
Animations for Teaching Purposes:

Now and Tomorrow

Tobias Lauer
(University of Freiburg, Germany
lauer@informatik.uni-freiburg.de)

Rainer M�uller
(University of Freiburg, Germany

rmueller@informatik.uni-freiburg.de)

Thomas Ottmann
(University of Freiburg, Germany

ottmann@informatik.uni-freiburg.de)

Abstract: Animation is commonly seen as an ideal tool for teaching dynamic phe-
nomena. While there have been very few studies testing this hypothesis, animations
are used extensively in teaching, particularly in the �eld of algorithms. We highlight
features that we consider important for animation systems, describe the development
of algorithm animation by examples, and present a new Java-based system supporting
annotation and recording of animations. We also outline a way to annotate animations
and movies given in the MPEG video format. By listing several case studies we describe
new ways and possibilities of how animation systems may be used in the future.

Key Words: Algorithm Animation, Animation System, Annotation Capturing, Ed-
ucation, Multimedia Authoring, Presentation Recording

Category: Computing Milieux { Computers and Education { Computer Uses in Ed-
ucation (K.3.1)

1 Introduction

It is quite common to promote algorithm animation with the argument that

an animation is the best way to explain a dynamic, i.e., a time-varying, phe-

nomenon. Instead of drawing by hand a series of pictures of the various stages

of a running algorithm, it is certainly more convenient to run the algorithm on a

computer and have an animation system generate the series of �gures. This way,

sorting and searching algorithms, graph algorithms, algorithms for processing

text, and many others have been extensively used in courses on algorithms and

data structures.

Whether or not the animation of an algorithm is appropriate or well-done

is diÆcult to judge and quite often just a question of personal taste. The rele-

vant question in this context is, however, whether an animated algorithm can

provably enhance knowledge acquisition. This can be answered only through

carefully designed comparative studies and it may even depend on the speci�c

subject. There are only very few studies of this type currently available. Hence,

Journal of Universal Computer Science, vol. 7, no. 5 (2001), 420-433
submitted: 14/4/01, accepted: 7/5/01, appeared: 28/5/01 Springer Pub. Co.

it is not quite clear whether teaching the design and analysis of algorithms by

using classical means like blackboard and chalk, and (maybe) transparencies, is

less e�ective than the modern tools, computers and animation systems that are

available today. In order to understand an algorithm, learners must ultimately

generate their own mental images and \movies." Therefore, it might even be

counter-productive to provide them with computer-generated prototypes!

Nevertheless, it is our belief that animation is a useful tool in education and

that the visual coherence provided by a smooth animation can, in many cases,

visualize dynamic phenomena much better than static pictures.

2 Desirable Features of Animation Systems

In this section, we highlight some important features that animation systems

should provide when used for purposes of teaching. In particular, these are the

aspects of interaction, annotation and recording. We also address the issues of

production and handling of animations.

2.1 Interaction

The usual way of including an animation in a lecture is to run it in movie mode:

a sorting algorithm is run on a carefully selected sequence of input values, and

the critical operations carried out by the algorithm (comparisons and exchanges

of keys in the case of sorting) are visualized. The animation may occasionally

be paused by the instructor for questions or explanations, or important parts

might be repeated for better understanding, but this is what interaction is often

limited to.

The real power of computer animation systems, however, is the possibility

of interacting not only with the replay device but with the algorithm itself.

In the visualization of a data structure, the user might be able to choose the

next operation to be carried out, resulting in di�erent possible outcomes of

an animation. This kind of interaction may di�er in degree, ranging from the

simple selection of inputs to comfortably \communicating" with the animation

and manipulating objects via mouseclicks. But even running the same algorithm

on di�erent sets of data will be far more insightful to students than watching it

run several times on the same input. We will give several examples for this kind

of scenario in later sections.

Furthermore, interactive animations, or simulations, can be used in a greater

variety of learning contexts. While movie-style animations are destined to be used

in lecture-style teaching with the students being more or less passive consumers

of the delivered contents, animations with a suÆcient degree of interaction will

enable the learners themselves to experiment with the algorithm. This can be

used in labs accompanying lectures or in students' own studies at home.

421Lauer T., Mueller R., Ottmann T.: Animation for Teaching Purposeses ...

The possibility to interact with an algorithm and to observe its behavior

is considered crucial for self-paced learning and studying. As has been pointed

out in one of the few studies carried out in the �eld [Kehoe et al. 1999], it

is exactly this use of animations which has the most signi�cant advantages in

respect of learning success, compared to traditional teaching methods such as

static pictures or plain text.

2.2 Annotation

In lectures and presentations teachers usually annotate the documents they

present. This is done mainly in order to highlight important features, �ll gaps,

or include additional information.

Animations could certainly bene�t from annotation as well. It would be very

convenient for an instructor to be able to write or draw directly onto the graph-

ical output of the animation.

This can be achieved by providing an additional, transparent \layer," on

which all annotated material is drawn. The annotations themselves would be

done with the mouse or a pen in front of a computer screen or using an electronic

whiteboard or touchpad.

It is clear that projecting the animation to a (non-electronic) whiteboard

and writing on it with a normal pen will not be suÆcient. First, it would be

inconvenient to have lengthy breaks during the animation for clearing old anno-

tations. Second, and more important, computer generated animations can allow

for annotating speci�c objects that are part of the animation. Such annotations,

for example, highlighting, could then move along with those objects, whereas

general information is expected to stay where it is as the animation continues.

For this scenario it is required that the animation system itself should support

the annotation of animations.

A di�erent situation arises with the annotation of animations or movies in

MPEG format. We address this issue in greater detail in [Section 5].

2.3 Recording

Today a growing number of educational courses are recorded or otherwise pre-

served in order to be used by distant learners or students who have missed a

class. With ongoing projects all over the world such as virtual universities, this

development can be expected to continue in the future. Consequently, it is de-

sirable that all material, including animations, be captured and integrated in a

presentation document recorded from such a session.

Simply videotaping an animation will certainly not be suÆcient. First of all,

the quality of the resulting movie is in most cases below what is considered

appropriate. Second, it seems a shame to have material available in digital form,

422 Lauer T., Mueller R., Ottmann T.: Animation for Teaching Purposeses ...

tape it and then re-digitize the video with the loss of both quality and all the

\semantic" information which might have been there in the original. And third,

it would be very useful to preserve the interactivity that an animation system

may o�er [see M�uller 2000].

In recording interactive animations several scenarios can be imagined. The

result could simply be a video-like clip without any interaction for the end user.

In some cases, it might be better if the learner could interactively modify the

animated content. Ideal would be a combination of the two, where the recorded

animation may be viewed, but could also be interrupted and interactively modi-

�ed by the learner. In this last case, the recorded session becomes an interactive

multimedia learning document that students cannot just watch but experiment

with.

2.4 Easy Handling and Production

For a widespread use of animations in teaching, it is important that these can

be handled without diÆculty by instructors. This in particular includes non-

CS teachers, who may be computer literate but not experienced in program-

ming. Therefore, the handling of animations must be intuitively clear and self-

explanatory.

Moreover, it is desirable that such animations may be easily developed and

produced, even by people with little or no programming skills. No teacher can af-

ford the time for lengthy developing sessions. Thus, animation authoring systems

are needed which must be both powerful and easy to use.

2.5 Integration

If animations are to be used in o�ine multimedia courses for self-studies, it is

necessary to integrate individual animations with other material. In order to

achieve this, the animation system must provide some means to synchronize

animation with other multimedia streams such as audio or video [M�uller 2000].

Another prerequisite of integration is exibility of use. This includes inde-

pendency of the underlying operating system. For most media types, platform-

independent standards have emerged during the past years. For applications,

the best way is to implement them in Java. They may then be integrated into

platform-independent course documents.

3 Development of Algorithm Animation

We describe some animation systems that have been used in education, outlin-

ing their di�erent philosophies and strategies, and comparing them using the

criteria listed above. For a more comprehensive overview of animation systems

see [M�uller 2000].

423Lauer T., Mueller R., Ottmann T.: Animation for Teaching Purposeses ...

3.1 Balsa and Interesting Events

The concept of interesting events was introduced by [Brown, Sedgewick 1985].

It is used in the Balsa system (Brown university ALgorithm Simulator and An-

imator), and has been adopted by its successor, Zeus, and many other systems.

Its major goal is the separation of algorithm and animation and the speci�cation

of a way for linking those two parts.

The programmer of the visualization takes the following steps. First, exam-

ine the algorithm for interesting events, i.e., important operations. Second, �nd

a solution to how these operations may be animated best. Third, program the

animations. And last, supplement the original algorithm with the animation com-

ponents speci�ed as abstract descriptions. For legibility of the algorithm source

code, Brown suggested keeping all important operations in separate procedures

which carry out the manipulations of the data structure as well as the anima-

tions. Sometimes, animation components will have to be inserted at positions

in the algorithm where no important things happen, just to attract the viewers

attention. These, too, will be coded as interesting events.

Balsa is divided into three components. Input generators create input data

for the algorithm. The algorithm itself produces interesting events, which are

handed to renderers creating views of the animation. The system does not sup-

port graphical annotation, but Balsa sessions can be recorded using a scripting

language.

3.2 The Path-Transition Paradigm

The path-transition paradigm [Stasko 1990] speci�es continuous motion in com-

puter animations and has had a major impact on many of today's animation

systems.

The paradigm uses the four types location, image, path, and transition. A

location describes a \point" in an n-dimensional space. An image is the object

of the animation. A path consists of a �nite series of locations, along which the

object will be animated. Finally, a transition links an image with a path and a

transition type such as motion, resizing, or color change.

Following the paradigm, any changes of images are done through transitions.

This includes discrete changes like the change of an object's visibility.

The (X)Tango system (X-window Transition-based AnimatioN GeneratiOn)

and its successors, Polka and Samba, as well as many other animation systems

follow the paradigm, even if the later systems may modify some details. In Polka-

RC, for example, paths no longer consist of a �nite number of locations but are

described by a continuous function. Fast computers can display the animations

with more interpolated steps, thus showing smoother transitions.

424 Lauer T., Mueller R., Ottmann T.: Animation for Teaching Purposeses ...

Neither XTango nor Polka are platform-independent, but there is a Java

version of Samba, JSamba, for the use in HTML documents. None of the systems

supports graphical annotation or recording of animations.

3.3 Java-based systems

In order to be independent of the user's operating system, most of the animation

systems developed today are implemented in Java. We list JCAT as an interest-

ing example. Using applets, it is designed for web pages. Distributed animations

are supported through the Java RMI interface (Remote Method Invocation).

Thus the teacher can control animations running on students' machines in a

virtual classroom.

ANIMAL (A New Interactive Modeler for Animations in Lectures) [R�o�ling

et al. 2000] is a tool o�ering a scripting language and a visual component for cre-

ating animations. Thus, authors do not need programming knowledge. However,

animations authored that way are not linked to any algorithm. Hence, visualiz-

ing a run of the same algorithm on a di�erent set of inputs requires the author to

make a whole new animation since only predetermined movie-mode animations

can be created.

Like most other systems, JCAT and ANIMAL do not support recording or

annotation of animations.

4 A System Supporting Annotation and Recording

In order to meet the requirements that many of the existing animation systems

leave to be desired, a new system was developed. JEDAS (Java EDucational An-

imation System) [M�uller 2000] uni�es the advantages of platform independence,

annotation, recording functions, and easy production.

4.1 Design and Usage

JEDAS is a Java-based system designed for creating, executing, annotating, and

recording two-dimensional animations and simulations. One major aim is to o�er

a comfortable authoring process and the integration of existing algorithms and

animations; another one to provide a presentation service to integrate animations

in computer presentations, supporting their recording, graphical annotation, and

transmission to remote audiences.

Animations are created in Java using the JEDAS class library. Based on

the path-transition paradigm, all types of animation can be created easily and

without much e�ort. Details of the semantic linkage of algorithm and animation

are completely up to the authors. They can insert animation instructions directly

into the algorithm or use interesting events as an abstract layer between the

algorithm and the visualization component.

425Lauer T., Mueller R., Ottmann T.: Animation for Teaching Purposeses ...

Figure 1: Annotation of a BubbleSort animation using JEDAS.

4.2 The Authoring Station

Interaction with the algorithm has to be coded by the animation programmer,

but JEDAS o�ers a control panel allowing the user to start, pause, and reset the

animation at any time, and to increase or decrease the speed of the animation.

In addition, scroll bars for horizontal and vertical scrolling as well as a zooming

function are part of the animation frame.

The JEDAS authoring station (Figure 1) also allows all animations to be

graphically annotated; a pointer, simple objects like rectangles and ellipses, as

well as text and free-hand drawing are supported. Such annotations can be made

at any time, in paused or running animations. In addition to the annotation

panel, JEDAS o�ers a record panel with record and stop buttons to capture an

animation including all annotations made during its presentation.

4.3 Replaying Recorded Animations

Annotated and recorded animations can be replayed using the JedasPlayer (Fig-

ure 2). Since the system supports fast access to any point of a recorded animation

(random real-time access), random visible scrolling allows the viewer to comfort-

ably navigate within the animation via mouse interaction.

426 Lauer T., Mueller R., Ottmann T.: Animation for Teaching Purposeses ...

Figure 2: Replay of an annotated and recorded JEDAS animation.

Random real-time access also facilitates the synchronization of animations

with other media streams for purposes of presentation recording and transmis-

sion. These features are used for integrating recordings of JEDAS animations

into AOF documents [M�uller, Ottmann 2000].

4.4 Animation and Simulation of Fibonacci Heaps

As a practical application, an animation and simulation of Fibonacci Heaps was

implemented using JEDAS. The animation dynamically visualizes the opera-

tions carried out on the data structure (Figure 3). It makes use of the original

algorithm supplemented with animation instructions.

The simulation mode allows for complete interaction with the algorithm. The

user can manipulate the data structure by choosing the next heap operation to

be carried out. The interaction is comfortable and intuitive; the easiest way is

to directly click on nodes in the animation panel and choose an option from the

appearing menu. An existing heap may be saved at any time to be re-used later

as an example. If a movie-mode presentation is desired, animations can also be

created very easily.

In addition, a visualization of the actual and amortized time complexity is

provided in a separate frame to facilitate students' understanding of this rather

427Lauer T., Mueller R., Ottmann T.: Animation for Teaching Purposeses ...

Figure 3: JEDAS animation visualizing Fibonacci Heaps.

complex issue. This statistics frame o�ers a di�erent \view" on the same data,

highlighting di�erent aspects of the same algorithm. It was also implemented

using the JEDAS library although it shows only discrete steps and no continuous

animation.

One major intention was to �nd an implementation exible enough to use

this animation series in various application areas. As a result, it is suitable both

for lecture-style presentations and less formal settings such as labs or at home.

The animation has been used in lectures on algorithms and data structures at

the University of Freiburg, and a modi�ed version animating Binomial Queues

has been included in a multimedia presentation recorded with the AOF note-

taking system [M�uller, Ottmann 2000].

5 Annotation of MPEG Videos

As has been pointed out above, facilities for the graphical annotation of anima-

tions are much appreciated by instructors. This also holds for the case of video

clips, covering animations given in a video format as well as movies which might

be annotated. Similar to the options provided by a whiteboard application, sim-

ple graphical objects such as lines, squares, ellipses, as well as free-hand drawing

and an online pointer are to be supported. All of the teacher's annotations made

428 Lauer T., Mueller R., Ottmann T.: Animation for Teaching Purposeses ...

Figure 4: Annotation of an MPEG video clip.

in the application window during the recording of a class have to be displayed

synchronously with the other data streams when playing back the video again.

It is hard to �nd a general solution to this problem, which would have to

be independent of the video playback program that is used, in particular if the

source code of that application is not available. The implementation heavily de-

pends on the underlying window system and playing back recorded annotations

could probably not be platform independent.

In the special case described here { an MPEG player developed on the basis

of an existing implementation with available source code [Rowe et al. 1994] {

annotation of video can be realized with less e�ort (see Figure 4).

After the current frame has been decoded and bu�ered for displaying, the

annotations are added and will appear on top of the video frame. Using double

bu�ering, the complete content of the bu�er is then copied to a window visible

to the viewer. The e�ort needed for adding the annotations is minimal compared

to decoding and displaying the video itself. For storing the data of the graphical

annotations, the same data structures and procedures as in the AOF system are

used [see M�uller 2000].

An interesting issue regarding the annotation of video (or continuous media

in general) is the question of its usefulness. Animations and �lms are particularly

doubtful in this respect, since the visibility of objects may change rapidly, making

429Lauer T., Mueller R., Ottmann T.: Animation for Teaching Purposeses ...

annotations in the running video rather pointless. Here it seems a better idea

to occasionally pause the movie for annotating, and then continue the playback.

It is, however, easy to come up with examples where graphical annotation on

the running video will be helpful. Think of �lms for medical students showing

operations. There is usually not much camera movement in such videos, which

makes them suitable for annotation. The instructor can highlight certain critical

areas or anticipate the next steps of an operation. A real-world example from

the domain of archaeology is described in [Ottmann et al. 2000], where a camera

ride through a reconstructed Roman building was shown and annotated.

Therefore, it de�nitely makes sense to provide options for annotation of video,

both in running mode and on still pictures.

6 Case Studies in Using Animation Systems

In this section we illustrate the vast amount of possibilities of using algorithm

animation beyond the movie mode by giving a few typical examples.

6.1 Inductively Inferring a Method

Instead of teaching an algorithm top-down and illustrating its behavior by run-

ning an animation on a few sample inputs, do the reverse: encourage a learner

to infer the \general rule" behind a sequence of speci�c examples.

This works well for the classical on-line algorithms for solving the bin-packing

problem. It is not diÆcult to infer the next-�t, �rst-�t, and best-�t strategies

from running the (unknown) algorithms on a series of di�erent input sequences.

Making a reasonable guess in order to estimate the behavior of the di�erent

algorithms for arbitrary input sequences is, however, not that easy any more.

In particular, detecting a signi�cant di�erence between the �rst-�t and best-�t

strategies requires a more thorough understanding of both algorithms.

It is obvious that the classical elementary sorting algorithms (Bubblesort,

Insertion-sort, Selection-sort) and searching methods (linear, binary, exponential

search) suggest similar mental experiments.

Computational geometry also o�ers a great number of topics where the tech-

nique of inductively inferring and formulating the method from a sequence of

speci�c examples may be worth exploring. Think of the various strategies for ex-

ploring an unknown environment, so-called competitive on-line algorithms, and

try to infer a general bound for their behavior.

6.2 Exploring the E�ects of Finely Granulated Operations

Usually, the granularity of an animation is rather coarse. Think of the following

example: when constructing the minimum spanning tree (MST) for a (planar)

430 Lauer T., Mueller R., Ottmann T.: Animation for Teaching Purposeses ...

graph, the user may be able to specify the input interactively by selecting a set of

nodes and edges, but the MST construction algorithms runs without user inter-

action. To use Tarjan's coloring method for constructing the MST [see Wagner

1998], two rules, the red-coloring rule and the green-coloring rule, are formulated

and the construction of the MST consists in applying one of the rules as often

as possible.

Instead of running this algorithm in movie mode for a given, interactively

selected graph, the user should be able to interactively specify a cut in order

to apply the green-coloring rule or to specify a cycle for the red-coloring rule,

and then watch the e�ects of applying the respective rule. It is assumed that

this way of using the animation system will have a much more lasting e�ect for

understanding Tarjan's algorithm than the usual movie-mode presentation.

There are many similar occasions where a �ne-granular interaction supports

the understanding of algorithms. Think, for example, of the classical algorithms

for rebalancing a height-balanced tree after the insertion or deletion of a node.

Instead of automatically retracing the search path and carrying out a sequence

of rotations, the animation system should urge the learner to specify nodes

where such operations must be carried out. Experimenting that way with the

animation system may thus even allow learners to discover the essence of the

AVL rebalancing algorithm themselves!

Note that many animations of algorithms for restructuring graphs in general

and (search) trees in particular su�er from the fact that they do not maintain

visual coherence: pointer updates are visualized by discrete steps instead of con-

tinuous movements of lines. We think that visual coherence is an essential feature

for understanding a graph-manipulating algorithm (even though this might not

reect \reality" { after all, pointer updates are discrete operations). Of course,

a thorough cognitive study to verify or disprove our belief is yet to be done.

It is well-known that there is a close relationship between triangulations

of convex polygons and full binary trees, so-called parse trees [Cormen et al.

1990]. Thus one may study the e�ect of an operation { such as an edge-ip {

concerning the triangulation for the corresponding tree and vice versa. One may

even show that any two triangulations may be transferred into each other by

carrying out a sequence of rotations. Is there a correspondence between the two

views? Can this be visualized appropriately and in an intuitive manner? Here we

have an example where di�erent but closely related views of structures and �nely

granulated operations to manipulate them seem to be crucial for understanding.

6.3 The Animation System as a Book-Keeping Tool

J. Nievergelt and his group at ETH Z�urich were among the �rst to recognize

the value of algorithm animation systems for supporting \professional" players:

when using the computer to play Chess or Go, the computer may just be used

431Lauer T., Mueller R., Ottmann T.: Animation for Teaching Purposeses ...

as a book-keeping device to record the sequence of actions carried out by two

human players. The Smart Game Board [Kierulf et al. 1990] is a software tool

supporting this feature. Of course, one may also use the system in order to play

\against" it, provided that the respective game-playing algorithms have been

included in the system development.

Similarly, even systems for playing one-person games like Sokoban may be

used for book-keeping: in order to study di�erent strategies and heuristics to

explore large state spaces it may be worth visualizing them and retracing the

sequences of steps to invent new and more eÆcient search strategies. This is just

one example for utilizing animation systems beyond the movie mode. The book-

keeping facility, i.e., the possibility to record and replay animations, is a generic

property of any algorithm animation implemented using the JEDAS library.

6.4 The Animation System as a Multimedia Authoring Tool

Producing multimedia courses is a time and cost consuming task. While the au-

tomatic recording of presentations o�ers an inexpensive alternative, the result-

ing documents often lack the professional look and didactic concepts of courses

speci�cally developed for self-paced studying. The question is whether one can

combine the two approaches, getting the advantages of both and minimizing

their shortcomings.

We think of merging animation and presentation recording together in one

system. The structures and methods provided by an animation system { namely

the handling of moving objects { seem to be suited ideally for capturing annota-

tions as well. Everything that is written or drawn can be treated and processed

like objects of an animation. For playing back the document, the resulting stream

is synchronized with all other recorded media streams.

If the system supports manipulation and re-recording of a session that is

played back, one can imagine a kind of \repeated authoring" process. Errors can

be deleted, new things added. Hence, the resulting documents can be improved

each time they run through the cycle.

We believe that this way of multimedia authoring will be cost and time eÆ-

cient while at the same time allowing the production of well-designed documents.

7 Conclusion

Today's technology, as we have seen, allows us to use animation in a vast vari-

ety of contexts. This variety will certainly grow further, both in quantity and

quality. The spread of new technologies will enable more and more teachers to

use animations in their classes. New authoring tools will facilitate the creation

of animations for non-experts in the �eld. Furthermore, interactive animation

systems will contribute to a more learner-centered way of teaching.

432 Lauer T., Mueller R., Ottmann T.: Animation for Teaching Purposeses ...

All these developments will be accompanied and supported by an increasing

degree of automatization. Tools are available already which record whole presen-

tations including animations and automatically produce multimedia documents.

Visual editors are developed facilitating the authoring process of animations.

However, we also stress the need for further research in order to be able to

better judge the e�ectiveness of animation in teaching. Some of the few studies

that have been carried out in this �eld suggest that the learning environment

plays a crucial role. We must deepen our understanding of this matter and the

impact it has on our teaching if we want to use animation as a helpful tool in

education.

References

1. [Brown, Sedgewick 1985] Brown, M.H.; Sedgewick, R.: \Techniques for Algorithm
Animation"; IEEE Software, 2, 1 (1985), 28-39.

2. [Cormen et al. 1990] Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.: \Introduction to
Algorithms"; MIT Press, Cambridge (1990).

3. [Kehoe et al. 1999] Kehoe, C.; Stasko, J.; Taylor, A.: \Rethinking the Evaluation
of Algorithm Animations as Learning Aids: An Observational Study"; Technical
Report, Georgia Institute of Technology (1999).

4. [Kierulf et al. 1990] Kierulf, A.; Chen, K.; Nievergelt, J.: \Smart Game Board and
Go Explorer: A study in software and knowledge engineering"; J. Comm. ACM,
33, 2 (1990), 152-166.

5. [M�uller 2000] M�uller, R.: \Wahlfreier Zugri� in Pr�asentationsaufzeichnungen am
Beispiel integrierter Applikationen"; Akad. Verl.-Ges. Aka, Berlin (2000).

6. [M�uller, Ottmann 2000] M�uller, R.; Ottmann, T.: \The `Authoring on the Fly' Sys-
tem for Automated Recording and Replay of (Tele)presentations"; Special Issue on
Multimedia Authoring and Presentation Techniques of ACM/Springer Multimedia
Systems Journal, 8, 3 (2000).

7. [Ottmann et al. 2000] Ottmann, T.; M�uller, R.; Seitz, G.; Steinert, C.: \Video in
Vorlesungsaufzeichnungen mit informatikfernen Inhalten am Beispiel Arch�aologie";
Informatica Didactica (Zeitschrift f�ur fachdidaktische Grundlagen der Informatik),
1, 2 (2000).

8. [R�o�ling et al. 2000] R�o�ling, G.; Sch�uler, M.; Freisleben, B.: \The ANIMAL Al-
gorithm Animation Tool"; ACM 5th Annual Conference on Innovation and Tech-
nology in Computer Science Education (ITiCSE 2000), Helsinki, Finland. ACM
Press (2000), 37-40.

9. [Rowe et al. 1994] Rowe, L.A.; Patel, K.D.; Smith, B.C.; Liu, K.: \MPEG Video
in Software: Representation, Transmission, and Playback"; Proc. of High Speed
Networking and Multimedia Computing, IS & T/SPIE Symp. on Elec. Imaging
Sci. & Tech., San Jose (1994).

10. [Stasko 1990] Stasko, J.: \The Path-Transition Paradigm: A Practical Methodology
for Adding Animation to Program Interfaces"; Journal of Visual Languages and
Computing, 1, 3 (1990), 212-236.

11. [Wagner 1998] Wagner, D.: \Aufspannende B�aume minimalen Gewichts";
Ottmann, T. (ed.): Prinzipien des Algorithmenentwurfs; Spektrum Verlag, Hei-
delberg (1998), 173-183.

433Lauer T., Mueller R., Ottmann T.: Animation for Teaching Purposeses ...

