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Abstract: Computational complexity of the sub-tasks in the symmetry reduction
method for Place/Transition-nets is studied. The task of finding the automorphisms
(symmetries) of a net is shown to be polynomial time many-one equivalent to the
problem of finding the automorphisms of a graph. Deciding whether two markings are
symmetric is shown to be a problem equivalent to the graph isomorphism problem.
This remains to be the case even if a generator set for the automorphism group of
the net is known. The problem of constructing the lexicographically greatest marking
symmetric to a given marking (a canonical representative for the marking) is classified

to belong to the lower levels of the polynomial hierarchy, namely to be FPNP[log n]-
hard but in FPNP. It is also discussed how the self-symmetries of a marking can
be exploited. Calculation of such symmetries is classified to be as hard as computing
graph automorphism groups. Furthermore, the coverability version of testing marking
symmetricity is shown to be an NP-complete problem. It is proven that canonical
representative markings and the symmetric coverability problem cannot be combined
in a straightforward way.
Key Words: Petri nets – symmetry – computational complexity
Category: F.2 [Analysis of Algorithms and Problem Complexity], D.2.4 [Soft-
ware Engineering]: Program Verification

1 Introduction

Petri nets are a widely used formalism for modelling and analysis of distributed
systems. Their success is based on the facts that they are relatively easy to un-
derstand, have a precise mathematical semantics and also a convenient graphical
representation form. However, the most common analysis method, the reacha-
bility analysis (or state space exploration), suffers from the so-called state space
explosion problem [Valmari 1998]. It essentially means that a net may have an
exponential number of reachable markings (states) with respect to its size.

One way to alleviate the state space explosion problem is to exploit the sym-
metries (automorphisms) of the state space. These symmetries divide the state
space into equivalence classes of mutually symmetric markings (called orbits).
For many verification tasks, such as deadlock checking, it is sufficient to inspect
only one marking in each (reachable) orbit. Thus a potentially much smaller
quotient reachability graph consisting only of one (or few) markings per orbit
can be constructed instead of the normal reachability graph. The symmetry re-
duction method was introduced in [Huber et al. 1984; 1991] for colored high-level
Petri nets (i.e. nets in which tokens can have values associated with them). The
method was applied to low-level nets (nets having only “black” tokens), the
formalism used in this paper, in [Starke 1991] and further studied in [Schmidt
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and Starke 1991, Schmidt 1997; 2000a; 2000b]. The main idea of the method is
that the symmetries (automorphisms) of a low-level net produce corresponding
symmetries to the state-space of the net. (In high-level nets, the state space sym-
metries are usually produced by the symmetric use of the data values appearing
in the tokens.) Schmidt and Starke have presented algorithms for solving many of
the problems involved in the method [Schmidt and Starke 1991, Schmidt 1997;
2000a; 2000b]. However, unlike many other computational complexity aspects
concerning Petri nets (see [Esparza 1998] for an introduction), the complexity
issues of the sub-tasks appearing in the symmetry reduction method have not
been addressed before.

The problem of finding the automorphisms of a net is easily proven to be
as hard as finding the automorphisms of a graph. This is not surprising since
nets can be seen as labelled directed graphs. We show that the problem of decid-
ing whether two markings are symmetric is equivalent (in the polynomial time
many-one reduction sense) to the graph isomorphism problem. Interestingly, this
remains to be the case even if the automorphism group of the net is known.

During the generation of the quotient reachability graph, the main task is
to decide whether a marking symmetric to the newly generated marking has
already been visited. To avoid the pair-wise symmetry comparison of already
visited markings with the newly generated marking, a canonical representative
marking for the whole orbit of markings can be generated. This problem is, of
course, at least as hard as the graph isomorphism problem since solving it solves
the marking symmetry problem, too. In this paper we show that computing
the intuitively most obvious canonical representative marking, namely the lex-
icographically greatest marking in the orbit, is a problem whose complexity is
somewhere between FPNP[log n] and FPNP, inclusively.

We also study the concept of marking-stabilizers (self-symmetries of mark-
ings) which are symmetries of the net that map a marking to itself. Use of
marking-stabilizers can expedite the generation of quotient reachability graphs
by allowing us to ignore some symmetric transitions. Furthermore, marking-
stabilizers can speed up the ”loop over all symmetries”-approach for testing
marking symmetry. We show that computing the marking-stabilizer group for a
marking is as hard as computing the automorphism group of a graph.

As the last problem we consider the coverability problem under symmetries.
A marking is said to cover another marking if each place in the marking has
at least as many tokens as in the other marking. In Place/Transition-nets, the
set of enabled transitions in a covering marking is a superset of the enabled
transitions in the covered marking. This is exploited in the coverability graph
generation [Finkel 1990], a technique that can be applied to check e.g. the bound-
edness of a net. Symmetries can be exploited also during the coverability graph
generation and the symmetric coverability problem is: Given two markings of a
net, is there a net automorphism such that the first marking covers the second
marking when permuted with the automorphism? An interesting phenomenon
happens here: the problem becomes NP-complete instead of staying as hard
as graph isomorphism. Furthermore, we show that the symmetric coverability
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problem does not, unfortunately, allow itself to be integrated into the canonical
representative marking approach in a straightforward way.

1.1 Related Results

There are some related results concerning other system description formalisms.
First, [Clarke et al. 1996; 1998] consider the case where system states are

given as vectors of state variables and the symmetry group acts on these by
permuting the variable positions. The problem of deciding symmetricity of two
states in this setting was first shown to be at least as hard as the graph isomor-
phism problem [Clarke et al. 1996], and then to be polynomially equivalent to
the problems in the Luks equivalence class1 [Clarke et al. 1998]. Furthermore,
the problem of generating lexicographically smallest state symmetric to a given
state is NP-hard [Babai and Luks 1983]. Note that the automorphism group of
a Place/Transition-net acts in the same way on the markings (which can be
seen as integer vectors). However, since it is a graph automorphism group (not
an arbitrary group), we can prove in this paper that the marking symmetry
problem is as hard as the graph isomorphism problem. In [Clarke et al. 1998] it
is also shown that symmetries of a composition of parallel processes can be de-
rived by constructing a corresponding hyper-graph and finding its automorphism
group. In addition, it was shown in [Clarke et al. 1996] that there are symmetry
groups for which the state equivalence (orbit) relation cannot be expressed by a
polynomial-size Binary Decision Diagram (BDD).

Murϕ is a verification system in which symmetries are described by the
user by using special data types called scalar-sets. Permutations of the data
values in scalar-sets then produce corresponding symmetries in the states. In
[Ip and Dill 1996] it is shown that deciding whether two states of a Murϕ pro-
gram are symmetric is at least as hard as testing graph isomorphism.

Finally, for some related complexity theoretical results concerning a high-
level Petri net formalism, see [Junttila 1999].

1.2 Outline

The paper is structured as follows. The necessary preliminaries are given in
Section 2. Place/Transition-nets and their symmetries are defined in Section 3.
The complexities of the fundamental problems of (i) computing net automor-
phism groups, (ii) deciding whether two markings are symmetric, and (iii) the
construction of canonical representative markings are proven and discussed in
Section 4. The concept, use and computational complexity of marking-stabilizers
is discussed in Section 5 while the symmetric coverability problem is studied in
Section 6. Finally, we conclude in Section 7.
1 Luks equivalence class is named in [Babai 1994] and contains many important group

theoretical problems. The decision problems complete for it are still in NP but are
believed to be harder than graph isomorphism.
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2 Preliminaries

2.1 Computational Complexity Theory

See, e.g., [Garey and Johnson 1979, Papadimitriou 1994] for computational com-
plexity theory in general. For simplicity, we will use the fairly standard polyno-
mial time many-one (or Karp) reductions in this paper. For two decision prob-
lems (problems requiring a “no” or “yes” answer), A and B, we say that A
polynomial time many-one reduces to B, denoted by A ≤p

m B, if there is a poly-
nomial time computable function R such that for all instances x of A, R(x) is a
“yes”-instance of B iff x is a “yes”-instance of A. If both A ≤p

m B and B ≤p
m A

hold, we say that A and B are polynomial time many-one equivalent . In this
paper we omit the prefix “polynomial time” and simply say that A many-one
reduces to B or that A and B are many-one equivalent.

For function problems requiring an answer more elaborate than “no” or “yes”,
we use the following generalization of polynomial time many-one reductions. We
say that a function problem f polynomial time many-one reduces to another
function problem g, denoted by f ≤p

m g, if there are polynomial time com-
putable functions R and S such that for all instances x of f , (i) x has solu-
tions in f iff R(x) has solutions in g, and (ii) if y is a solution to R(x) in g,
then S(y) is a solution to x in f . This reduction technique is similar to that in
[Papadimitriou 1994] except that we use polynomial time instead of logarithmic
space. Many-one equivalence for function problems is defined in the same way
as for decision problems.

The usual complexity classes of problems decidable in polynomial time with
deterministic and non-deterministic Turing machines are denoted by P and
NP, respectively. The class FP is the class of function problems computable
by deterministic Turing machines in polynomial time. FPNP (FPNP[log n]) is
the class of function problems computable in polynomial time by deterministic
Turing machines that can access an NP oracle polynomially (logarithmically)
many times w.r.t. the input size. The n in FPNP[log n] represents the fact that
the number of queries to the oracle depends on the input size n. The classes
FPNP[log n] and FPNP are important since many optimization problems such
as Clique Size and Traveling Salesperson Problem, resp., are complete
for them [Papadimitriou 1994].

2.2 Graph-Theoretical Problems

Since nets can be seen as directed labelled graphs, we use graph theoretical
problems to classify the problems concerning net symmetries.

A labelled directed graph is a triple G = 〈V, E, L〉 where V is a finite set of
vertices, E ⊆ V × V is the set of edges and the function L assigns each vertex
and each edge a label. A labelled directed graph is undirected if its edge set is
symmetric. Furthermore, it is non-labelled if the range of the labelling function
is a unit set (all the labels are the same). A non-labelled undirected graph is
called simply a graph. Two labelled directed graphs, G1 = 〈V1, E1, L1〉 and G2 =
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〈V2, E2, L2〉, are isomorphic iff there is a bijective mapping (isomorphism) π :
V1 → V2 such that (i) 〈v1, v2〉 ∈ E1 iff 〈π(v1), π(v2)〉 ∈ E2, (ii) L2(π(v)) = L1(v)
for all v ∈ V1 and, (iii) L2(〈π(v1), π(v2)〉) = L1(〈v1, v2〉) for all 〈v1, v2〉 ∈ E1.

Problem 1. Graph Isomorphism. Given two labelled directed graphs, are they
isomorphic?

It is easy to see, based on results in [Miller 1979], that the isomorphism problems
for (non-labelled, undirected) graphs and labelled directed graphs are many-one
equivalent and therefore we do not distinguish between them in this paper.
Graph Isomorphism is an interesting problem because, although it clearly
belongs to NP, it has not been shown to belong to P nor to be NP-complete
but is one of the main candidates for a problem to be in between (such problems
must exist if P �= NP as is widely believed). In fact, if Graph Isomorphism

is an NP-complete problem, then the polynomial-time hierarchy will collapse
to its second level [Boppana et al. 1987, Goldreich et al. 1986]. This is generally
considered to be a very unlikely event to happen. For more information about
the computational complexity of the Graph Isomorphism problem, the reader
is referred to [Köbler et al. 1993].

A concept closely related to graph isomorphism is that of graph automor-
phisms. An automorphism π of a labelled directed graph G = 〈V, E, L〉 is an
isomorphism from G to itself. The set of all automorphisms of G is denoted by
Aut(G) and is a group under the function composition operation ◦.
Problem 2. Graph Automorphisms. Given a graph G, find a set of genera-
tors for Aut(G) (see the text below for discussion on permutation groups and
generators sets).

Graph Automorphisms is a function problem that is polynomially equivalent
to Graph Isomorphism in the sense that if either has a polynomial time al-
gorithm, then (and only then) both have [Luks 1993]. Again, the complexity of
Graph Automorphisms is the same for graphs and labelled directed graphs.

For a finite set A, the set of all bijections (permutations) on A is denoted by
Sym(A) and is a group under the function composition operation ◦. A sub-group
of Sym(A) for a set A is called a permutation group. A set of generators for a
permutation group is a set of permutations (called generators) such that any
permutation in the group can be expressed as a composition of generators. In
this paper it is assumed that permutation groups are given by means of their gen-
erator sets. For instance, we will now on write “find Aut(G)” instead of “find a
set of generators for Aut(G)” and “given Aut(G)” instead of “given a set of gen-
erators for Aut(G)”. It is well-known that we can construct, in polynomial time
w.r.t. the size of the permuted set and the number of generators, a normal form
representation of the group. Using this normal form, we can test in polynomial
time whether a permutation belongs to the group [Furst et al. 1980] and whether
two elements a, b ∈ A belong to the same orbit (i.e. whether there is a permu-
tation in the group that maps a to b). Furthermore, each sub-group of Sym(A)
has a generator set consisting of at most |A| − 1 generators [Jerrum 1986]. For
permutation group algorithms, see, e.g. [Butler 1991, Kreher and Stinson 1999].
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3 Place/Transition-Nets and their Symmetries

We are now ready to present Place/Transition-nets and their symmetries. The
presentation in this section is based on [Starke 1991, Schmidt and Starke 1991,
Schmidt 1997; 2000a].

3.1 Place/Transition-Nets

A Place/Transition-net (or a P/T-net) is a tuple N = 〈P, T, F, W, M0〉, where

1. P is a finite, non-empty set of places,

2. T is a finite, non-empty set of transitions such that P ∩ T = ∅,
3. F ⊆ (P × T ) ∪ (T × P ) is the flow-relation (also called the set of arcs),

4. W : F → N+ maps each arc in F with a multiplicity (we define that
W (〈x, y〉) = 0 if 〈x, y〉 /∈ F ) and

5. M0 : P → N is the initial marking of N .

A marking of N is a function M : P → N and the set of all markings of
N is denoted by M. A marking M can also be denoted by the formal sum∑

p∈P M(p)p. For instance, if we have the places p1, p2 and p3, the marking
M = {p1 �→ 1, p2 �→ 3, p3 �→ 0} can be denoted by the formal sum 1p1 + 3p2 +
0p3. Dropping the places with multiplicity 0 and omitting unit multiplicities,
M can also be written as p1 + 3p2. For two markings, M and M ′, M ≤ M ′ iff
M(p) ≤ M ′(p) for all p ∈ P . A transition t ∈ T is enabled in a marking M if
W (〈p, t〉) ≤ M(p) for all p ∈ P . If t is enabled in M , it may fire and transform
M into M ′ defined by M ′(p) = M(p)− W (〈p, t〉) + W (〈t, p〉) for all p ∈ P . This
is denoted by M [t〉 M ′. The reachability graph of N is the labelled transition
system RG(N) = 〈Q, ∆, M0〉, where Q ⊆ M and ∆ ⊆ Q × T × Q are defined
inductively by:

1. M0 ∈ Q;

2. if M ∈ Q and M [t〉 M1, then M1 ∈ Q and 〈M, t, M1〉 ∈ ∆; and

3. nothing else is in Q or ∆.

A marking M is reachable if it belongs to Q.

3.2 Symmetries of P/T-Nets

Symmetries of the net N are automorphisms of the net when seen as labelled
directed graph, i.e., permutations that respect node type, flow relation and arc
annotations.

Definition 3. A symmetry (an automorphism) of N is a permutation σ ∈
Sym(P ∪ T ) which
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1. respects node type: σ(P ) = P and σ(T ) = T ;

2. respects the flow relation, i.e., 〈x, y〉 ∈ F ⇔ 〈σ(x), σ(y)〉 ∈ F for all x, y ∈
P ∪ T ; and

3. respects the arc multiplicities: W (〈x, y〉) = W (〈σ(x), σ(y)〉) for all 〈x, y〉 ∈ F .

The set of all symmetries of N (the automorphism group of N) is denoted by
Aut(N) and is a sub-group of Sym(P ∪ T ).

A symmetry σ of N acts on markings of N by σ(M) = M ◦ σ−1, or equiv-
alently, (σ(M)) (σ(p)) = M(p) for all p ∈ P . We say that two markings, M
and M ′, of N are symmetric, denoted by M ≡ M ′, if σ(M) = M ′ for some
σ ∈ Aut(N). The set of markings symmetric to a marking M is the equivalence
class [M ] = {σ(M) | σ ∈ Aut(N)} (the orbit of M under Aut(N)). It is these
equivalence classes and the following lemma that are exploited in the symmetry
reduction method.

Lemma4 [Starke 1991]. Let σ be a symmetry, t a transition and M, M ′ two
markings of N . Then M [t〉 M ′ ⇔ σ(M) [σ(t)〉 σ(M ′).

That is, symmetric states have a symmetric behavior. Formally, a quotient reach-
ability graph of N is a labelled transition system 〈Q̃, ∆̃, M ′

0〉, where M ′
0 ∈ [M0]

and Q̃ ⊆ M, ∆̃ ⊆ Q̃ × T × Q̃ are defined inductively by:

1. M ′
0 ∈ Q̃;

2. if M ∈ Q̃ and M [t〉 M1, then M ′
1 ∈ Q̃ and 〈M, t, M ′

1〉 ∈ ∆̃ for a M ′
1 ∈ [M1];

and

3. nothing else is in Q̃ or ∆̃.

Various properties, such as deadlock freedom, of the net N can be checked by
using a quotient reachability graph of N . For instance, it is relatively easy to
see (by applying Lemma 4) that a marking appears in a quotient reachability
graph if a symmetric marking appears in the reachability graph, and vice versa.
Furthermore, if a marking is a deadlock marking (no transitions are enabled
in it), then and only then all the markings symmetric to it are also deadlock
markings. Thus a quotient reachability graph has a deadlock iff the reachability
graph has. For more on these properties and advanced algorithms for temporal
logic model checking under symmetries, see [Starke 1991, Jensen 1995; 1996,
Clarke et al. 1996, Emerson and Sistla 1996, Gyuris and Sistla 1999].

The integration problem in the (inductive) generation of quotient reachability
graphs is [Schmidt 2000b]:

Problem 5. Given a set Q̃ of already visited markings and a newly generated
marking M , find out whether there is a marking M ′ ∈ Q̃ such that M ≡ M ′.

There are three basic ways to solve the problem [Schmidt 2000b]:
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1. When Aut(N) is known, loop over all symmetries in it and for each σ of
them, check whether σ(M) ∈ Q̃. Of course, for Aut(N) with large order this
is highly infeasible.

2. For each marking M ′ ∈ Q̃, check whether M ′ ≡ M . Symmetry respect-
ing hash functions [Schmidt 2000a; 2000b] can be used to prune the set of
markings of Q̃ that need to be checked.

3. Build a canonical representative marking for M and check whether it is in
Q̃.

Example 1. Consider the variant of Genrich’s railroad system net [Genrich 1991]
shown in Fig. 1(a). All the arc multiplicities in the net equal to 1 and are
not drawn here or in any subsequent figures. Its reachability graph is shown
in Fig. 1(b). The group Aut(N) is generated by the rotation

σrot =
(

Ua0 Ua1 Ua2 Ua3 Ua4 Ua5 Ub0 ··· Ub5 V0 ··· V5 ta0 ··· ta5 tb0 ··· tb5
Ua1 Ua2 Ua3 Ua4 Ua5 Ua0 Ub1 ··· Ub0 V1 ··· V0 ta1 ··· ta0 tb1 ··· tb0

)

and the swapping of train identities

σswap =
(

Ua0 ··· Ua5 Ub0 ··· Ub5 V0 ··· V5 ta0 ··· ta5 tb0 ··· tb5
Ub0 ··· Ub5 Ua0 ··· Ua5 V0 ··· V5 tb0 ··· tb5 ta0 ··· ta5

)
.

Now the initial marking M0 = Ua0 + Ub3 + V1 + V4 is symmetric to the marking
M = Ua4 +Ub1 +V2 +V5 as σswap(σrot(M0)) = σswap(Ua1 +Ub4 +V2 +V5) = M .
The orbit of M0 consists of markings M0, Ua1+Ub4+V2+V5, Ua2+Ub5+V0+V3,
Ua3+Ub0+V1+V4, Ua4+Ub1+V2+V5 and Ua5+Ub2+V0+V3. Figure 1(c) shows
two quotient reachability graphs of the net where the upper one is minimal in
the sense that it contains only one marking per orbit.

4 Complexity of the Fundamental Sub-Problems

4.1 Computing Net Automorphisms

The first problem is to find the automorphism group of a net.

Problem 6. Net Automorphisms. Given a net N , compute Aut(N).

Since nets are directed labelled graphs, it is easy to show that Net Automor-

phisms is equivalent to the Graph Automorphisms problem.

Theorem 7. Net Automorphisms is many-one equivalent to Graph Auto-

morphisms.

Proof. We first reduce from Graph Automorphism to Net Automorphisms.
Given a directed graph G = 〈V, E〉, construct the net N = 〈P, T, F, W, M0〉 where
P = V , T = E, F = {〈v, 〈v, v′〉〉 | 〈v, v′〉 ∈ E} ∪ {〈〈v, v′〉, v′〉 | 〈v, v′〉 ∈ E} and
W (f) = 1 for all f ∈ F . The initial marking is irrelevant. It follows directly
from the definitions that the group Aut(N) restricted to the set P of places
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(a) The net. (c) Two quotient reachability graphs.
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(b) The reachability graph.

Figure 1: A net for a railroad system and its (quotient) reachability graph(s).

is Aut(G). To reduce the other way round, just interpret the net as a directed
labelled graph. Edges are labelled with the corresponding multiplicities while
the nodes corresponding to places are labelled with “P” and those to transitions
with “T”, for instance, to separate them. Clearly the automorphism group of
the graph is the automorphism group of the net. See Fig. 2 for simple examples
(arc multiplicities and edge labels are omitted for simplicity). ��

4.2 Testing Marking Symmetricity

Let us next consider the problem of deciding whether two markings of a net N
are symmetric. We consider two cases: the one in which the automorphism group
of N is not known and the other in which it is.

Problem 8. Uninformed Marking Symmetry (UMS). Given a net N and
two markings of N , are the markings symmetric?
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Figure 2: Reductions between graphs and nets.

Problem 9. Informed Marking Symmetry (IMS). Given a net N , the group
Aut(N) and two markings of N , are the markings symmetric?

Clearly IMS ≤p
m UMS. We now show in two parts that both IMS and UMS

are many-one equivalent to Graph Isomorphism.

Lemma10. UMS ≤p
m Graph Isomorphism.

Proof. Let N = 〈P, T, F, W, M0〉. For a marking M of N , we interpret the marked
net N as a labelled directed graph GM = 〈VM , EM , LM 〉, where

1. VM = P ∪ T ,

2. 〈x, y〉 ∈ EM iff 〈x, y〉 ∈ F ,

3. LM (p) = M(p) for each p ∈ P and LM (t) = “T” for all t ∈ T , and

4. LM (f) = W (f) for each f ∈ F .

It is obvious from the definition of GM that two markings, M and M ′, are
symmetric if and only if GM and GM ′ are isomorphic. ��
Lemma11. Graph Isomorphism ≤p

m IMS.

Proof. Suppose that we are given two (non-labelled) directed graphs, G = 〈V, E〉
and G′ = 〈V, E′〉, with the same set of vertices (if they have a different number of
vertices, they cannot be isomorphic and we can output a simple non-symmetric
net and two different markings for it; if they have different sets of vertices, any
renaming of the vertices will do). We build the net N̂ = 〈P̂ , T̂ , F̂ , Ŵ , M̂0〉 as
follows.

P̂ = {p̂v | v ∈ V } ∪ {p̂v,v′ | v, v′ ∈ V }
T̂ =

{
t̂v,〈v,v′〉 | v, v′ ∈ V

} ∪ {
t̂〈v,v′〉,v′ | v, v′ ∈ V

}

F̂ =
{〈p̂v, t̂v,〈v,v′〉〉 | v, v′ ∈ V

} ∪ {〈t̂v,〈v,v′〉, p̂v,v′〉 | v, v′ ∈ V
} ∪{〈p̂v,v′ , t̂〈v,v′〉,v′〉 | v, v′ ∈ V

} ∪ {〈t̂〈v,v′〉,v′ , p̂v′〉 | v, v′ ∈ V
}

Ŵ (f̂) = 1 for all f̂ ∈ F̂

The initial marking M̂0 is irrelevant, set it to be the empty marking.
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1

2 3

p̂1 p̂2 p̂3

p̂1,1 p̂1,2 p̂1,3 p̂2,1 p̂2,2 p̂2,3 p̂3,1 p̂3,2 p̂3,3

(a) A graph G. (b) The net and marking for G.

Figure 3: Reduction from a graph to a net.

For the graph G, we construct the corresponding marking M̂G of N̂ defined
by

M̂G(p̂) =




0 if p̂ = p̂v for some v ∈ V

1 if p̂ = p̂v,v′ and 〈v, v′〉 ∈ E

0 if p̂ = p̂v,v′ and 〈v, v′〉 /∈ E

and similarly M̂G′ for the graph G′. The idea of the construction is that the
places of the form p̂v,v′ are used to represent the adjacency matrix of the graph
under consideration. Figure 3(b) illustrates the construction by showing the net
N̂ (transition names are omitted) and the corresponding marking for the graph
in Fig. 3(a).

The automorphisms of N̂ are exactly those that are generated by the ho-
momorphism h : Sym(V ) → Sym(P̂ ∪ T̂ ) such that (i) (h(π)) (p̂v) = p̂π(v),
(ii) (h(π)) (p̂v,v′) = p̂π(v),π(v′), (iii) (h(π)) (t̂v,〈v,v′〉) = t̂π(v),〈π(v),π(v′)〉 and (iv)
(h(π)) (t̂〈v,v′〉,v′) = t̂〈π(v),π(v′)〉,π(v′). That is, Aut(N̂) = h(Sym(V )). As Sym(V )
can be represented by two generators, the rotation π1 =

( v1 v2 v3 ··· v|V |−1 v|V |
v2 v3 v4 ··· v|V | v1

)
and the swapping of the first two elements π2 =

( v1 v2 v3 ··· v|V |
v2 v1 v3 ··· v|V |

)
, the generators

for Aut(N̂) are h(π1) and h(π2). Now it is easy to see that M̂G and M̂G′ are
symmetric iff G and G′ are isomorphic since Aut(N̂) corresponds to the group of
all permutations on the vertex set V naturally extended to the adjacency matrix
of a graph with the vertex set V . That is, if the vertices of G can be permuted
in a way that the adjacency matrix of G becomes equal to the adjacency matrix
of G′, then (and only then) can the marking M̂G be permuted by Aut(N̂) to be-
come equal to M̂G′ . For instance, consider the marking p̂1,2+ p̂1,3+ p̂2,3 shown in
Fig. 3(b) corresponding to the adjacency matrix of the graph in Fig. 3(a). Apply-
ing the generator h(π1) to the marking, we obtain the marking p̂2,3 + p̂2,1 + p̂3,1.
This marking corresponds to the adjacency matrix of the graph obtained from
that in Fig. 3(a) by replacing the vertex “1” with “2”, “2” with “3” and “3”
with “1”. Obviously this graph is isomorphic to the one in Fig. 3(a). ��
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We have thus established

Graph Isomorphism ≤p
m IMS ≤p

m UMS ≤p
m Graph Isomorphism

and as a consequence have the following.

Theorem 12. IMS and UMS are both many-one equivalent to Graph Iso-

morphism.

Therefore, from the complexity theoretical point of view, pre-calculation of the
automorphism group of a net does not provide any help for solving the prob-
lem of whether two markings are symmetric. However, in practice it is probably
reasonable to compute the automorphism group of the net since it yields useful
information. For instance, it may reveal that the net has no non-trivial auto-
morphisms and thus the symmetry reduction method is of no use. Furthermore,
knowing the automorphism group can assist in the choice of the integration al-
gorithm since the performances of different algorithms depend on the order of
the automorphism group, see [Schmidt 2000b].

4.3 Canonical Representative Markings

An alternative approach for checking whether a symmetric marking has already
been visited during the quotient reachability graph generation is to transform a
newly generated marking into a representative marking.

Definition 13. For a net, a function of form repr : M → M is a representative
function if repr (M) ≡ M for all markings M ∈ M. The function repr is canonical
if repr(M ′) = M implies repr(M ′′) = M for all M ′′ ≡ M ′.

It is easy to see that having a canonical representative function would solve
the marking symmetry problem because we could simply generate the canonical
representative markings for the two markings in question and then check whether
the representative markings are the same. Therefore, calculating a canonical
representative marking is at least as hard as answering to the graph isomorphism
problem. Fortunately, the correctness of the symmetry reduction method does not
depend crucially on the canonicity of repr [Clarke et al. 1996, Ip and Dill 1996,
Schmidt 2000b]. Therefore repr can be a heuristic algorithm that just tries to
map the orbit [M ] into a set repr ([M ]) as small as possible (see [Schmidt 2000b]
for such an algorithm).

Assume, however, that we would like to have a canonical representative func-
tion repr . For this purpose we have to define which marking in an orbit is the
canonical one. Perhaps the most obvious choice is to choose the lexicographi-
cally greatest (or smallest) marking in the orbit. In the following we study the
complexity of finding such canonical markings.

For a net N , we implicitly assume an arbitrary total order <P on its places.
We therefore have the lexicographical total order for markings of N (also denoted
by <P ) such that M <P M ′ iff

(∃p ∈ P )
(
M ′(p) > M(p) ∧ (∀p′ <P p)(M ′(p′) = M(p′))

)
.
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The following problem is now defined:

Problem 14. Lex-Greatest Marking. Given a net N , its automorphism group
Aut(N) and a marking M , find the lexicographically greatest marking symmetric
to M .

To classify the problem, we employ the problem Clique Size asking the size of
the largest clique in an undirected graph.

Lemma15. Clique Size ≤p
m Lex-Greatest Marking.

Proof. We use a construction resembling one in [Babai and Luks 1983, Sec-
tion 3.1]. Given a non-labelled undirected graph G = 〈V, E〉 (the edge set is
assumed to be reflexive, i.e. all vertices have a self-loop), construct the net N̂
and marking M̂G for G as in the proof of Lemma 11. Now, assume an arbitrary
total order <V on the set V of vertices. Define UL(v) = {p̂v′,v′′ | v′, v′′ <V v}
(the set of places corresponding to the edges between vertices that precede v, or,
the upper left square down to v in the adjacency matrix of G). Define the total
order on places of N̂ to be such that the first |V |2 places are the places of the
form p̂v,v′ , ordered in a way that the places in UL(v) are before those in UL(v′)
for all v <V v′. Now the lex-greatest marking symmetric to M̂G reveals the size
of the largest clique in G because the first k2 places are marked in the marking
iff G has a clique of size k or more. ��
As Clique Size is known to be an FPNP[log n]-complete problem [Krentel 1988,
Papadimitriou 1994], we have the following.

Theorem 16. Lex-Greatest Marking is FPNP[log n]-hard.

In order to prove an upper bound for the Lex-Greatest Marking problem,
we consider its decision version.

Problem 17. Lex-Greater Marking. Given a net N , Aut(N) and two mark-
ings M and M ′, does there exist a marking M ′′ that (i) is lexicographically
greater than or equals to M ′ and (ii) is symmetric to M?

Lemma18. Lex-Greater Marking is NP-complete.

Proof. The problem is in NP because we can (i) guess a permutation σ of N ,
(ii) verify that σ is an automorphism of N , (iii) calculate σ(M) and (iv) check
whether M ′ = σ(M) or M ′ <P σ(M), all in non-deterministic polynomial time.2

Lex-Greater Marking is NP-hard because of the following. Given a graph
G, construct the net N̂ as in the proof of Lemma 15. Suppose that we can say
whether there is a marking that (i) is lexicographically greater than or equals
to the marking in which the first k2 places each have one token and the rest are
empty and (ii) is symmetric to the marking M̂G corresponding to a graph G.
We can then tell whether the graph G has clique of size k or more, which is an
NP-complete problem. ��
2 Note that we do not really need to consult the given group Aut(N) but can check

whether the guessed permutation is an automorphism of N in deterministic polyno-
mial time directly by using N .
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Based on this we can prove the following.

Theorem 19. Lex-Greatest Marking is in FPNP.

Proof. Let m = maxp∈P {M(p)} be the maximum number of tokens in the mark-
ing M . Then the representation of M is at least �logk m� symbols long for some
fixed k (the size of the Turing machine alphabet used) while the representation
of the net N is at least of size Θ(|P |). We now can find and fix the number
of tokens of the first place in the lex-greatest symmetric marking by a binary
search that calls at most �logk m� times the Lex-Greater Marking oracle.
After that, we can fix the number of the tokens in the second place similarly, and
so on. Thus, we can find the lex-greatest symmetric marking with �logk m� · |P |,
a polynomial amount w.r.t. �logk m�+ Θ(|P |), calls to an NP oracle. ��

It is currently open whether Lex-Greatest Marking is FPNP[log n]- or FPNP-
complete.

Remark. The lower and upper bounds for Lex-Greatest Marking, given in
Theorems 16 and 19, stay the same even if the automorphism group of the net
is not given as input.

A note should be made that our choice for a canonical representative was
probably not the most easily computable: [Blass and Gurevich 1984] shows that
the lexicographically smallest element in an equivalence class can be in general
harder to compute than an arbitrary canonical representative. However, as noted
earlier, in our case computing any kind of canonical representative marking is
at least as hard as answering to the graph isomorphism problem.

5 Marking-Stabilizers

For many markings it may be the case that some automorphisms map the mark-
ing to itself. We now demonstrate how such marking-stabilizers can be exploited
and study what is the complexity of calculating them (cf. “state symmetry”
in [Emerson and Sistla 1996, Gyuris and Sistla 1999] and “self-symmetries” in
[Jensen 1995; 1996]).

Definition 20. The stabilizer of a marking M is

Stab(M) = {σ ∈ Aut(N) | σ(M) = M} .

Clearly Stab(M) is a sub-group of Aut(N). The algorithm in [Schmidt 2000a]
can be used to compute marking-stabilizers.

One way to exploit marking-stabilizers is based on the following observation:

Lemma21. If M [t〉 M1, then M [σ(t)〉 σ(M1) for each σ ∈ Stab(M).

Proof. Directly by the fact that M [t〉 M1 ⇔ σ(M) [σ(t)〉 σ(M1) holds for all
σ ∈ Aut(N) and σ(M) = M for a σ ∈ Stab(M) ⊆ Aut(N). ��
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Note that if we know the group Stab(M), then it is easy to check, given two
transitions t and t′, whether there is an automorphism σ ∈ Stab(M) such that
σ(t) = t′. The group Stab(M) also partitions the set T of transitions into disjoint
orbits, the orbit of a transition t being [t]Stab(M) = {σ(t) | σ ∈ Stab(M)}. These
orbits are also easy to compute, given the group Stab(M). Assume that we are
visiting a marking M during the quotient reachability graph generation. Now
we have to check the enabledness of and fire only one transition per transition
orbit under Stab(M) instead of all the transitions. If a transition in an orbit
is enabled, then (and only then) all the transitions in it are, too. Furthermore,
we know that all the transitions in the orbit will lead to mutually symmetric
markings. We thus do not have to apply the marking symmetry test (or the
canonization procedure) to each successor marking but to only one in the orbit.

Marking-stabilizers can also improve the “loop over all symmetries”-approach
for the integration problem (recall Section 3). Consider a left coset σ Stab(M),
where σ ∈ Aut(N). Now for each σ′ ∈ σ Stab(M), σ′(M) = σ(M). Thus it
suffices to inspect only one symmetry per each left coset. As Stab(M) is a sub-
group of Aut(N), Aut(N) is divided into |Aut(N)|

| Stab(M)| mutually disjoint left cosets.
These facts were also noticed in [Jensen 1995, page 92].

5.1 Complexity of Calculating Marking-Stabilizers

We formalize the following problem.

Problem 22. Marking-Stabilizer. Given a net N and a marking M of N ,
compute Stab(M).

Theorem 23. Marking-Stabilizer and Graph Automorphisms are many-
one equivalent.

Proof. To reduce from Marking-Stabilizer to Graph Automorphisms, we
use the construction of Lemma 10. The automorphism group of GM clearly cor-
responds to the stabilizer of the given marking M .

To reduce from Graph Automorphisms to Marking-Stabilizer, use the
net N̂ of Lemma 11. Now the stabilizer of the marking M̂G for the given directed
graph G is equivalent to Aut(G) when restricted to places of form p̂v. ��

Remark. The complexity of Marking-Stabilizer remains the same even if we
know the automorphism group of the net N .

5.2 Canonical Representative Markings and Marking-Stabilizers

There is a connection between marking-stabilizers and canonical representative
markings. Let repr be a canonical representative function for a net N .

Definition 24. A left coset σ Stab(M), where σ ∈ Sym(P∪T ) such that σ(M) =
repr(M), is called a canonical labelling coset of M .
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Canonical labelling cosets are desirable since they give both the canonical repre-
sentative of a marking and also the stabilizer of the representative. Consequently,
computing such cosets is a function problem at least as hard as Graph Auto-

morphisms. A similar concept is used in the graph automorphism tool nauty

[McKay 1990] which computes the automorphism group and a canonical form of
a graph at the same time. See also [Babai and Luks 1983] for a string canoniza-
tion algorithm.

6 Symmetric Coverability

We say that a marking M covers a marking M ′ if M ′ ≤ M . In order to build
a coverability graph [Karp and Miller 1969, Finkel 1990] of a net, we extend
markings to be functions of form M : P → (N ∪ {ω}), where ω is a symbol not
in N and for all x ∈ N ∪ {ω}, x ≤ ω. The coverability graph construction can be
combined with the symmetry reduction method, see [Petrucci 1990]. We use the
following definitions in [Schmidt 2000a]:

Definition 25. A marking M symmetrically covers a marking M ′, denoted by
M ′ �M , if there is a σ ∈ Aut(N) such that M ′ ≤ σ(M).

Problem 26. Symmetric Coverability. Given a net N and two of its mark-
ings, M and M ′, does M symmetrically cover M ′?

Schmidt has extended his algorithm for testing the symmetricity of two markings
to solve the Symmetric Coverability problem [Schmidt 2000a].

Interestingly, the complexity of Symmetric Coverability jumps from
Graph Isomorphism to NP-completeness, a phenomenon resembling that hap-
pening when moving from Graph Isomorphism to Sub-Graph Isomorphism

[Garey and Johnson 1979].

Theorem 27. Symmetric Coverability is NP-complete.

Proof. Obviously Symmetric Coverability is in NP. We show NP-hardness
by reduction from the NP-complete problem Clique asking if an undirected
graph G = 〈V, E〉 has a clique of size k or more. Again, the graph G is assumed
to have a reflexive edge set meaning that all vertices have a self-loop. Construct
the net N̂ and the marking M̂G for G as in the proof of Lemma 11. Let M̂ ′

G be
a marking of N̂ in which all the places of form p̂v,v′ , where v, v′ ∈ V ′ ⊆ V such
that |V ′| = k, have one token and the other places are empty. Now clearly M̂G

symmetrically covers M̂ ′
G iff G has a clique of size k or more. ��

Remark. Again, the complexity of Symmetric Coverability does not depend
on whether we know the automorphism group of the net in question. Further-
more, it does not depend on the extension of markings with the ω symbol.
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p1p2

p0

Figure 4: A net with no suitable canonical representative function.

6.1 Canonical Representative Markings and Symmetric Coverability

A way to solve the symmetric coverability problem would be to build a canonical
representative function that solves the coverability problem at the same time:

Definition 28. A canonical representative function repr is suitable for symmet-
ric coverability if repr(M ′) ≤ repr(M) ⇔ M ′ �M for all M, M ′ ∈ M.

Unfortunately, suitable representative functions do not always exist, as is shown
in the next example and theorem.

Example 2. The function that chooses the lexicographically greatest marking in
an orbit is not a suitable canonical representative function for all nets. For a
counter-example, consider the net in Fig. 4 and assume the total order

pi <P pj ⇔ i < j

between the places. Now the marking M = 2p0 + 2p1 + 0p2 is its own represen-
tative repr(M), while for M ′ = 0p0 +1p1 +2p2 the representative is repr(M ′) =
2p0+0p1+1p2. Now M symmetrically covers M ′ since σ(M) = 0p0+2p1+2p2 ≥
M ′, where σ maps each pi to pi+1 mod 3. But repr(M ′) ≤ repr(M) does not hold.

Theorem 29. There exists nets for which suitable canonical representative func-
tions do not exist.

Proof. Assume that such functions exist for all nets. Consider again the net N
in Fig. 4. Take the marking M = 2p0 +2p1 + 0p2 and any of its representatives,
say repr(M) = M . Consider two other markings, M1 = 2p0 + 1p1 + 0p2 and
M2 = 1p0+2p1+0p2. Clearly M symmetrically covers both M1 and M2. In order
to repr to be suitable for symmetric coverability, it must be that repr(M1) = M1

and repr(M2) = M2 (other representatives lead to a situation in which place p2

has one or more tokens and thus repr (M) would not cover them). Now consider
the marking M ′ = 2p0 + 1p1 + 1p2 which symmetrically covers both markings
M1 and M2. To repr to be suitable, it must be that repr(M ′) = M ′ since
other representatives do not cover repr(M1). But now repr (M ′) does not cover
repr(M2). Thus the initial assumption must be wrong and suitable canonical
representative functions do not exist for all nets. ��

323Junttila T.A.: Computational Complexity ...



7 Conclusions

In this paper we have addressed the computational complexity issues concern-
ing the symmetry reduction method for Place/Transition-nets. Computing the
automorphism group of a net was shown to be a task as hard as computing
the automorphism group of a graph. Although no polynomial time algorithm
is known (or is expected to be found) for the task, it is not considered to be
very hard in practice. The main problem in the symmetry reduction method,
detecting whether two markings are symmetric, was proven to be equivalent to
the Graph Isomorphism problem under many-one reductions. Interestingly,
this result does not depend on whether we know the automorphism group of the
net in question or not. Building lexicographically greatest (smallest) canonical
representative markings was shown to be a function problem lying somewhere
between FPNP[log n] and FPNP.

We have also discussed the use of marking-stabilizers of a marking (net’s au-
tomorphisms that leave the marking intact) to improve the method. Computing
the group of marking-stabilizers of a marking was classified to be equivalent to
the Graph Automorphisms problem.

As our last problem we have studied the symmetric coverability problem
which combines the symmetry reduction method with the coverability graph
approach. An interesting phenomenon occurred there: the symmetric coverability
problem turned out to be an NP-complete problem instead of staying as hard
as Graph Isomorphism. Furthermore, we also found out that there exist nets
for which the symmetric coverability problem and the canonical representative
marking approach do not mix well.
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