
The Message-Minimizing Load Redistribution Problem

David J. Haglin

(Minnesota State University, Mankato, U.S.A.

currently visiting The University of Manchester, U.K.

david.haglin@mnsu.edu)

Rupert W. Ford

(Centre for Novel Computing,

The University of Manchester, U.K.

rupert@cs.man.ac.uk)

Abstract: The Message Minimizing Load Redistribution Problem is described
which arises from the need to redistribute work when performing load balancing in
a parallel computing environment. We consider a global perspective and seek a redis-
tribution plan that minimizes the overall processing time. We de�ne the cost associated
with a solution to be the number of packets needed to balance out the workload. The
impact of the interconnection network is ignored. This problem can arise in many appli-
cations. One such example being the U.K. Meteorological OÆce's operational weather
forecasting and climate prediction models.

This problem is equivalent to the Pure Unit-Cost Transportation Problem. A simple

proof of NP-completeness is given, and various heuristics and approximation issues are

investigated. Several theoretical results are shown that may impact the design of an

algorithm. Simulation results are presented.
Key Words: Parallel Processors, High Performance Computing, Load Balancing

Category: C.1.2, C.2.4, F.2.2, G.2.1, J.2

1 Introduction

The message minimizing load redistribution problem (MMLRP) occurs in a par-

allel or distributed computing environment where load balancing may improve

the overall performance, and where data must be transferred from processor

to processor as part of the load redistribution. We consider a global perspec-

tive and seek an optimum load balance after redistribution. We therefore have

a �xed amount of data to move, so we endeavor to minimize the number of

communication messages needed to achieve the redistribution.

Given a situation where some processors have more work to do than others,

redistributing the workload will decrease the total elapsed time. Those processors

with more work than the average workload are called overloaded, and the others

are called underloaded. A solution to this problem is a plan for sending work

from the overloaded processors to the underloaded processors in such a way as

to achieve the best possible load balance. Clearly we would like to �nd the fastest

solution for achieving the required load balance. Noting that all solutions send

Journal of Universal Computer Science, vol. 7, no. 4 (2001), 291-306
submitted: 14/7/00, accepted: 17/4/01, appeared: 28/4/01  Springer Pub. Co.

the same amount of data, our strategy is to �nd a plan that does this using the

fewest communication messages.

The MMLRP can be restated using transportation terminology. Let � be the

ceiling of the average workload among the processors. The overloaded processors

are source sites with a supply equal to the work load in excess of �. And the

underloaded processors are destination sites with a capacity of � minus the work

load.

The rest of this paper is organized as follows: [Section 2] gives de�nitions used

throughout the rest of the paper, [Section 3] shows theoretical results, [Section 4]

discusses several algorithms and heuristics, [Section 5] describes an application,

[Section 6] provides experimental results, and [Section 7] concludes the paper.

2 De�nitions

An instance of MMLRP is a set of n sources with item quantities (supply) given

for each source and a set of m destinations with item capacities given for each

destination. Such an instance will be denoted I = (S;D), where S are the

sources andD are the destinations, which gives rise to a complete bipartite graph

G = (S;D;A), where S are the source vertices, D are the destination vertices,

and A = f(u; v) : u 2 S; v 2 Dg. Each vertex u 2 S has an associated item

supply w(u) and each vertex v 2 D has an associated capacity w(v). Where no

ambiguity arises, we write the collection fw(u)ju 2 Sg as a set S = fs1; : : : ; sng

or as a sequence S = s1; : : : ; sn. The destinations fw(v)jv 2 Dg are similarly

denoted as a set D = fd1; : : : ; dmg or as a sequence D = d1; : : : ; dm. To indicate

the range 1 � i � n, we will write i 2 S. Similarly, for 1 � j � m we will write

j 2 D. To ensure that the total of supply items and capacities are acceptable

(i.e. the problem has a feasible solution), we require that
Pn

i=1 si �
Pm

j=1 dj .

A feasible solutionX is an n�m integer matrix with the following constraints:

8i :
Pm

j=1 xi;j = si (redistribution)

8j :
Pn

i=1 xi;j � dj (capacity)

8i; j : xi;j � 0 (non-negative
ow)

The cost of a solution, which is called the objective function and is denoted

by jX j, is the number of non-zero entries in the matrix. The problem, then, is

to �nd an X of smallest cost satisfying all of the constraints. We will refer to a

non-zero entry in the matrix as a message carrying xi;j items.

2.1 The Transportation Problem

The MMLRP is related to the classic transportation problem (TP), which is

an important optimization problem in Operations Research (cf. [2]). The TP

292 Haglin D.J., Ford R.W.: The Message-Minimizing Load Redistribution Problem

can be thought of as the task of transporting items, all of which are identical,

from a collection of sources to a collection of destinations. Initially, the items

are distributed among the various sources (i.e. each source has a given supply),

and each of the destinations has a given maximum capacity. The sum of the

destination's capacities must be at least as large as the sum of the supply. The

costs for the TP is given as ci;j , and the objective function is
P

ci;jxi;j .

For situations where there is a �xed cost associated with using a source-to-

destination pair (i.e. at least one item is to be moved) as well as a per-unit cost

of transportation, the cost function can be given by:

cost(i; j) =

�
hi;j + ci;j � xi;j if xi;j > 0

0 if xi;j = 0

where hi;j is the �xed cost of using the link from source i to destination j.

This modi�ed problem is known as the �xed charge transportation problem

(FCTP). If there is no per-unit cost, that is ci;j = 0, then the problem is known

as the pure �xed charge transportation problem (PFCTP). The MMLRP is a

special case of the PFCTP where the �xed cost is always one (hi;j = 1). Another

application with this same formulation is called the teacher assignment problem

[7]. We refer to this special case as the pure unit-cost transportation problem

(PUCTP). We will interchangeably use the terms MMLRP and PUCTP.

2.2 Mathematical Programming Formulation

Solving the PUCTP exactly is not appropriate for most applications, due its

computational complexity. In a MMLRP application, the cost of computing a

transportation plan must be weighed against the bene�t in reduced communica-

tion cost. So �nding a quick approximation is suitable to our needs. However, we

look at formulating this problem in the language of Mathematical Programming.

We begin with the standard transportation problem formulation.

(TP)

8>>>>><
>>>>>:

Minimize
Pn

i=1

Pm

j=1 ci;j � xi;j

subject to
Pm

j=1 xi;j = si; i 2 SPn

i=1 xi;j = dj ; j 2 D

xi;j � 0; i 2 S; j 2 D

where ci;j is the per-item cost of transporting from source i to destination j.

A standard transformation to a FCTP is to add a set of 0-1 variables yi;j ,

where yi;j = 1 if and only if xi;j > 0. The standard general FCTP has a �xed

293Haglin D.J., Ford R.W.: The Message-Minimizing Load Redistribution Problem

charge hi;j associated with each link.

(FCTP)

8>>>>>>><
>>>>>>>:

Minimize
Pn

i=1

Pm
j=1 hi;j � yi;j +

Pn
i=1

Pm
j=1 ci;j � xi;j

subject to
Pm

j=1 xi;j = si; i 2 SPn

i=1 xi;j = dj ; j 2 D

xi;j � ui;j � yi;j ; i 2 S; j 2 D

yi;j 2 f0; 1g; i 2 S; j 2 D

where ui;j = min(si; dj) for all i 2 S; j 2 D (cf. [11]). Setting ci;j = 0 and

hi;j = 1 for all i 2 S; j 2 D, we have a formulation of our problem.

(PUCTP)

8>>>>>>><
>>>>>>>:

Minimize
Pn

i=1

Pm

j=1 yi;j

subject to
Pm

j=1 xi;j = si; i 2 SPn
i=1 xi;j = dj ; j 2 D

xi;j � ui;j � yi;j ; i 2 S; j 2 D

yi;j 2 f0; 1g; i 2 S; j 2 D

Recall that our work items are integral, so we insist that all xi;j be integral.

2.3 Observations

We may assume, without loss of generality, that m > n for all instances due to

the following observation.

Proposition1. Every problem has an equivalent corresponding dual problem.

Note that any solution moving items from the sources to the destinations is

also a solution to the problem where the sources and destinations are swapped

(with appropriate item capacities and quantities interchanged). Thus, a solution

to the dual problem is also a solution to the original problem after inverting the

direction of item transport. ut

To make the theoretical analysis easier, we may assume that the total supply

is exactly equal to the total capacity.

Proposition2. If � =
Pm

j=1 dj �
Pn

i=1 si > 0, an equivalent problem can be

formulated by adding � sources, each with one item to transport.

Note that any solution to the original problem would have left places for �

items among the destinations. Then, the dummy sources' supply could �ll up

these gaps completely. This is the same cost contribution no matter what the

solution to the original problem. ut

A trivial lower bound can be seen by noting that each source must send at

least one message, and each destination must receive at least one message.

Proposition3. Every solution has at least max(n;m) messages. ut

294 Haglin D.J., Ford R.W.: The Message-Minimizing Load Redistribution Problem

3 Theoretical Results

3.1 NP-completeness

The PUCTP problem is already known to be NP-complete [7]. But their proof

involves a reduction through an alternative problem called the maximum cardi-

nality 2-dimensional partition problem. Here we give a simple and direct proof

that PUCTP is NP-complete.

Theorem4. The PUCTP is NP-complete.

Proof. We reduce from the INTEGER PARTITION (IP) problem. Given any

instance of the IP problem (IIP): a1; a2; : : : ; an, 2K =
P

ak, with the decision

\Is there a subset of the integers whose sum isK?", we create a problem instance

IPUCTP as follows:

{ S consists of two vertices with s1 = s2 = K

{ D consists of n vertices with dk = ak for all 1 � k � n. That is, each integer

ak in IIP corresponds to a destination with capacity ak.

Observe that the optimum solution to IPUCTP uses n packets if and only if

the answer to IIP is yes.

ut

Because of this result, �nding an exact solution for our MMLRP domain is

not appropriate. So we examine ways to eÆciently �nd approximate solutions.

3.2 Upper Bound

A fundamental observation | which is used in many of our proofs | gives an

upper bound, in practice, of the cost of a solution. We say \in practice" because

it is possible to construct a solution with higher cost than this, but it is trivial

to always be able to achieve the following upper bound for any instance.

To produce a constructive proof of the upper bound, we �rst show a simple

greedy approximation algorithm (as Algorithm 1) capable of �nding a solution

with fewer than n+m messages.

Lemma5. Every instance of MMLRP can be solved with fewer than n + m

packets.

Proof. Since every iteration of the while loop in Algorithm 1 increases the num-

ber of zero-valued sites by at least one while creating exactly one message in

the solution, the resulting solution will have n+m or fewer messages. However,

295Haglin D.J., Ford R.W.: The Message-Minimizing Load Redistribution Problem

Algorithm 1 Greedy Approximation Algorithm

1: Initialize all xi;j = 0

2: while there exists some si > 0 do

3: Find the largest si and largest dj
4: t min(si; dj)

5: xi;j t

6: si si � t

7: dj dj � t

8: end while

when the total supply and total capacities are equal, the last iteration is guar-

anteed to create two zero-valued sites along with one message. Further, when

the total supply is less than the total capacity, the last iteration leaves at least

one of the destinations non-zero. Thus, the number of generated messages must

be n+m� 1 or less. ut

In practice, �nding the largest si and dj can be done eÆciently by using a

heap data structure for the source and destination collections, which results in

an O(N logN) time implementation, where N = n+m.

We note that to strictly achieve the upper bound result, the greedy approx-

imation algorithm of Algorithm 1 can be run without sorting. It is enough to

merely �nd an arbitrary si and an arbitrary dj at step 3.

3.3 Approximating MMLRP

There are many tricks (heuristics) that we consider to improve the quality of a

solution found by an approximation algorithm. The basic greedy algorithm has

already been presented. We now investigate techniques to augment this strategy.

3.3.1 Matching Pairs

The �rst trick to approximating MMLRP is to look for i and j such that si = dj ,

which we call a pair. We now show that it is never a bad decision to match up

pairs. Hultberg and Cardoso present a proof of the following theorem for a maxi-

mum cardinality partition problem, which they show is equivalent to the PUCTP

(see Theorem 3 in [7]). We present a proof directly using the transportation ter-

minology.

Theorem6. (Pairs) Given an instance I = (S;D) with si = dj for some i and

j, and a solution X for which xi;j < si, there exists another solution X 0 with

x0
i;j = si such that jX 0j � jX j.

296 Haglin D.J., Ford R.W.: The Message-Minimizing Load Redistribution Problem

Proof. Since si = dj , we know that
Pm

k=1 xi;k =
Pn

k=1 xk;j . If xi;j > 0, we will

remove this from consideration, but the sums remain equal. Let S0 = s0
1
; : : : ; s0n0

be the non-zero entries of row i other than (i; j) (i.e. S0 = fxi;kjxi;k > 0; 1 � k �

m; k 6= jg). Similarly, let D0 = d0
1
; : : : ; d0

m0 be the non-zero entries of column j

other than (i; j) (i.e. D0 = fxk;j jxk;j > 0; 1 � k � n; k 6= ig). This subproblem,

I 0 = (S0; D0), represents n0 +m0 messages. There are n0 messages coming from

vertex i and there are m0 messages bringing items to destination j.

Now we rearrange the transportation plan by assigning a message to carry

si items from i to j (or augmenting the existing message xi;j to carry the full si
amount if xi;j > 0). This displaces m0 messages which must be redirected to the

n0 destinations which have had some capacity freed up by the xi;j redirection.

Lemma 5 gives us an upper bound of n0 +m0 � 1 to solve I 0. So, replacing

the n0 + m0 messages removed from the original solution X , we have at most

n0 +m0 � 1 plus the one message x0
i;j = si (which is new if xi;j = 0). Thus, we

have not increased the size of the solution. ut

This theorem implies that, if an instance has a pair, there is at least one

optimal solution that utilizes this pair. It also shows that sub-optimal solutions

can always be transformed, or possibly even improved, by \matching" up the

pair.

3.3.2 Matching Couplets

We de�ne a one-to-two matching as the existence of i; j; k such that either si =

dj + dk or si + sk = dj which we call a couplet. A triplet refers to the existence

of i; j; k; l such that either si = dj + dk + dl or si + sk + sl = dj .

One would hope that matching up couplets would always be helpful. Alas,

it is not always a good decision, as seen in the following example. Since each

integer has a unique binary representation it is easy to see that this example has

few couplets and no pairs. We describe three categories of sites, with the �nal

instance S = S1 [S2 [S3 and D = D1 [D2. First, there are three couplets:

S1 = 20; 21; 22; 23; 24; 25

D1 = 20 + 21; 22 + 23; 24 + 25

Second, one source that could �ll these three destinations:

S2 = 26 � 1

And third, a collection of triplets (each using one of the S1 sources):

S3 = 27; 28; 29; : : : ; 218

D2 = 218 + 217 + 25; 216 + 215 + 24; 214 + 213 + 23; 212 + 211 + 22;

210 + 29 + 21; 28 + 27 + 20

Observe that a good solution is to �ll the three destinations in D1 by sending

three messages from the one source in S2, then match up the six triplets in

297Haglin D.J., Ford R.W.: The Message-Minimizing Load Redistribution Problem

S3 and D2 using 18 messages for a total of 21 messages. However, matching

up the three couplets in S1 and D1 requires six messages, and the remaining

destinations in D2 requires 18 messages | from S3 and splitting the S2 source

into three messages | for a total of 24 messages.

We can, however, say something about matching couplets. We either match

up all of the couplet, or none.

Theorem7. (All-or-Nothing) Given an instance I = (S;D) with si = dj + dk

for some i; j; k, and a solution X for which 0 < xi;j + xi;k < si, there exists

another solution X 0 with x0
i;j + x0

i;k = si such that jX 0j � jX j.

Proof. Without loss of generality, we assume dj � dk. The arguments are dif-

ferent depending upon the quantity of items going from i to destinations other

than j and k. We consider the following cases:

Case 1: xi;j+xi;k � dj . We ensure that destination j receives only items from

i by swapping with destination k if necessary. Now we can remove destination j

from the problem and subtract dj from si to form a subproblem I 0. Note that a

solution to I 0 leads immediately to a solution to I. Also, Theorem 6 applies to

I 0 giving the claimed result.

Case 2: xi;j + xi;k < dj . If xi;k > 0, then we swap the source i items with

other items at destination j, thereby ensuring that xi;k = 0. Note that we may

have to \break" an item in destination j in order to accommodate this swap,

thus creating an additional message. But this is compensated for by the merging

of the source i items in destination j.

The argument is now similar to that used in Theorem 6. The di�erence is

that after we pull out the si � xi;j source i items from their destinations and

then �nd a solution to the subproblem using no more than n0+m0�1 messages,

we have two destinations to �ll. But since we already have some of the source i

items going to destination j, we merely increase xi;j to dj | which adds zero

messages to the overall solution | and use one message to transport the dk

items from source i to destination k. Thus our claim is achieved.

ut

3.3.3 Double Split

One generalization on the All-or-Nothing theorem, is to have two sources split-

ting among two destinations in the following double split theorem.

Theorem8. Given an instance I = (S;D), and a solution X such that there

exists i; j 2 S and k; l 2 D where xi;k > 0, xi;l > 0, xj;k > 0, and xj;l > 0, there

exists another solution X 0 such that jX 0j < jX j.

298 Haglin D.J., Ford R.W.: The Message-Minimizing Load Redistribution Problem

Proof. Without loss of generality, let xi;k be a smallest of the four matrix entries.

Then, xj;l � xi;k, and a swap can be done, merging both of the source i messages

to destination l, to form X 0. Speci�cally, x0
i;l = xi;k + xi;l, x

0
i;k = 0, x0

j;k =

xj;k + xi;k, and x
0
j;l = xj;l � xi;k . Since x

0
i;k is zero, jX 0j < jX j. ut

This theorem implies that such a scenario will not exist in any optimal solu-

tion.

4 Improvements to the Greedy Approximation Algorithm

We can employ tricks described in the previous section to improve the quality of

the resulting solution, at a cost of increased computational requirements. If we

let N = n+m be the problem size, the greedy algorithm described in Algorithm

1 can be implemented in O(N logN) time. If the search for the largest si and

dj is replaced with an arbitrary source and destination | thereby removing the

pre-processing step of sorting | the complexity is O(N) time.

We can make use of the Pairs theorem [Theorem 6] to potentially improve

the resulting solution. There are two places this can be done in the greedy

algorithm: as a pre-processing step before entering the while loop, and as a step

inside the while loop. This modi�cation is shown in Algorithm 2 with line 2 as

the pre-processing step and line 9 is the pair removal step inside the loop. The

advantage to looking for pairs inside the while loop is that the greedy algorithm

may \create" pairs as part of its normal operation, and this will be discovered by

the pairs search inside the loop. Note that the \created" pairs may be originally

part of a couplet, a triplet, or some higher-order matching (i.e. one-to-Z, where

Z > 2). However, looking for pairs inside the while loop does not necessarily

�nd all couplets or higher-order matchings.

The pre-processing pairs search can be done in linear time on a sorted list, so

this does not increase the running time analysis of the O(N logN)-time greedy

algorithm. Search for pairs inside the loop can be done in O(logN) time per

iteration since only the \new" si or dj , created at lines 6 or 7 of Algorithm 1,

could possibly match up exactly with another site. Thus, the overall running time

of the algorithm with the pairs search inside the while loop remains O(N logN).

Even though couplets are not guaranteed to produce optimum solutions,

they do produce improved solutions in most situations (as we will see later). A

detailed description of the implementation of couplets is given in Algorithm 3.

The running time of Algorithm 3 is dominated by the pre-processing couplets

phase. An implementation of the loop at line 4, for example, may start with j

and k at the ends and move inward until either si = dj + dk or j and k cross.

Doing this for every i results in an O(N2) total running time for this loop.

Of course, this technique can be extended to arbitrary \depth" by searching

for triplets, one-to-four matchings, two-to-two matchings, etc.

299Haglin D.J., Ford R.W.: The Message-Minimizing Load Redistribution Problem

Algorithm 2 Greedy Approximation Algorithm With Pairs

1: Initialize all xi;j = 0

2: Remove all pairs si = dj
y // pre-processing pairs step

3: while there exists some si > 0 do

4: Find the largest si and largest dj
5: t min(si; dj)

6: xi;j t

7: si si � t

8: dj dj � t

9: Removing any pairs created with the new si or dj
10: end while

yThis step involves setting xi;j to si (or dj) then removing the sites, which is

paramount to setting the site amount (supply or capacity) to 0.

Algorithm 3 Greedy Approximation Algorithm With Couplets

1: Initialize all xi;j = 0

2: Remove all pairs si = dj
y // pre-processing pairs step

3: // pre-processing couplets

4: for all couplets si = dj + dk do

5: xi;j dj
6: xi;k dk

7: si dj dk 0

8: end for

9: for all couplets si + sj = dk do

10: xi;k si
11: xj;k sj

12: si sj dk 0

13: end for

14: // main greedy algorithm

15: while there exists some si > 0 do

16: Find the largest si and largest dj
17: t min(si; dj)

18: xi;j t

19: si si � t

20: dj dj � t

21: Removing any pairs created with the new si or dj
22: end while

yThis step involves setting xi;j to si (or dj) then removing the sites, which is

paramount to setting the site amount (supply or capacity) to 0.

300 Haglin D.J., Ford R.W.: The Message-Minimizing Load Redistribution Problem

5 An Example Application

The UK Meteorological OÆce (UKMO) is the UK national weather service. It

is recognized as one of the world's leading providers of weather-related services

and is at the forefront of international research in meteorological modeling.

Simplistically, meteorological modeling is the numerical solution of a number

of partial di�erential equations which represent the behavior of the atmosphere.

As these equations cannot be solved analytically, numerical approximations have

to be calculated. Grid point codes discretize the underlying partial di�erential

equations and obtain solutions on a discrete grid by progressing forwards in time,

in time-steps. Such models can be split into two parts; the dynamics which keep

the various �elds in dynamical equilibrium (for example temperature and pres-

sure), and the physics which parameterize the physical aspects of the atmosphere

(for example solar heating and rainfall).

The UKMO's main modeling system, the Uni�ed Model (UM), is a suite of

grid point modeling codes used for both operational Numerical Weather Predic-

tion (NWP) and Climate prediction. The UM is a large (around 1 million lines

of Fortran code), powerful and
exible system. The UM can be run in either

global or limited area con�gurations, and at many di�erent resolutions.

Table 1 presents some of the most commonly used atmospheric resolutions.

In the table, Grid is the distance between grid points in latitude and longitude

and the Dimensions are the number of grid points in latitude, longitude and

�nally the number of levels. As there are a number of levels, a latitude and

longitude position actually has a column of grid points we call a grid column.

Application Grid Dimensions Time-step
(Km) (mins)

Global Forecast 60 432x325x30L 20
UK Mesoscale 12 146x182x38L 5

Atmospheric Climate 270 96x73x19L 30

Table 1: Common UM con�gurations

Weather forecasting and Climate prediction is one of the so called Grand

Challenge problems. Such problems can always make use of all the compute

power that is available on the most powerful current generation machines. The

UKMO currently run the UM on two Cray T3E's, one with 880 processors and

the other with 500 processors. With such a large number of processors available

an eÆcient parallel implementation of the UM is essential.

A domain decomposition approach is usually employed in parallel forecast

and climate models, where equal sized regions of the computational grid are

301Haglin D.J., Ford R.W.: The Message-Minimizing Load Redistribution Problem

allocated to processors. In the case of UKMO, these regions are rectangular in

latitude and longitude and there are an equal number of processors and regions. If

no load balancing is performed, then all processors will compute an equal number

of grid columns (ignoring di�erences due to integer division) and typically, for

every time-step, a particular processor will compute the same grid columns.

This initial partition is not an arbitrary choice; it is selected to give the best

overall performance. There are two main reasons for this. Firstly, in the UM, an

equal amount of computation is performed at all grid columns for the majority

of the dynamics and for the most computationally costly routine in the physics

(Long wave radiation). Therefore, an equal number of grid columns for each

processor is load balanced for these cases. Secondly, the dynamics also requires

communication between neighboring processors and rectangular domains help

reduce the communication-to-computation ratio and allow for a simple commu-

nication structure.

In the physics routines, grid columns are usually independent of each other

and are therefore very amenable to parallelization; unfortunately, for the ma-

jority of these routines, the computational cost of these grid columns can vary

signi�cantly, leading to load imbalance. The existence of load imbalance is well

known [3, 9] and has been widely acknowledged as being one of the major factors

in loss of performance, particularly when using large numbers of processors, for

example see [1, 4, 8, 10].

The most computationally intensive load-imbalanced routine in the UM is

the short wave radiation subroutine. Short wave radiation models the e�ects on

the atmosphere of radiation from the sun. Each processor calculates which of

its grid columns are in daylight (a relatively trivial computation) and performs

computation at these grid columns. As the short wave radiation subroutine cal-

culates the e�ects of radiation from the sun, grid columns that are in darkness

do not need to participate in this computation.

In a global model, half of the total grid columns will be in darkness (as half

of the earth is always in darkness) and, for a reasonable number of processors,

there will be some processors with all of their local grid columns in daylight and

a number of processors with all of their local grid columns in darkness. As half of

the total grid columns are in darkness and each processor has approximately the

same number of local grid columns, the average number of sunlit grid columns

per processor is half of its local grid columns. Since each of the sunlit grid

columns requires the same amount of computation, processors with all of their

local grid columns sunlit perform twice the average amount of work, giving a

50% load-imbalance. Redistributing the sunlit grid columns in the most eÆcient

manner is the MMLRP.

If short wave radiation were the only (or the single dominant) routine in

the UM, or the majority of other routines had similar load characteristics then

302 Haglin D.J., Ford R.W.: The Message-Minimizing Load Redistribution Problem

one could change the initial partition to reduce the load-imbalance observed.

However, this is not the case and, as mentioned earlier, a di�erent initial partition

is preferable.

6 Experimental Results

The short wave radiation subroutine in the UKMO's UM typically has a load dis-

tribution that is close to a sinusoidal curve resulting from the pattern of sunlight

hitting the earth's surface. So our simulation generates work units in a sinusoidal

distribution among the sites (processors), and then runs the algorithms on the

generated MMLRP and computes the cost of the transportation plan.

We ran the four algorithms, as presented above, to compare the quality of

the solutions. These algorithms essentially build on the others so that we can

describe them as an accumulation of enhancements. The algorithms are: the

basic greedy approximation; greedy plus a pre-processing search for pairs; add

to that a search for pairs inside the greedy algorithm's while loop; and �nally, a

pre-processing pairs following by a pre-processing couplets phase, then the basic

greedy algorithm with the inside pairs search.

0

200

400

600

800

1000

0 200 400 600 800 1000

M
es

sa
ge

s

n + m (total sites)

100,000 Work Units, Sinusoidal Distribution

Upper Bound (y=x)
Greedy

Pre-processing Pairs
Pairs Inside While Loop

Pre-processing Couplets
Lower Bound

303Haglin D.J., Ford R.W.: The Message-Minimizing Load Redistribution Problem

0

200

400

600

800

1000

0 200 400 600 800 1000

M
es

sa
ge

s

n + m (total sites)

1,000,000 Work Units, Sinusoidal Distribution

Upper Bound (y=x)
Greedy

Pre-processing Pairs
Pairs Inside While Loop

Pre-processing Couplets
Lower Bound

The upper and lower bounds are included as n+m and max(n;m) as com-

puted for each data point. They are not merely computed based on the sinusoidal

distribution. These two approaches di�er as the former does not include sites

(processors) which are already balanced (i.e: are neither overloaded or under-

loaded). The latter assumes all processors are either overloaded or underloaded.

Since the number of work units a�ects the frequency of pairs and couplets in

the input instance, we ran several di�erent trials with di�ering numbers of work

units. We ran one trial with 100,000 units, which is comparable to the the Global

Forecast resolution (see Table 1). The second and third trials, of 1,000,000 units

and 10,000,000 units respectively, demonstrate the potential impact of future

resolutions.

304 Haglin D.J., Ford R.W.: The Message-Minimizing Load Redistribution Problem

0

200

400

600

800

1000

0 200 400 600 800 1000

M
es

sa
ge

s

n + m (total sites)

10,000,000 Work Units, Sinusoidal Distribution

Upper Bound (y=x)
Greedy

Pre-processing Pairs
Pairs Inside While Loop

Pre-processing Couplets
Lower Bound

7 Conclusions

7.1 Our contribution

We have given direct proofs for the NP-completeness of PUCTP and the pairs

theorem. This pairs theorem can be used to guide an algorithm along with

couplets, which work well in practice.

We have shown that matching up couplets can produce a suboptimal solution,

but experimentally it appears to be almost always helpful. We have also shown

that with couplets, it makes sense to either match up completely or to deliver

none between the three couplet sites.

As a result of this work the pairs algorithm (both pre-processing and inside

the while loop) is now being used operationally by the UKMO for the short

wave radiation routine. Load balancing this routine using the above algorithm

has resulted in a 40% reduction in the routine's execution time compared with

the default distribution [5].

7.2 Open Questions

There are many theoretical questions that remain unanswered. Is the PUCTP

hard to approximate arbitrarily close? Or is there a polynomial-time approximate

scheme?

305Haglin D.J., Ford R.W.: The Message-Minimizing Load Redistribution Problem

Experimentally, it would be interesting to compare the computation time

required for these algorithms to the actual communication cost savings for dif-

ferent environments such as Ethernet, or even across the Internet. It would also

be interesting to determine how these algorithms perform on di�erent initial load

distributions such as Gaussian, and even on a random distribution.

Acknowledgments

The �rst author acknowledges the support of the EPSRC Visiting Fellowship

GR/N05321. The second author acknowledges the funding support of the UK

Meteorological OÆce.

References

1. P. Burton and A. Dickinson. Parallelising the uni�ed model for the cray t3e. In
G.-R. Ho�man and N. Kreitz, editors, Proc. 7th Workshop on the Use of Parallel
Processors in Meteorology, pages 68{82. World Scienti�c, 1996.

2. G. B. Dantzig and M. N. Thapa. Linear Programming. Springer, 1997.
3. D. Dent et al. The IFS model performance measurements. In G.-R. Ho�man

and N. Kreitz, editors, Proc. 6th Workshop on the Use of Parallel Processors in
Meteorology, pages 352{369. World Scienti�c, 1994.

4. K. Eerola et al. A parallel version of the hirlam forecast model: strategy and
results. In G.-R. Ho�man and N. Kreitz, editors, Proc. 7th Workshop on the Use
of Parallel Processors in Meteorology, pages 134{143. World Scienti�c, 1996.

5. R. W. Ford and P. M. Burton. Load balancing physics routines. In W. Zwie
hofer
and N. Kreitz, editors, Proc. 8th Workshop on the Use of Parallel Processors in
Meteorology, pages 147{159. World Scienti�c, 1998.

6. M. Garey and D. Johnson. Computers and Intractability, A Guide to the Theory
of NP-Completeness. W.H. Freeman and Company, 1979.

7. T. H. Hultberg and D. M. Cardoso. The teacher assignment problem: A special
case of the �xed charge transportation problem. European Journal of Operational
Research, 101(3):463{474, 1997.

8. K. M. and U. Sch�attler. REMO - implementation of a parallel version of a regional
climate model. In G.-R. Ho�man and N. Kreitz, editors, Proc. 7th Workshop on
the Use of Parallel Processors in Meteorology, pages 144{154. World Scienti�c,
1996.

9. J. G. Michalakes. Analysis of workload and load balancing issues in the NCAR
community climate model. Technical report anl/mcs-tm-144, Argonne National
Laboratory, Argonne, Illinois, 1991.

10. J. G. Michalakes and R. S. Nanjundiah. Computational load in model physics of
the parallel NCAR community climate model. Technical report anl/mcs-tm-186,
Argonne National Laboratory, Argonne, Illinois, 1994.

11. G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. Wi-
ley, 1988.

306 Haglin D.J., Ford R.W.: The Message-Minimizing Load Redistribution Problem

