iteration I to be executed
by processor ÆA(I), where ÆA is a replication-free distribution for array A.

This concept can be also applied to other statements (in particular, array
statements) and be generalized to allow more 
exibility in the on clause [12, 5].

6 Conclusion

In this paper we discussed the formal speci�cation of data distributions support-
ing a high-level language approach. The motivation for the explicit modeling of
distributions comes from the observation that data distributions play a key role
in the formulation of algorithms for modern architectures which are generally
characterized by complex memory hierarchies. Whereas present compilation and
runtime technology may render some levels of that hierarchy transparent it is
the belief of the author that coarse-grain data distribution should be explicitly
supported in a high-level language, which in turn means that a suitable semantic
model is to be developed.

Although many existing HPC languages allow the speci�cation of data dis-
tributions, no generally accpeted semantic model has been developed until now.
This paper attempts a classi�cation of some basic properties which could guide
the development of a more complete approach. Many issues, in particular those
related to the eÆcient implementation of a suitable class of distributions remain
open at this time. Compilers for languages such as Vienna Fortran and HPF can
provide actual guidance in improving current languages (which may mean gen-
eralization as well as simpli�cation of some concepts) as well as applying these
features to newly developed architectures such as processor-in-memory systems.
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