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Abstract: Recently there has been much interest in the automatic and semi-automatic
veri�cation of parameterized networks, i.e., veri�cation of a family of systems fPi j i 2
!g, where each Pi is a network consisting of i processes.

In this paper, we present a method for the veri�cation of so-called universal properties
of fair parameterized networks of similar processes, that is, properties of the form
8p1 : : : pn :  , where  is a quanti�er-free LTL formula and the pi refer to processes.
To prove an universal property of a parameterized network, we �rst model the in�nite
family of networks by a single fair WS1S transition system, that is, a transition system
whose variables are set (2nd-order) variables and whose transitions are described in
WS1S. Then, we abstract theWS1S system into a �nite state system that can be model-
checked. We present a generic abstraction relation for verifying universal properties as
well as an algorithm for computing an abstract system.

However, the abstract system may contain in�nite computations that have no cor-
responding fair computations at the concrete level, and hence, in case the property
of interest is a progress property, veri�cation may fail because of this. Therefore, we
present methods that allow to synthesize fairness conditions from the parameterized
network and discuss under which conditions and how to lift fairness conditions of this
network to fairness conditions on the abstract system. We implemented our methods
in a tool, called pax, and applied it to several examples.

Key Words: Parameterized systems, veri�cation, abstraction, model checking, WS1S
Category: F.3.1

1 Introduction

Apt and Kozen show in [AK86] that the veri�cation of parameterized networks is
undecidable. Nevertheless, automated and semi-automated methods for the veri-
�cation of restricted classes of parameterized networks have been developed. The
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methods presented in [GS92, EN95, EN96] show that for classes of ring networks
of arbitrary size and client-server systems, there exists k such that the veri�ca-
tion of the parameterized network can be reduced to the veri�cation of networks
of size up to k. Alternative methods presented in [KM89, WL89, BCG89, SG89,
HLR92, LHR97] are based on induction on the number of processes. These meth-
ods require �nding a network invariant that abstracts any arbitrary number of
processes with respect to a pre-order that preserves the property to be veri-
�ed. While this method has been originally presented for linear networks, it has
been generalized in [CGJ95] to networks generated by context-free grammars.
In [CGJ95], abstract transition systems were used to specify the invariant. An
abstract transition system consists of abstract states speci�ed by regular expres-
sions and transitions between abstract states. The idea of representing sets of
states of parameterized networks by regular languages is applied in [KMM+97],
where additionally �nite-state transducers are used to compute predecessors.
These ideas are applied to linear networks as well as to processes arranged in
a tree architecture and semi-automatic symbolic backward analysis methods for
solving the reachability problem are given.

Formally, in this paper, we present a method for tackling the following prob-
lem:

Given a parameterized network P1 k � � � k Pn, fairness conditions, and a
quanti�er-free linear-time temporal property  (p1 : : : ; pk), we want to prove P1 k
� � � k Pn j= 8p1 : : : ; pk � n :  (p1 : : : ; pk), for every n 2 !, i.e., every fair
computation of P1 k � � � k Pn satis�es  (p1 : : : ; pk).

Our method uses the veri�cation by abstraction approach [CGL94, DGG94]
and consists of the following steps:

1. Representing the in�nite family of fair networks P1 k � � � k Pn as a single
fair transition system S whose variables range over �nite sub-sets of ! and
whose transitions are expressed in WS1S, the weak second-order logic of
one-successor [B�uc60]. We call such systems fair WS1S transition systems.

2. Constructing an abstraction relation that maps the states of the WS1S tran-
sition system S to abstract states which are valuations of boolean variables.
We present a generic abstraction relation for verifying universal properties.

3. Automatically constructing a �nite abstract system SA that is an abstraction
of S which implies that every computation of S can be mapped to a com-
putation of SA. Moreover, we construct an abstract formula  A such that if
SA satis�es  A then, using the preservation results of [CGL94, DGG94], we
can deduce P1 k� � �kPn j= 8p1 : : : ; pk � n :  (p1 : : : ; pk), for every n 2 !.

4. Since the abstract system is �nite, we can use model-checking to verify that
it satis�es  A. However, verifying progress properties using abstractions of-
ten fails because of in�nite computations in the abstract system that do not
correspond to fair in�nite ones in the concrete one. To mitigate this prob-
lem, we augment the abstract system with safe fairness conditions, that is,
conditions that only remove in�nite computations that do not correspond to
concrete ones. We present two techniques for synthesizing fairness conditions
from the concrete system that can be safely added to the abstract one:

(a) An algorithm that given a WS1S formula characterizing a ranking func-
tion computes pairs of sets of transitions expressing strong fairness con-
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ditions that are guaranteed to hold for the parameterized network, and
hence, abstractions of them can be safely added at the abstract level.

(b) A method that allows the generation of fairness conditions at the ab-
stract level from the fairness conditions of the parameterized network.
In particular, we discuss which kind of weak/strong fairness can be lifted
from the concrete to the abstract level.

We implemented our method in a tool, we call pax 1, that uses the decision
procedures of Mona [HJJ+96] to check the satis�ability of WS1S formulae. We
then applied our tool and method to several examples including Dijkstra's and
Szymanski's mutual exclusion algorithms as well as a time-triggered group mem-
bership protocol.

2 Preliminaries

In this section we brie
y recall the de�nition of weak second order theory of one
successor (WS1S for short) [B�uc60, Tho90].

Terms of WS1S are built up from the constant 0 and 1st-order variables by
applying the successor function suc(t) (\t+1"). Atomic formulae are of the form
b, t = t0, t < t0, t 2 X , where b is a boolean variable, t and t0 are terms, and X
is a set variable (2nd-order variable). WS1S-formulae are built up from atomic
formulae by applying the boolean connectives as well as quanti�cation over both
1st-order and 2nd-order variables.

WS1S-formulae are interpreted in models that assign �nite sub-sets of ! to
2nd-order variables and elements of ! to 1st-order variables. The interpretation
is de�ned in the usual way.

Given a WS1S formula f , we denote by [[f ]] the set of models of f . The set
of free variables in f is denoted by free(f).

In addition to the usual abbreviations, we use 8n i :f as an abbreviation for
8i : i < n! f and 9n i :f for 9i : i < n ^ f . Moreover, given a 2nd-order variable
P , we write 8P i :f instead of 8i : i 2 P ) f and 9P i :f instead of 9i : i 2 P ^ f .

Finally, we recall that by B�uchi [B�uc60] and Elgot [Elg61] the satis�ability
problem for WS1S is decidable. Indeed, the set of all models of a WS1S-formula
is representable by a �nite automaton (see, e.g., [Tho90]).

3 WS1S Transition Systems

We introduce WS1S transition systems which are transition systems with vari-
ables ranging over �nite sub-sets of ! and show how they can be used to repre-
sent parameterized networks. In order to simulate the behavior of parameterized
networks with fairness conditions we also need the notion of fairness for WS1S
transition systems.

De�nition 1 (Fair WS1S Transition Systems).
A fair WS1S transition system S = (V ; �; T ;J ; C) is given by the following
components:

1 http://www.informatik.uni-kiel.de/~kba/pax
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{ V = fX1; : : : ; Xkg [ fm1; : : : ;mlg: A �nite set of second order variables
Xi ranging over �nite sets of natural numbers and �rst order variables mi

ranging over the natural numbers itself.

{ �: A WS1S formula with free(�) � V describing the initial condition of the
system.

{ T : A �nite set of transitions where each � 2 T is represented as a WS1S
formula �� (V ;V 0), i.e., free(�� ) � V [V 0, where primed variables refer to the
post state.

{ J : A set of pairs of second order variables expressing a weak fairness con-
dition. Each pair (Xm; Xm0) requires, for each i 2 !, the weak fairness
condition that i cannot be continuously in Xm without being eventually in
Xm0 , that is, 8i 2 ! : (32(i 2 Xm)! 23(i 2 Xm0)).

{ C: A set of pairs (Xm; Xm0) of second order variables expressing the strong
fairness condition 8i 2 ! : (23(i 2 Xm)! 23(i 2 Xm0)). 2

A state s of S maps the 2nd-order variables in V into �nite sub-sets of ! and
the 1st-order variables to natural numbers. A computation of S is a sequence
(si)i2! of states such that �[s0(V)=V ] and

W
�2T � [si(V); si+1(V)=V ;V 0] are valid

formulae. A computation (si)i2! satis�es a weak fairness condition (Xm; Xm0) 2
J i� the following condition holds for every x 2 !:

if 9i 2 !:8j � i : x 2 sj(Xm), then there exist in�nitely many i's such that
x 2 si(Xm0).
The computation satis�es the strong fairness condition (Xm; Xm0) 2 C i� the
following condition holds for every x 2 !:

if there exist in�nitely many i's such that x 2 si(Xm), then there exist in-
�nitely many i's such that x 2 si(Xm0).

Then, a fair computation of S is a computation that satis�es all fairness
conditions in J and C. Henceforth, we denote the set of fair computations of S
by [[S]].

4 Representing Parameterized Protocols as WS1S Systems

Before presenting the methods to abstract and analyze WS1S systems we show
how to model parameterized protocols as WS1S systems. As examples we use
a simple mutual exclusion algorithm operating in an asynchronous manner, i.e.,
we have an interleaving semantics, and a fault detection protocol for processes
organized in a ring operating in a time-triggered, synchronous manner.

Example 1 (Mutual Exclusion). The parameterized network consists of processes
where each process is described as follows:
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m`0
?
truem`1
?
turn = im`2true

'

&
�� at `0[turn]! turn := i

-

�

The variable turn is meant to indicate which process has the right to enter `2.
If the process having the turn is at `0, turn is free and another process at `1
may take it.

The transition from `0 to `1 is weak fair whereas the loop from `1 to `1 is
strong fair. Initially, all processes are at `0. Location `2 represents the critical
section.

It is easy to see how each process Pi can be described using a boolean variable
at `m[i] for each control point `m[i].

We will verify that the algorithm satis�es the mutual exclusion property as
well as the universal property that each process p reaches its critical section
in�nitely often, i.e., 8n p : 23at `2[p].

To represent this network as a WS1S system we introduce three set variables
At `0;At `1;At `2 corresponding to the control locations, the �rst-order variable
turn, and a set variable P representing the set of processes being part of the
network. Moreover, we need two additional set variables E� and T� for each
transition to express the fairness conditions, a process index will be member of
these sets whenever the corresponding transition is enabled (resp. just taken) for
this process. Let V denote this set of variables. If we denote by �0 the self-loop
at `1, then C = f(E�0 ; T�0)g. The liveness property we will check later can then
be expressed by 8P p : 23(p 2 At `2). For the sake of illustration, we show the
representation of �0:

9P i : ��0(V
0;V 00; i) ^

^
�2T

E0� = fi 2 P j 9V 00 : �� (V
0;V 00; i)g ;

where ��0(V
0;V 00; i) characterizes those i 2 P which can take a �0-step, the ex-

istential quanti�cation corresponds to an interleaving semantics such that only
one process proceeds in one step, and the last conjunct gives the enabled transi-
tions in the post state. ��0(V

0;V 00; i) (and similarly �� for the other transitions)
is de�ned as:

��0(V
0;V 00; i) � i 2 At `1 ^ turn 2 At `0 ^ i 2 At `01 ^ i = turn0

^ (8P j : j 6= i)
^

k=0;1;2

(j 2 At `k , j 2 At `0k))

^ P = P 0 ^
[
B2eV

B0 � P 0 ^
[
� 6=�0

T 0� = ; ^ T 0�0 = fig :

2
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Obviously, synchronous systems can be modeled using universal quanti�ca-
tion in the de�nition of transitions. We illustrate that with a small example and
give a more sophisticated application in Section 7.

Example 2 (Simple Fault Detection). In this example we have a parameterized
number of processes organized in a ring structure operating in a synchronous
manner. In each round it is the turn of one process to send information to all
others.

The protocol requires one bit of error information piggybacked on regular
broadcasts. A processor may fail to receive or send information. In case of a
send error all other processes set their acknowledgment bit ack to false and the
faulty processor notices that in the next round. In case of a receive error the
faulty processor sets its acknowledgment bit to false and the others get this
information when it is the turn of the faulty processor to send. In both cases
the protocol guarantees that a send or receive error by one process is detected
within one round, i.e., all processes have their acknowledgment bit set to false.

A process p takes one of the following transitions synchronously with the
other processes.

:arrived(p)! ack0(p) := � (1)

arrived(p)! ack0(p) := ack(p) ^ ack(turn) (2)

p = turn! ack0(p) := ack(p) (3)

It is process turn which has to send at the moment. Each transition increases the
turn variable by 1 modulo n. The turn process maintains its ack bit. arrived(p)
stands for: turn 6= p, p is not receive-faulty, and process turn is not send-faulty
at this step.

To model this system as a WS1S system we need 2 second-order variables
P;Ack where P contains all participating processes f0; : : : ; n� 1g and Ack con-
tains those having their ack bit set to true.

Transition 2 where no new errors occur and the ack bits are just propagated
can be characterized as:

(8P p : p 6= turn)

(p 2 Ack0 , p 2 Ack ^ turn 2 Ack))

^ (turn 2 Ack0 , turn 2 Ack)

^ turn0 = (turn+ 1 mod n) ^ P = P 0

Then, we would like to prove; whenever one process has detected an error,
i.e., 9P p : p =2 Ack, then eventually all processes will notice that, i.e., Ack = ;.
That can be formulated as a universal property:

8P p : 2(p =2 Ack) 3Ack = ;)

2

Note that the class of systems we can model as WS1S systems is restricted
such that each process has to be �nite state and the transitions can be charac-
terized in WS1S. The de�nition of a class that can be modeled as WS1S system
and the translation can be found in [BLS00].
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5 Abstracting WS1S Systems

In Section 3, we have shown how we model parameterized networks as fair WS1S
systems. An in�nite family of systems is represented by a single, though in�nite-
state, transition system.

In the following, we present a method to construct a �nite abstraction of
a given WS1S systems. Then, we show in Section 6 how the obtained abstract
system can be enriched with fairness conditions such that interesting progress
properties of the WS1S system can be veri�ed. Let us �rst de�ne what we mean
by universal temporal properties.

Let � be a countable set of process indices p that range over natural numbers
and let � be a countable set of variables X that range over �nite sets of natural
numbers. The set LTL of linear-time temporal properties over� and � is de�ned
as follows:

' ::= i 2 X j p 2 X j t1 = t2 j :' j ' ^ ' j 
' j ' U ';

where i is a constant in ! and t1; t2 are �rst resp. second order terms in WS1S.
As usual, we use the temporal modalities 2 (always) and 3 (eventually) which
can be introduced as abbreviations.

Formulae in LTL are interpreted over in�nite sequences of structures of the
form (I; I 0), where I maps each variable X 2 � to a �nite sub-set of ! and I 0

maps each variable in � to an element of !. The de�nition of the interpretation
of LTL is not given here as it is standard.

Let ' be an LTL formula with fX1; : : : ; Xkg as free 2nd-order variables and
fp1; : : : ; png as free 1st-order variables. Moreover, let S be a WS1S transition
system with fX1; : : : ; Xkg as variables. A computation (si)i2! satis�es ' i� for
every injective mapping I 0 from fp1; : : : ; png into !, the sequence (si; I 0)i2!
satis�es '. In other words, the computation (si)i2! satis�es ', if it satis�es all
the temporal formulae obtained by instantiating the variables p1; : : : ; pn. We say
that S satis�es ', denoted by S j= ', if every fair computation of S satis�es '.

A temporal property is called universal, if it can be described by a formula
in LTL. For instance, mutual-exclusion in Example 1 can be described by the
formula 2:(p1 2 At `2 ^ p2 2 At `2), which is an universal temporal property.
However, the communal liveness property stating whenever some process is in
At `1, eventually some process (not necessarily the same) reaches At `2 is not
an universal temporal property. On the other hand, the stronger liveness prop-
erty stating that every process in At `1 eventually reaches At `2 is an universal
property as it can be described by the property 2(p 2 At `1 ) 3p 2 At `2).

The problem we are interested in is given a WS1S system S and given an
universal temporal formula ' to show S j= '.

5.1 Abstractions and fair abstractions

Given a deadlock-free2 transition system S = (V ; �; T ) and a total abstraction
relation � � ���A, we say that SA = (VA; �A; TA) is an abstraction of S w.r.t.

2 Throughout this paper we only consider deadlock free transition systems which can
be achieved by adding an idle transition.
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�, denoted by S v� SA, if the following conditions are satis�ed: (1) s0 j= �
implies �(s0) j= �A and (2) � Æ ��1 � ��1 Æ �A.

In case �A is �nite, we call � �nite abstraction relation. Let '; 'A be LTL
formulae and let [[']] (resp. [['A]]) denote the set of models of ' (resp. 'A). Then,
from S v� SA, ��1([['A]]) � [[']], and SA j= 'A we can conclude S j= ' (here
we identify ��1 and its point-wise lifting to sequences). This statement, which
is called preservation result, shows the interest of veri�cation by abstraction:
since if SA is �nite, it can automatically be checked whether SA j= 2'A. In fact,
a similar preservation result holds for any temporal logic without existential
quanti�cation over paths, e.g., 8CTL?, LTL, or �2 [CGL94, DGG94, LGS+95].

In case S is a fair transition system with F as fairness formula and if FA
is the fairness formula of SA, then by requiring ��1([[:FA]]) � [[:F ]], we have
the same preservation result as above. We indicate this type of abstraction by
S vF

� SA.
Next, we explain the main steps of our approach for verifying universal tem-

poral properties before presenting each step in more detail.

5.2 Approach

Let S = (V ; �; T ;J ; C) be a fair WS1S system and let  be an universal tempo-
ral formula with fX1; : : : ; Xkg [ fp1; : : : ; pmg as free variables. To simplify the
presentation assume that m = 1 and write p instead of p1. Moreover, we denote
by  (i) the formula obtained from  by replacing p by the constant i 2 !.

For each i 2 !, we construct in Section 5.3 a �nite abstraction relation �i
which maps states of S to abstract states. The abstract state space de�ned by
�i is such that it contains for each sub-formula i 2 X of  (i) a boolean variable
biX and for each Xj an abstract variable bj . Then, �i relates a concrete state s
to an abstract state sA such that sA(biX) , i 2 s(X) and sA(bj) , s(Xj) 6= ;.
Henceforth, let b�i be a predicate de�ning �i, i.e., b�i is a conjunction of those
equivalences mentioned above. Clearly, the abstract state spaces de�ned by �i
and �j are the same modulo renaming of the variables biX .

Then, for each i 2 !, one can e�ectively construct a �nite abstract system
SiA and an LTL-formula3  iA such that SiA j=  iA implies S j=  (i). One can even
e�ectively construct the set fSiA j i 2 !g of abstract systems. However, although
this set is �nite, it is computationally costly to construct. Therefore, we present
in Section 5.4 an algorithm for constructing a single �nite abstract system SA
which is itself an abstraction of each SiA and, as we show, is an abstraction of
S. Moreover, we show how to construct an LTL-formula  A such that SA j=  A
implies S j=  .

5.3 Abstraction relation �i

The set V iA of abstract variables consists of boolean variables. For each set X in
the WS1S system S we have an abstract boolean variable biX 2 V iA corresponding
to i 2 X . Thus, in particular we have the variable biE�

and biT� , for each � 2

3 Here, we extend the de�nition of LTL formulae with boolean variables.
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T . Additionally, for each strong fairness condition (E� ; T� ) 2 C we introduce
boolean variables e� ; t� such that �i implies:

e� � 9P j : j 2 E�

t� � 9P j : j 2 T� :

That means that b�i contains these equivalences as conjuncts. For all other global
state properties ' that may in
uence the progress of a certain process p another
variable is added for which the abstraction is given by '. This includes an ade-
quate abstraction of the used natural numbers to express their in
uence on the
behavior of the system.

Henceforth, we also use b�i(V 0;V 0iA) to denote the predicate obtained from b�i
by substituting the unprimed variables with their primed versions.

5.4 Construction of SA

As mentioned it is costly to compute fSiA j i 2 !g explicitly. Therefore, we show
how one can construct a system that abstracts each of the elements of this set,
and hence, by transitivity of v abstracts S. The set VA of abstract variables of
SA contains for each abstract variable bi 2 V iA a variable b.

We de�ne the transitions of SA by the following WS1S formula:

9P p : 9V ;V
0 : b�p(V ;VA) ^ �� (V ;V 0) ^ b�p(V 0;V 0A):

Thus, we make sure that the choice of p in the concretizations of the source
and target states of an abstract transition is the same. We can then show the
following:

Proposition2. SA is an abstraction of S, i.e., S v� SA with � =
S
i2!

�i.

Notice that the formulae above are WS1S formulae, and hence, by B�uchi and
Elgot's result, the sets of numbers satisfying these formulae can be characterized
by �nite automata. We use Mona [HJJ+96] to construct these automata.

6 Fair Abstractions

It is well known that an obstacle to the veri�cation of liveness properties us-
ing abstraction, is that often the abstract system contains cycles that do not
correspond to fair computations of the concrete system. A way to overcome
this diÆculty is to enrich the abstract system with fairness conditions or more
generally ranking functions over well-founded sets that eliminate undesirable
computations. We present a marking algorithm that given a reachability state
graph of an abstraction of a WS1S system enriches the graph with strong fair-
ness conditions while preserving the property that to each concrete computation
corresponds an abstract fair one. The enriched graph is used to prove liveness
properties of the WS1S systems, and consequently, of the parameterized net-
work. Moreover, we discuss under which requirements the fairness conditions of
the parameterized system can be lifted to the �nite abstract one. In particu-
lar, we show that by requiring some conditions on the abstraction relation, it is
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sound to lift strong fairness. Weak fairness can only be lifted for a distinguished
process.

Throughout this section, we �x a WS1S system S = (V ; �; T ;J ; C) and an
abstraction relation � constructed as explained in Section 5. Then, let SA =
(VA; �A; TA) be the �nite abstract system (without fairness) obtained by the
method introduced in Section 5. We show how to add fairness conditions to SA
leading to a fair abstract system SFA = (VA; �A; TA;JA; CA) such that S vF

� S
F
A .

6.1 Marking algorithm

We use WS1S formulae to express ranking functions. Let �(i;X1; � � � ; Xk) be
a predicate with i as free 1st-order variable and X1; � � � ; Xk 2 V as free 2nd-
order variables. Given a state s of S, i.e., a valuation of the variables in V ,
the ranking value �(s) associated to s by � is the cardinality of fi 2 ! j
�(i; s(X1); : : : ; s(Xk))g.

The marking algorithm we present labels each abstract transition of the ab-
stract system with one of the symbols f+�;��;=�g. Intuitively, an abstract
transition �A is labeled by ��, if it is guaranteed that the concrete transi-
tion � associated with �A decreases the ranking value, i.e., (s; s0) 2 � implies
�(s) > �(s0). If that cannot be shown one checks whether at least the ranking
value is never increased. Then, �A is labeled by =�. Otherwise, the abstract
transition is labeled by +�. Since these properties of the concrete transitions
can be formulated in WS1S, they are decidable.

Input: WS1S system S = (V ; �; T ), abstraction SA = (VA; �A; TA), set of
predicates �(i;X1; � � � ; Xk)

Output: Labeling of TA

Description: For each �(i;X1; � � � ; Xk), for each edge �A 2 TA, let � be the
concrete transition in T corresponding to �A. Moreover, let �(�; �;�), with
� 2 f�;�g, denote the WS1S formula:

b�(V ;VA) ^ b�(V 0;V 0A) ^ �� (V ;V 0)) fi j �0(i)g � fi j �(i)g :

Then, mark �A with ��, if �(�; �;�) is valid. If not, check validity of
�(�; �;�) and mark �A with =� if it is valid; otherwise mark �A with +�.

Now, for a ranking function � we denote with T +
� the set of edges labeled with

+�. Then, we add for each such � and each transition �A labeled with �� the
fairness condition (�A; T

+
� ) which states that �A can only be taken in�nitely

often when one of the transitions in T +
� are taken in�nitely often.

Obviously, these generated fairness conditions are strong fairness require-
ments. However, for the abstract systems we have not de�ned formally how to
express weak and strong fairness. Since we want to prove properties of the ab-
stract system with model checking techniques we express the fairness conditions
generated with the algorithm and those mentioned in the next section as LTL
formulae. Then, we are able to ask the model checker if a desired property holds
under the assumption that all traces are fair.
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6.2 Lifting fairness

Recall that by de�nition of � (see Section 5), we introduce the abstract variables
e� � 9P i : i 2 E� and t� � 9P i : i 2 T� . We now argue that it is safe to augment
SA with the strong fairness CA = f(e� ; t� ) j (E� ; T� ) 2 Cg, i.e., if e� is in�nitely
often true, then also t� is in�nitely often true. Consider a computation where
e� is in�nitely often true, that is, 9P i : i 2 E� is in�nitely often true. Now,
each instance of the parameterized system only contains a bounded number of
processes, hence, by K�onig's lemma, there must exists some i such that i 2 E�

in�nitely often in this computation. Therefore, by the strong fairness condition
of the concrete system, we must have i 2 T� in�nitely often, and hence, the
computation satis�es 23(9P i : i 2 T� ). Consequently:

Lemma3. Under the assumptions above we have S vF
� SA. 2

The reasoning above does not hold for weak fairness. Indeed, 32e� may hold
for a computation without the existence of an i with 32(i 2 E� ).

Recall also that as explained in Section 5, we introduce for each transition
of the distinguished process p abstract variables bE�

and bT� expressing whether
the transition is enabled, respectively, taken. We can show that it is safe to
augment the abstract system with strong and weak fairness conditions on the
transitions of p.

Lemma4. For the concrete WS1S system S and the abstract system SA we
have:

S vF
� S

F
A ;

with abstraction relation � =
S
i2! �i for a generic abstraction function �i

and fair abstract system SFA = (VA; �A; TA;JA; CA) with strong fairness re-
quirements CA = f(bE�

; bT� ) j (E� ; T� ) 2 Cg and weak fairness requirements
JA = f(bE�

; bT� ) j (E� ; T� ) 2 J g. 2

Example 3. Recall that we want to verify that our algorithm of Example 1 sat-
is�es the mutual exclusion property as well as the universal property that each
process p reaches its critical section in�nitely often, i.e., 8n p : 23at `2[p].

According to the method presented in Section 5 we construct the abstract
system SA from the WS1S system. For the mutual exclusion property we take as
abstract variable inv � At `2 � Turn^8P i; j : (i 2 Turn^j 2 Turn)) i = j.
Our tool pax constructs the abstract system and provides translations to several
input languages for model-checkers, e.g., Spin and SMV. Also, the abstract state
space can be explored to prove that inv is indeed an invariant of the abstract
system and, hence, mutual exclusion holds for the original system.

Next, using the marking algorithm, we augment SA with the strong fairness
requirements f(t01; t20); (t12; t01); (t20; t12)g to obtain a fair abstract system SFA .
Moreover, with Lemma 3 we can lift the strong fairness (e11; t11). Lemma 4 al-
lows us to augment SFA with another strong fairness condition (bE11

; bT11) for the
distinguished process as well as with the weak fairness (bE01

; bT01).
All the fairness conditions can be expressed as LTL formulae. We used Spin

to prove that 23bAt `2 holds in SFA which means that, in the original system,
each process reaches its critical section in�nitely often. 2
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Example 4. In Example 2 we want to prove the universal property

8P p : 2(p =2 Ack) 3Ack = ;):

Hence, we choose as abstract variables errp � p =2 Ack; detected � Ack =
;; turnp � p = turn. Since our second example is based on synchronous se-
mantics we have no fairness conditions at the concrete level. But, to prove the
property on the abstract level we need to know that eventually it is the turn of
process p to send. Of course, at the concrete level this is guaranteed since turn
is increased by 1 modulo n in each step. For the abstract system the needed fair-
ness condition 23turnp can be generated with the marking algorithm choosing
�(i) � (turn < i < p) _ (p < turn < i) _ (i < p < turn) which characterizes
all processes i which will get turn before p. Using this fairness condition the
property can be proven for the abstract system and hence holds also for the
concrete one. 2

7 Examples

In this section we present some more complicated examples to prove applica-
bility of our approach to a broader class of algorithms. First we prove some
properties for a version of Szymanski's mutual exclusion algorithm proposed by
Amir Pnueli. To our knowledge this is the �rst time that also individual live-
ness is automatically proven for this algorithm. The second example, a mutual
exclusion algorithm inspired by Dijkstra's algorithm, strongly relies on a lot of
fairness conditions that have to be added to the abstract system to be able to
prove individual accessibility there. Whereas the mutual exclusion algorithms
are naturally assumed to run in an asynchronous manner, the third example is
a time-triggered group membership algorithm.

7.1 Szymanski's Mutual Exclusion Algorithm

We �rst give a pseudo code characterization of the algorithm. The translation
to a WS1S system is straightforward and can be seen in detail in [BBLS00].

The code for one process of Szymanski's mutual exclusion algorithm is given
as:

`0: h noncritical section i
`1: await 8n j : at `1[j] _ at `2[j] _ at `4[j]
`2: h entry i
`3: if 9n j : at `1[j] _ at `2[j]

then goto `4
else goto `5

`4: await 9n j : at `5[j] _ at `6[j] _ at `7[j]
`5: await 8n j : :(at `3[j] _ at `4[j])
`6: await 8n j : j < i : at `0[j] _ at `1[j] _ at `2[j]
`7: h critical section i; goto `0

The control 
ow is modeled by a boolean variable at `k[p] for each location
`k and each process p. The initial condition states that each process starts in `0.

We would like to prove that for each process p, 2(at `7[p]) 3at `7[p]) holds,
i.e., each process that wants to enter the critical section eventually does so.
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The skip transition from `1 to `2 results from the translation of the algorithm
into our formalism. The transition should not be omitted, since otherwise the
mutual exclusion is trivially ful�lled. It represents the entry to the waiting room
where all processes gather to enter their critical section.

The abstraction focuses on two arbitrary processes a < b with abstract vari-
ables `a1 ; `

b
1; `

a
2 ; `

b
2; : : : expressing the actual location of the processes. This kind of

abstraction allows to analyze individual properties for these arbitrary processes.
The translation of the algorithm to a WS1S system introduces a set variable

At `k for each location `k. Using those sets as ranking functions �(i;At `k) �
i 2 At `k we can use the marking algorithm to generate fairness conditions for
the abstract system. With all the taken variables tkll0 the fairness due to the
marking algorithm can be expressed as an LTL formula fair :

(23tk01 ) 23tk70) ^ (23tk12 ) 23tk01) ^

(23tk23 ) 23tk12) ^ (23tk34 ) 23tk23) ^

(23tk35 ) 23tk23) ^ (23tk45 ) 23tk34) ^

(23tk56 ) 23(tk45 _ tk35)) ^

(23tk67 ) 23tk56) ^ (23tk70 ) 23tk67)

With this fairness condition some nice properties can be proven to hold for
the abstract system:

Safety: 2(:(`a7 ^ `
b
7))

Individual accessibility: fair ) 2(`b1 ) 3`b7)

Competition: If 2 processes compete the one with the smaller ID wins:

fair ) 2(`b1 ^ `
a
1 ) ((:`b7) U `

a
7))

holds, but
fair ) 2(`b1 ^ (`a0 _ `

a
1)) ((:`a7) U `

b
7))

does not hold for the abstract system.

In general, we have bounded overtaking:

fair ) 2(`b1 ^ (`a0 _ `
a
1)) ((((:`a7) U `

a
7) U (:`a7)) U `

b
7))

Therefore, as shown in Sections 5 and 6, the corresponding properties hold
in the original protocol.

7.2 Dijkstra's Mutual Exclusion Algorithm

Consider the following version of a mutual exclusion algorithm inspired by Dijk-
stra's algorithm, where each process S(i; n) is given in Figure 1. In this descrip-
tion, we have one single global variable turn that ranges over natural numbers.
When the algorithm is translated into WS1S this variable is translated identi-
cally.

Note that the control 
ow is again modeled with boolean variables at `i.
In the translation to WS1S systems this introduces �ve set variables At `0; : : : ;
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n`0
?
8n j : at `0[j] _ at `1[j]n`1
?n`2 -turn 6= i ^ at `0[turn]

?turn = i

n`3�
turn := in`4

?
:9n j 6= i : at `4[j] _ at `5[j]

69n j 6= i : at `4[j] _
at `5[j]

n`5

'

&

-

Figure 1: Dijkstra's mutual exclusion algorithm

At `5. As one and only non-boolean variable the turn variable ranging over the
domain of involved process indices may be read and written by all processes.

Initially, all processes start at `0, and the turn variable has an arbitrary
value.

In fact, the algorithm is not the original algorithm from Dijkstra since Di-
jkstra's algorithm does not satisfy the individual accessibility property, which
we like to prove on our algorithm. To achieve individual accessibility we block
processes in `0 if the `waiting room' `2; `3; `4 is non-empty. This causes an inter-
esting behavior in the waiting room. And this is what we are aiming for in this
example; to show how to deal with di�erent kinds of fairness requirements.

For the generic abstraction �p we also monitor the behavior of the current
turn process, i.e., the process having the turn:

�i � turn 2 At `i for 0 � i � 5 �2 � 9P k : At `5 � fkg

 i � p 2 At `i for 0 � i � 5 
 � p = turn

�1 � At `5 6= ; Æ � At `4 n fturng 6= ;

We leave out here the abstract variables monitoring whether p or turn takes
a transition, but they are added to the variables given.

Using NuSMV we can prove the following LTL formula to be correct:

(32�1 ) 23tk50) ^ (4)

(32Æ ) 23(tko42 _ tk
o
45)) ^ (5)

(32 1 ) 23 2) ^ (6)

(23tk12 ) 23tk50) ^ (23tk45 ) 23tk12) ^ (7)

(23tk01 ) 23tk50) ^ (23tk32 ) 23tk23) ^ (8)

(23tk42 ) 23tk24) ^ (23tko42 ) 23tk32) ^ (9)

(23tko23 ) 23(tk32 _ tk42 _ tk12)) (10)

) 2( 1 ) 3 5) (11)
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Fairness condition (4) is due to the requirement that the critical section has to
be left eventually. The weak fairness condition on the concrete level is equivalent
to a strong fairness condition, since the transition can only be disabled by taking
it.

Condition (5) expresses the strong fairness for processes unequal turn for tak-
ing a transition leaving `4. It is the combination of two strong fairness conditions
(for transition `4 to `2 resp. `5).

(6) is a weak fairness condition for process p lifted from the concrete level.
Conditions (7) to (10) are generated by the marking algorithm. For example,
(7) is the result of the algorithm for the set At `2 [At `3 [At `4, and (9) is the
result for the set (At `4 n fturng) [ (At `2 \ fturng).

Checking the mutual exclusion property, i.e., the formula 2�2, takes 3.6 sec,
while checking the liveness property takes 1100 sec on a Sun Ultra 5/10 UPA/PCI
(UltraSPARC-IIi 440MHz) with 1GB of memory.

7.3 A Time-Triggered Group Membership Protocol

The protocol was presented by S. Katz, P. Lincoln, and J. Rushby in [KLR97].
The protocol requires one bit of membership information piggybacked on regular
broadcasts. With assumptions on the fault model, the protocol guarantees that
a faulty processor will be diagnosed and removed from the agreed group of
non-faulty processors. Therefore, each processor p keeps a set of processor IDs
mem(p) that he believes to be non-faulty.

If p 2 mem(p), then process p takes one of the following transitions syn-
chronously with the other processes.

:arrived(p) ^ :ack(p)! mem0(p) := mem(p) n fturn; pg;

ack0(p) := �

:arrived(p) ^ ack(p)! mem0(p) := mem(p) n fturng;

ack0(p) := �

arrived(p) ^ ack(turn) ^ :ack(p)! mem0(p) := mem(p) n fpg;

ack0(p) := tt

arrived(p) ^ :ack(turn) ^ ack(p)! mem0(p) := mem(p) n fturng;

ack0(p) := �

arrived(p) ^ ack(turn) ^ ack(p)! mem0(p) := mem(p); ack0(p) := tt

arrived(p) ^ :ack(turn) ^ :ack(p)! mem0(p) := mem(p); ack0(p) := tt

p = turn! mem0(p) := mem(p); ack0(p) := tt

It is process turn which has to send at the moment. arrived(p) stands for: turn 6=
p, p is not receive-faulty, and process turn is not send-faulty at this step. The
turn variable is increased by 1 modulo n in each step.

If p =2 mem(p), process p does not send. The fault assumption is that new
faults arrive at least n+1 time units apart, when there are n processes. A fault
may be that a processor is unable to send or to receive. Let us denote with OK
the set of non-faulty processors. Then, we like to prove the following properties:

Agreement: p 2 OK ^ q 2 OK ) mem(p) = mem(q)
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Validity: p 2 OK ) 9q : mem(p) [ fqg = OK

Since p and q are arbitrary processes both properties are universal as de�ned in
Section 5.

7.3.1 Generic Abstractions of Time-Triggered Systems

Our goal is to characterize such time-triggered systems as WS1S systems. Then,
we can apply the presented automatic abstraction and model-checking tech-
niques to analyze the system. To be able to do so each process of the system
has to be �nite state. This is not the case here, since each process stores the set
mem(p). But, the properties only talk about the memory of one or two processes.
Hence, the idea is to make an abstraction concentrating on these processes and
give a �nite-state abstraction for the others.

For the �rst property we keep two original processes p; q and leave the others
as chaotic processes. Nevertheless, we prove that p; q agree on the set of non-
faulty processes in every synchronous step. The de�nition of the abstract system
is straightforward and not presented here.

For the property of validity we concentrate on one process p. Since, we already
have proven agreement the others may use p's memory Memp as their own.

Our generic abstraction gives us an parameterized number of �nite-state
processes and a �nite number of processes with unbounded state space. Since all
�nite-state processes are similar we introduce for each of the possible states a
set variable holding those process IDs which are in the corresponding state. The
remaining ones are modeled as they are.

In each computation step of the abstract time-triggered systems one process is
broadcasting and all others are receiving this message. The broadcasting process
is denoted by the special variable turn which is increased by 1 modulo n in each
step.

The fault model can be encoded in these WS1S transitions using the variables
s fault ; r fault ; err prop which characterize whether a send or receive error has
occurred and whether a new error is allowed yet or not. The variable malfunc
holds the ID of the faulty processor.

For the abstract system and the property of validity we de�ne our abstract
system as shown in Table 1.

Using this abstraction we can automatically construct the abstract system
with our tool pax. Translating the abstract system to the SMV input language,
we can use NuSMV to prove the following properties:

2(p ok ^ :r fault))

2(s fault ^
((:s fault ^ :
 s fault) U t mem)

) 3(equal ^ stable))

and

2(p ok ^ :s fault ^ (r fault )
2(:r fault))))

2(r fault ^3(t mal ^3
 t mem))

3(equal ^ stable))
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Table 1: De�nition of the abstract system

abstract variable description

p ok � p 2 OK process we focus on is non-faulty

t ack � turn 2 Ack turn process believes everything is ok

t mal � turn = malfunc turn process is faulty

t mem � turn 2 Memp p believes the turn process to be ok

conf � Ack \Memp = ; non-faulty procs agree there is something wrong

equal �Memp = OK non-faulty procs have correct membership set

stable �Memp � Ack everything is �ne

super � (9q : Memp = OK [ fqg ^Memp � Ack [ fqg ^ q = malfunc)

one faulty process not registered by the non-faulty ones

s fault send error occurred

r fault receive error occurred

err prop fault model allows no new error yet

The �rst one states under the assumption that the process we focus on is ok and
in absence of receive errors; whenever a send error occurs all non-faulty processes
eventually notice that and remove the faulty process from their membership set,
provided that no new errors occur. The second one expresses a corresponding
behavior for receive errors.

8 Conclusion

We presented a method for the veri�cation of universal properties of parameter-
ized networks. Our method is based on the transformation of an in�nite family
of systems into a single WS1S transition system and applying abstraction tech-
niques on this system. To be able to prove liveness properties we presented a
method to add fairness requirements to the abstract system. We have success-
fully applied this method, which has been implemented in our tool pax, to a
number of parameterized protocols.
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