
Modeling Sequences within the RelView System

Rudolf Berghammer

(Christian-Albrechts-Universit�at Kiel, Germany

rub@informatik.uni-kiel.de)

Thorsten Ho�mann

(Christian-Albrechts-Universit�at Kiel, Germany

tho@informatik.uni-kiel.de)

Abstract: We use a relational characterization of binary direct sums to model se-
quences within the relation-algebraic manipulation and prototyping system RelView

in a simple way. As an application we formally derive a RelView program for comput-
ing equivalence classes of an equivalence relation, where we combine relation-algebraic
calculations with the so-called Dijkstra-Gries program development method. Also a
re�nement of the simple modeling is presented, which leads to the classical datatype
of stacks, and a further application is sketched.

Key Words: Relational algebra, relational modelling and programming, formal pro-
gram derivation, equivalence classes, RelView system

Category: D.1.4 | Sequential Programming, D.2.4 | Program Veri�cation, D.2.2
| Tools and Techniques, G.2.2 | Graph Theory

1 Introduction

For many years, Tarski's axiomatic relational algebra (cf. [Tar41, ChT51]) has
been used very successfully for formal problem speci�cations and program deriva-
tions. Relations are well suited for modeling and reasoning about many discrete
structures and computations on them. This holds in particular for those graph
algorithms which manipulate sets of arcs or vertices since sets of arcs and rela-
tions are essentially the same and there are many simple and elegant ways to
model sets of vertices by speci�c relations like vectors, partial identities, and
injective embedding mappings. For details see [ScS93].

Sets are not the only datatype used by graph algorithms. Sequences are also
very important since many speci�cations and algorithmic solutions of funda-
mental graph-theoretic problems require di�erent types of them. For instance,
to calculate a path { a task which is part of many graph algorithms { means to
compute a sequence of vertices and to enumerate the strongly connected com-
ponents means to compute a sequence of sets of vertices. We claim that in many
cases relations can also be used for modeling (�nite) sequences in a way which is
well suited for calculations and formal program derivations. To prove our point
we present in this paper a simple relation-algebraic model for sequences via bi-
nary direct sums which especially works for the relation-algebraic manipulation
and prototyping system RelView and show some typical applications.

The paper is organized as follows: To make it self-contained, in Section 2 we
introduce the relation-algebraic preliminaries which will be used in its remainder

Journal of Universal Computer Science, vol. 7, no. 2 (2001), 107-123
submitted: 1/9/00, accepted: 13/10/00, appeared: 28/2/01 Springer Pub. Co.

and in Section 3 we give a short overview of RelView. Then, in Section 4 we
present a relation-algebraic characterization of binary direct sums and use it to
model non-empty sequences of sets or elements with a concatenation operation
within RelView in a very simple way. This section also contains some algebraic
laws of concatenation. They are used in Section 5, which contains an application
of our approach, viz. a formal derivation of a RelView program for computing
equivalence classes. A re�nement of the simple approach of Section 4 to obtain
the classical datatype of stacks is presented in Section 6 and in this section
also a further application is sketched. The last section contains some concluding
remarks.

2 Relation-algebraic Preliminaries

In this section we collect some basic concepts of relational algebra; for more
details see [ScS93, BKS97], for example. We denote the set (or type) of all
(binary) relations with domainX and range Y by [X $ Y] and write R : X $ Y
instead of R 2 [X $ Y]. If the carrier sets X and Y of a relation R : X $ Y
are �nite and of cardinality m resp. n, then we may consider R as a Boolean
matrix with m rows and n columns. Since this Boolean matrix interpretation
is well suited for many purposes and also used within the RelView system, in
the following we often use matrix terminology and matrix notation. The latter
means that we write Rxy instead of (x; y) 2 R.

We assume the reader to be familiar with the basic operations on relations,
viz. RT (transposition), R (negation, complement), R [S (join, union), R \ S
(meet, intersection),R �S (composition, multiplication; in this paper abbreviated
as RS), R � S (inclusion), and the special relations O (empty relation), L

(universal relation), and I (identity relation). The set-theoretic operations , [,
\, the ordering �, and the constants O and L form a complete Boolean lattice.
Some further well-known rules of relations are, for instance,

RT
T
= R R � S =) RT � ST

(RS)
T
= STRT RT = R

T

R � S =) QR � QS R � S =) RQ � SQ

Q(R \ S) � QR \QS Q(R [S) = QR [QS

(R \ S)T = RT \ ST (R [S)T = RT [ST :

(1)

The theoretical framework for all rules of (1) and many others to hold is that
of a relational algebra. As constants and operations of this abstract algebraic
structure we have those of the set-theoretic relations. The axioms of a relational
algebra are the axioms of a complete Boolean lattice for negation, join, meet,
ordering, empty and universal relation, the axioms of a monoid for composition
and identity relation, the so-called Schr�oder equivalences

QR � S () QT S � R () S RT � Q ; (2)

and the so-called Tarski rule

R 6= O () LRL = L : (3)

108 Berghammer R., Hoffmann T.: Modeling Sequences ...

An immediate consequence of (3) is O 6= L which in turn implies that domain
and range of each relation are non-empty. This agrees exactly with the use of
relations in practice.

The above basic operations and constants are very helpful for de�ning prop-
erties of relations in an algebraic way; see [ScS93] for example. In this paper we
are concerned with the following speci�c classes of relations.

A relation R is said to be reexive if I � R, transitive if RR � R, and sym-
metric if R � RT. By an equivalence relation we mean a reexive, transitive,
and symmetric relation. For all these types of relations, domain and range co-
incide, i.e., they are homogeneous . In the Boolean matrix model of relations a
homogeneous relation is quadratic.

An arbitrary (also called heterogeneous) relation R is said to be univalent
(or functional) if RTR � I and total if RL = L. As usual, an univalent and total
relation is said to be a (total) mapping . Relation R is called injective if RT is
univalent and surjective if RT is total. An injective and surjective relation is said
to be bijective.

Another important class of heterogeneous relations are (relational) vectors ,
which are de�ned by the equation v = vL and can be used to describe subsets
of a given set. If [X $ Y] is the type of v, then the vector condition v = vL
means that whatever set Z, universal relation L : Y $ Z, and element x from
X we choose either (vL)xz holds for all elements z of Z or for none element z of
Z. Consequently, for a vector the range is irrelevant. Therefore, in the following
we only consider vectors v : X $ 1 with a speci�c singleton set 1 = f?g as
range and omit the second subscript, i.e., write vx instead of vx?. Then v can
be considered as a Boolean column vector and describes the subset fx 2 X : vxg
of X . A vector is said to be a (relational) point if it is injective and surjective.
For v : X $ 1 these properties mean that it describes a singleton set, i.e., an
element of X if we identify a singleton set fxg with its only element x. In the
Boolean matrix model a point is a Boolean column vector in which exactly one
component is true.

Now we consider some special functions (in the everyday's sense) from rela-
tions to relations which are also called operators . The operators we will present
in the following are introduced in terms of the above basic operations and in
most cases they are only partially de�ned.

The least reexive and transitive relation containing R is called the reexive-
transitive closure of R and is denoted by R�.

Since we only deal with set-theoretic relations, the so-called point axiom of
[ScS93] holds. It says that for every R 6= O there exist points p and q such that
pqT � R. As a consequence, for each vector v 6= O there exists a point p ful�lling
p � v. The choice of such a point is fundamental for relational programming
since it corresponds to the choice of an element from a non-empty set. For a
non-empty vector v, a relation-algebraic axiomatization of the choice point(v) is

point(v) � v point(v) is a point : (4)

At this place it should be emphasized that point is a (deterministic, partial)
function in the usual mathematical sense. In particular, each call point(v) yields
the same point in v so that, for example, point(v) = point(v) holds. Of course,
the axioms (4) allow di�erent realizations. E.g., the speci�c implementation of
the operator point in RelView uses that the system deals only with �nite and

109Berghammer R., Hoffmann T.: Modeling Sequences ...

enumerated carrier sets. A call point(v) then chooses that point which describes
the �rst element of the set described by v.

The symmetric quotient syq(R;S) of relations R and S is de�ned as the
greatest relation X such that RX � S and XST � RT. From this we get

syq(R;S) = RT S \ R
T

S (5)

as explicit description. The right-hand side of (5) shows that syq(R;S) is only
de�ned if R and S have the same domain. Then the domain of syq(R;S) is the
range of R and the range of syq(R;S) is the range of S. Many properties of the
symmetric quotient can be found in [ScS93]. In the following lemma we collect
some further properties. Its proof can be found in the appendix.

Lemma 2.1 Let relations R;S; p, and v be given. Then we have:

(i) If p is a point and pTp = I; then syq(Rp;Rp) = I:

(ii) If p is a point; then syq(R;S)p = syq(R;Sp):

(iii) If v is a vector; then syq(R; v) is a vector:

(iv) If R is an equivalence relation; then syq(S;R)R = syq(S;R):

(v) If v is a non-empty vector and RL � v ; then syq(R; v) = O:

At the end of this section we show how symmetric quotients are related to
powersets. To this end we translate (5) into predicate logic notation using the
set-theoretic de�nitions of the basic operations. The result is

syq(R;S)xy () 8 z : Rzx $ Szy : (6)

Now we consider this equivalence for the special case of R being a membership
relation 2 : X $ 2X and S being a vector v : X $ 1. Then syq(2; v) is of
type [2X $ 1] and for each set Y from 2X we have syq(2; v)Y if and only if
8 z : z 2 Y $ vz holds. The latter shows that syq(2; v) describes exactly the
same set as the vector v but as an element of the powerset 2X instead of a subset
of the original set X as v does.

3 The RelView System

In the following we want to give an impression of the tool RelView for calcu-
lating with relations and relational programming. More details and applications
can e.g., be found in [BKU96, BBS97, BBM97, Beh98, BBH99, BHL99].

InRelView all data are represented as binary relations, which the system vi-
sualizes in di�erent ways. It o�ers several di�erent algorithms for pretty-printing
a homogeneous relation as a directed graph. Alternatively, a relation may be dis-
played as a Boolean matrix which is very useful for visual editing and also for
discovering various structural properties that are not evident from a graphical
presentation. Because RelView often is used on large input data, in the last
two years we have developed a very eÆcient implementation of relations using
binary decision diagrams.

110 Berghammer R., Hoffmann T.: Modeling Sequences ...

The RelView system can manage as many relations simultaneously as mem-
ory allows and the user may manipulate and analyse them by pre-de�ned oper-
ations and tests, relational functions, and relational programs. The pre-de�ned
operations include e.g., ^, -, |, &, and * for transposition, negation, join, meet,
and composition; the tests include e.g., incl and eq for testing inclusion resp.
equality of relations. All that can be accessed through simple mouse-clicks. A
declaration of a relational function is of the form F (X1; : : : ; Xn) = t, where F is
the function name, the Xi, 1 � i � n, are the formal parameters (standing for
relations), and t is a relational term over the relations of the system's workspace
that can additionally contain the formal parameters Xi. A relational program
in RelView essentially is a while-program based on the datatype of binary re-
lations. Such a program has many similarities with a function procedure in the
programming languages Pascal or Modula-2. It starts with a head line contain-
ing the program's name and a list of formal parameters. Then the declaration
part follows, which consists of the declarations of local relational domains, local
relational functions, and local variables. The third part of a relational program
is its body, a sequence of statements which are separated by semicolons and
terminated by the return-clause.

We renounce at this place examples for relational functions and programs
since many of them can be found in Sections 5 and 6.

As especially shown in [BBH99], the RelView system can be used to solve
many di�erent tasks while working with relations. But its main application do-
main is the formal development of relational programs for solving problems on
relation-based discrete structures like graphs, ordered sets, and Petri nets. Here
the system supports the main validation tasks within nearly all stages of a devel-
opment. For example, it can be applied to check the formal relational problem
speci�cation against the informal �xed requirements. Toying with relations and
relation-algebraic properties, the system can also help to �nd loop invariants
or other decisive properties necessary for a correctness proof of a program. As
a third application, the execution of a relational program or a piece of it via
RelView in the course of a derivation can reveal alternative development steps
and possibilities for optimizations.

4 A Simple Relation-algebraic Model for Sequences

Our modeling of sequences within RelView is based upon a relation-algebraic
characterization of binary direct sums. Within the relation-algebraic framework
it is natural to do the latter by means of the natural injective embedding
mappings. This leads to the following relation-algebraic speci�cation (see also
[Zie91]): A pair {1 and {2 of relations is called a binary direct sum if

{1{1
T = I {2{2

T = I {1
T{1 [{2

T{2 = I {1{2
T = O : (7)

Given two sets X1 and X2 it is easy to verify that the injective embedding
mappings from these sets to the set-theoretic direct sum X1+X2 are a model of
the formulae (7). Furthermore, by purely relation-algebraic reasoning it can be
shown that the binary direct sum is uniquely characterized up to isomorphism
by (7).

111Berghammer R., Hoffmann T.: Modeling Sequences ...

Based upon a binary direct sum X1+X2 with the two injective embedding
mappings {1 : X1 $ X1+X2 and {2 : X2 $ X1+X2, we now de�ne for relations
R : X1 $ Y and S : X2 $ Y their relational sum R+ S : X1+X2 $ Y by

R+ S = {1
TR [{2

TS : (8)

This construction behaves like the relationR for all elements from the setX1+X2

which come from its �rst part X1 and like the relation S for all elements from
X1+X2 which come from its second part X2. The following three Boolean ma-
trices { produced by the RelView system in which the relational sum operator
is pre-de�ned { show a small example; for a better understanding of the con-
struction of (8) we have instructed the RelView system to label the rows and
columns of each Boolean matrix with the elements of the domain and range of
the relation it depicts.

x1
x2
x3

z1 z2 z3 z4 z5 y1
y2
y3
y4

z1 z2 z3 z4 z5

x1
x2
x3
y1
y2
y3
y4

z1 z2 z3 z4 z5

R S R+ S

Having de�ned the relational sum, now we are in a position to model non-
empty (and �nite) sequences of sets and elements in a very simple way. In Sec-
tion 2 we have already shown how a subset (resp. an element) of a set X can be
modeled by a vector (resp. a point) v : X $ 1. Therefore, it suÆces to model se-
quences v = (vi)1�i�n of vectors of type [X $ 1] with relation-algebraic means.
As we are interested in algorithms, especially executable through the RelView
system, in the following we restrict ourselves to relations R : X $ Y with �nite
and enumerated carrier sets X and Y . Hence, we are allowed to consider R as a
Boolean m�n matrix with m being the cardinality of X and n that of Y . In this
Boolean matrix interpretation, which is also the standard way of RelView to
depict a relation on its screen, R models the sequence v = (vi)1�i�n of vectors,
where vi : X $ 1 corresponds to its ith column (1 � i � n). Considering the
transpositions of the above three pictures, now it becomes obvious how to de�ne
in general the concatenation R@S : X $ Y1+Y2 of relations R : X $ Y1 and
S : X $ Y2 such that it models the concatenation of sequences v = (vi)1�i�m
and w = (wi)1�i�n of vectors of type [X $ 1] if R models v and S models w:

R@S = (RT + ST)
T

: (9)

However, it must be pointed out that this concatenation of relations models the
usual concatenation of sequences only within RelView because of the speci�c
de�nition of the relational sum of the system which forms the Boolean matrix
of R + S by putting the Boolean matrices of R and S one upon another. Inde-
pendent of the system, for a correct modeling of sequences via relation-algebraic
binary direct sums and (9) we have to demand that the direct sum X+Y of
two disjoint and �nite sets X and Y , the elements of which are enumerated as
x1; : : : ; xm resp. y1; : : : ; yn, is enumerated as x1; : : : ; xm; y1; : : : ; yn. Without this
property only non-empty multisets and their unions are modeled.

112 Berghammer R., Hoffmann T.: Modeling Sequences ...

The following lemma states some facts of the concatenation operator of (9)
which are used in the program derivation of the next section. Its proof can again
be found in the appendix.

Lemma 4.1 Let relations R;S, and T be given. Then we have:

(i) syq(R;R) = I; syq(S; S) = I; syq(R;S) = O imply syq(R@S;R@S) = I:

(ii) syq(R;S@T) = syq(R;S) @ syq(R; T):

(iii) (R@S)L = RL [SL:

It should be pointed out that this lemma does not fall out of the blue but relation-
algebraically formalizes rather clear properties of sequences. We demonstrate this
by means of implication (i). Using matrix terminology, from the equivalence (6)
we obtain that syq(R;R) = I holds if and only if the columns of R are pair-
wise distinct and syq(R;S) = O holds if and only if R and S have no column
in common. Changing to sequence terminology, hence Lemma 4.1.i says: If the
elements of a sequence v as well as of a sequence w are pair-wise distinct and v
and w have no element in common, then also the elements of their concatenation
are pair-wise distinct.

5 An Application: Computing Equivalence Classes

Now we use the model of the last section to solve a concrete problem. We assume
R : X $ X to be an equivalence relation on a �nite setX . Our goal is to combine
relational algebra and the so-called Dijkstra-Gries program development method
(see [Dij76, Gri81]) to derive formally a RelView program which enumerates
the set C of all equivalence classes of R column-wise as a relation C : X $ C.

First we have to specify the problem by relation-algebraic pre- and postcon-
ditions. As we assume the relation R to be the input of the program we want to
derive, the precondition pre(R) is obvious. From Section 2 we get

pre(R)
^
= I � R ^ RR � R ^ R � RT :

The relation C is the output of the program. Using matrix terminology, there-
fore we have to specify that its columns are pair-wise distinct and describe all
equivalence classes of R. At the end of Section 4 we have already shown how to
formalize the �rst of these properties with relation-algebraic means. This leads
to syq(C;C) = I as �rst part of the postcondition post(R;C). To formalize also
the second of the above properties within relational algebra we calculate

c is equivalence class () 9x 8 y : y 2 c$ Ryx where 2 : X $ 2X

() 9x : syq(2; R)cx (6)

() (syq(2; R)L)c where L : X $ 1

and get syq(2; R)L : 2X $ 1 as vector for describing the equivalence classes of
R as elements of the powerset 2X . This leads to syq(2; R)L = syq(2; C)L as
second part of post(R;C). In words it says that each column of C describes an

113Berghammer R., Hoffmann T.: Modeling Sequences ...

equivalence class of R and, conversely, each equivalence class of R is described
by a column of C. Altogether, we have

post(R;C)
^
= syq(C;C) = I ^ syq(2; R)L = syq(2; C)L :

Having completed the problem speci�cation, now our goal is to calculate a
loop invariant and a guard from post(R;C). Here we follow the most common
approach of generalizing a postcondition by introducing new variables. In the
present case it seems to be a good idea to compute the equivalence classes of
R, i.e., the sequence of vectors modeled by C, one after the other and to use a
vector for describing the elements yet to be checked. If we use v : X $ 1 for the
latter purpose, then we arrive at

inv(R;C; v)
^
= syq(C;C) = I ^ syq(2; R) v = syq(2; C)L ^ Rv \ CL = O

as loop invariant inv(R;C; v). In words its second equation says that the columns
of C describe the equivalence classes of the already checked elements (which
again are described by v) and its third equation says that no element of an
equivalence class still to be computed occurs in an equivalence class which has
already been computed. It is obvious that inv(R;C; v) implies post(R;C) when
v is empty. This leads to v 6= O as the guard of the loop. Hence, it remains to
develop an initialization of C and v which establishes inv (R;C; v) and a body
of the loop which maintains inv (R;C; v) and ensures termination.

Let's start with the initialization. Here it seems to be a good idea to choose
arbitrarily an equivalence class, i.e., to initialize C with the vector R point(L),
where L : X $ 1. Consequently, we have to initialize v with C . This initial-
ization establishes the loop invariant. In the subsequent proof of this fact we
abbreviate the choice point(L) as p.

The �rst equation syq(Rp;Rp) = I of inv (R;Rp; Rp) is an immediate conse-
quence of Lemma 2.1.i since p is a point due to (4) and from its type [X $ 1]

we get pTp = I. A proof of the second equation syq(2; R) Rp = syq(2; Rp)L of
inv(R;Rp; Rp) is given by

syq(2; R) Rp = syq(2; R)Rp = syq(2; R)p = syq(2; Rp) = syq(2; Rp)L ;

where we successively have applied lattice theory, Lemma 2.1.iv in combination
with the precondition, Lemma 2.1.ii, and Lemma 2.1.iii. For a proof of the third
equation RRp \ RpL = O of inv(R;Rp; Rp) we use that it is equivalent to
RRp � Rp and prove this inclusion. Symmetry and transitivity of R show
RTR � R which in turn implies RTRp � Rp. Now we apply the Schr�oder
equivalences (2) and are done.

To complete the derivation, we have to work out a loop body and to verify
that it maintains inv(R;C; v) and ensures termination. Since C �nally shall
enumerate the equivalence classes of R and v describes those elements of X
whose classes still have to be added to C, it seems to be promising to explore
the e�ect of the assignments C := C @Rp and v := v \ Rp with p being a point
contained in v. By that a new class is added to C and v is changed accordingly.
In the syntax of RelView (the basic constants and operations as well as point

114 Berghammer R., Hoffmann T.: Modeling Sequences ...

and the emptiness test empty are pre-de�ned; see [BBS97]) we then get:

conc(A,B) = (A^ + B^)^.

classes(R)

DECL C, v

BEG C = R * point(Ln1(R));

v = -C;

WHILE -empty(v) DO

C = conc(C,R * point(v));

v = v & -(R* point(v)) OD

RETURN C

END.

For the proof that the loop body of classes maintains the loop invariant we
assume v 6= O and inv(R;C; v). Furthermore, we abbreviate point(v) as p.

We apply Lemma 4.1.i to prove the �rst equation syq(C @Rp;C@Rp) = I

of inv (R;C @Rp; v \ Rp) and only have to verify its three premises. Equa-
tion syq(C;C) = I is part of the supposed invariant inv (R;C; v). A proof of
syq(Rp;Rp) = I directly follows from Lemma 2.1.i since p is again a point with
pTp = I. Finally, to prove syq(C;Rp) = O we use Rv \ CL = O since this part
of inv(R;C; v) in combination with p � v shows CL � Rp which in turn im-
plies the desired result due to the vector property of Rp, the inequation O 6= Rp
(which follows from surjectivity of p and reexivity of R), and Lemma 2.1.v. Sub-

sequent is the proof of the second equation syq(2; R) v \ Rp = syq(2; C @Rp)L
of inv(R;C @Rp; v \ Rp):

syq(2; R) v \ Rp

= syq(2; R) v [syq(2; R)Rp

= syq(2; R) v [syq(2; R)pL pre(R); Lemma 2:1:iv; p = pL

= syq(2; R) v [syq(2; Rp)L p point, Lemma 2:1:ii

= syq(2; C)L [syq(2; Rp)L inv (R;C; v)

= (syq(2; C)@ syq(2; Rp))L Lemma 4:1:iii

= syq(2; C @Rp)L Lemma 4:1:ii :

For a proof of the third equation R(v \ Rp) \ (C @Rp)L = O of the property
inv(R;C @Rp; v \ Rp) we start with the calculation

R(v \ Rp) \ (C @Rp)L

= R(v \ Rp) \ (CL [RpL) Lemma 4:1:iii

� Rv \RRp \ (CL [Rp) p = pL

= RRp \ ((Rv \ CL) [(Rv \Rp))

= RRp \Rp inv (R;C; v); p � v :

Hence, it remains to show the equation RRv \Rp = O. But it follows, as in the

115Berghammer R., Hoffmann T.: Modeling Sequences ...

proof of inv(R;Rp; Rp), from the inclusion RTRp � Rp and an application of
the Schr�oder equivalences (2).

It remains to verify that the body of the loop ensures termination. Let p
again be given as p = point(v). Since X is a �nite set and Rp 6= O because p 6= O
and I � R, the above program obviously terminates if Rp \ v 6= O. We prove
this property by contradiction: Assume Rp � v . Then we get RTv � p due to
the Schr�oder equivalences. Now pre(R) implies v � Rv = RTv � p , i.e., p � v ,
and combining this latter inclusion with p � v yields the contradiction p = O.

6 A Re�nement of the Approach

Hitherto we can only model non-empty sequences and their concatenation within
RelView. Now we re�ne the simple relation-algebraic model of Section 4 to
obtain the classical datatype of stacks with the operations �rst and rest such
that, using matrix terminology, �rst(R) yields the �rst column of R and rest(R)
yields the remaining columns of R after removal of the �rst one. For this purpose,
�rst we introduce two new operators on relations.

We start with the representation of sets via embedding mappings which
already has been mentioned in the introduction. Given an injective mapping
{ : Y $ X we may regard Y as a subset of X . Then the vector {TL : X $ 1
describes Y in the sense introduced in Section 2. A transition in the other direc-
tion, i.e., the construction of an injective mapping inj(v) : Y $ X from a given
non-empty vector v : X $ 1 describing Y in such a way that inj(v)yx if and only
if y = x, is also possible. Using matrix terminology, one only has to remove from
the identity matrix those rows which don't correspond to an element of Y . We
call inj(v) the injective mapping generated by v. The following relation-algebraic
axiomatization of the construction originates from [BeH00]:

inj(v) is an injective mapping

v = inj(v)
T
L

inj(inj(v)
T
w) = inj(w)inj(v) for all non-empty vectors w:

(10)

Note that inj(v) is only de�ned if v 6= O as v = O would imply the domain of
inj(v) to be empty. At this place also a few words should be said about the third
axiom of (10). If the vectors v : X $ 1 and w : Z $ 1 describe the subset Z

of X and W of Z, then inj(v)
T
w : X $ 1 obviously describes W as a subset of

X . Hence, the axiom says that the embedding of W into X is obtained by �rst
embedding W into Y and then embedding Y into X .

As we have already mentioned in Section 4, we restrict ourselves to relations
on �nite and enumerated carrier sets. Such an enumeration x1; : : : ; xn of a set
X leads to the speci�c initial element x1 and a partial successor function which
maps xi to xi+1 for 1 � i � n� 1. In RelView, the point describing the initial
element x1 is computed by the call init(v), where the argument v of the operator
init may be any vector of type [X $ 1] and is used only for typing reasons. A
relation-algebraic axiomatization of init(v) : X $ 1 is possible using a further
relation succ(v) : X $ X for the above mentioned partial successor function.

116 Berghammer R., Hoffmann T.: Modeling Sequences ...

We demand the following properties:

succ(v) is univalent and injective

succ(v)
T
L � init(v)

(succ(v)
T
)�init(v) = L :

(11)

Here the second formula says that the point init(v) is not a successor and the
third axiom expresses the fact that every element can be obtained from the
initial one by �nitely many applications of the partial successor function. The
axiomatization (11) is a variant of the relation-algebraic version of the well-
known Peano axioms for natural numbers given in [BeZ86].

With the help of the two new operators inj and init on relations, now it is
rather trivial to model the two operations �rst and rest on sequences. Assume
a relation R : X $ Y and a vector v : Y $ 1 with the set Y enumerated
as y1; : : : ; yn. In matrix terminology then inj(init(v)) : fy1g $ Y is a Boolean
row vector in which exactly the �rst component is true and hence the vector

R inj(init(v))
T
: X $ fy1g is the �rst column of R. Choosing v for instance as

empty vector leads to the de�nition �rst(R) = R inj(init(O))
T
which simpli�es to

�rst(R) = R init(O) (12)

as inj(p) = pT for all points p : X $ 1. Applying the same ideas we obtain

rest(R) = R inj(init(O))
T

(13)

for rest since, using again matrix terminology, inj(init(v)) : fy2; : : : ; yng $ Y is
obtained from I : Y $ Y by removing the �rst row.

Having developed the operators �rst and rest, now we deal with a concrete
application. We assume a �nite directed graph g with vertex set X and arc
relationR : X $ X . Our goal is to develop aRelView programwhich computes
a vector b : X $ 1 describing a vertex basis of g, i.e., a �-minimal subset of X
such that every vertex can be reached from a vertex of this set.

It is easy to show that for cyclefree g its sources form the only vertex basis;
see [BHL99] for a relation-algebraic proof of this fact. In principle, with that the
problem of computing a vertex basis is also solved for the general case. Let C be
the set of strongly connected components of g and g# the (cyclefree) reduced
graph. I.e., g# has C as vertex set and its arc relation R# : C $ C given by

R
#

cd () c 6= d ^ 9 x; y : x 2 c ^ y 2 d ^ Rxy : (14)

The sources of g# are exactly the predecessor-closed strongly connected compo-
nents of g. Let S denote the set of these speci�c components. From the above
we know that S is a vertex basis of g#. Taking from each set of S exactly one
vertex, now obviously leads to a vertex basis of g.

It is rather trivial to realize the procedure just described as a RelView

program. The classes of the equivalence relation R� \ (RT)� coincide with the
strongly connected components of g and hence are computed by the following
function (with a pre-de�ned operation rtc for reexive-transitive closure):

sccs(R) = classes(rtc(R) & rtc(R^)).

117Berghammer R., Hoffmann T.: Modeling Sequences ...

Assume C : X $ C to be the result when applying the relational program sccs
to R. Then the relation C is the canonical epimorphism from X to C wrt. the
equivalence relation R� \ (RT)�, i.e., we have Cxc if and only if x is an element
of c. Combining this with (14) leads to R# = I \ CTRC as relation-algebraic
description of R# and as a consequence we get the following vector v : C $ 1
for the description of the sources of g#, i.e., the subset S of C:

v = (I \ CTRTC)L :

Now we are almost done. We consider the injective mapping inj(v) : S $ C

generated by v and get a column-wise modeling of S by C inj(v)
T
: X $ S. As a

RelView program the computation of this relation looks as follows, where the
pre-de�ned operation dom yields for a relation A the vector AL and the function
strict(A) = -I(A) & A is part of the system's start-up �le and automatically
loaded at startup time:

initsccs(R)

DECL C, v

BEG C = sccs(R);

v = -dom(strict(C^* R^ * C))

RETURN C * inj(v)^

END.

Using matrix terminology, it remains as a last step to take from each column
of the result of this program a point and to join all these points to a vector
describing a vertex basis. If we suppose that also the de�nitions (12) and (13)
are part of the start-up �le, then we obtain the following obvious solution:

basis(R)

DECL b, S

BEG b = On1(R);

S = initsccs(R);

WHILE -eq(S,S* L(S^* S)) DO

b = b | point(first(S));

S = rest(S) OD;

b = b | point(S)

RETURN b

END :

In this program the vertical bar | is the RelView operation for union and the
guard tests S to be not a vector, i.e., to contain as a matrix at least two columns.

Having sketched an application, let us return to the original task of this
section. Until now we have presented only a model for non-empty stacks with
operations @, �rst, and rest. However, it is an easy exercise to modify it in such
a way that arbitrary stacks are modeled. The technique we usually apply within
RelView is to add to each Boolean matrix which column-wise represents a
sequence of vectors an additional speci�c column from the left or the right, which

118 Berghammer R., Hoffmann T.: Modeling Sequences ...

then stands for the empty stack, and to modify the de�nitions (9), (12), and (13)
of @, �rst, and rest accordingly. At this place it should also be mentioned that our
approach works for all objects which can be represented by vectors. Especially
we can deal with sequences of relations (which e.g., occur when computing all
fundamental cycles if these are regarded as sets of arcs) using the correspondence
between the types [X $ Y] and [X�Y $ 1] given in [ScS93].

7 Conclusion

In this paper we have presented a relation-algebraic model of sequences within
the RelView system. We have then combined relation-algebraic calculations
with the Dijkstra-Gries program development method and formally derived a
RelView program for the column-wise enumeration of equivalence classes. Fi-
nally we have presented a re�nement of the simple model to obtain the classical
datatype of stacks and have sketched the computation of a vertex basis of a
graph as a further application.

Besides the programs presented in this paper we have applied our relation-
algebraic approach to sequences to solve many other problems with RelView.
Here are some examples. We have used sequences within RelView for proto-
typing relational speci�cations which are constructed following the approach of
[BGS94, BKU96]. This allows, e.g., to compute the cut completion of an ordered
set or to enumerate column-wise all kernels of a graph resp. all deadlocks of a
Petri net with the help of the system. We have also used RelView for imple-
menting Fleury's algorithm. The resulting program computes for the relation
of an undirected, loop-free, and connected graph, in which every vertex degree
is even, a so-called Eulerian cycle as the sequence of columns of the resulting
matrix. As a �nal example, we have transformed Behnke's RelView program of
[Beh98] for solving the reachability problem of condition-event Petri nets into a
version which uses sequences of vectors of type [C $ 1] instead of only vectors
of type [2C $ 1], where C is the set of conditions. To give an impression for the
speed-up obtained by this, in the case of the well-known �ve dining philosophers
net (15 conditions, 10 events) executing Behnke's program with RelView on a
Sun Ultra I workstation takes 7 seconds but the version with sequences needs
only 1 second. For the seven philosophers net (21 conditions, 14 events) we even
obtained a speed-up from 3034 to 11 seconds.

Of course, the idea of a relational approach to datatypes is rather old and
has been studied by many researchers. See [DGB97, BiM97, Moe91] just to cite
some important contributions of three di�erent groups working in this domain.
Our approach contrasts with all of this work since it is speci�cally tailored to
RelView without touching the system's present state. Therefore, it is legiti-
mate to question its adequacy. Why not simple extend the programming lan-
guage of RelView by �nite sequences and use, besides relational algebra, their
well-known axiomatization as second algebraic framework for formal program
derivation?

It is certainly fair to say that in some points an approach with sequences
as pre-de�ned datatype is superior. Especially, it is more general and also more
easily accessible for an \average" user of relation-algebraic methods than ours.
Therefore, we plan to extend the programming language of RelView by �nite
sequences and some other standard datatypes in the near future.

119Berghammer R., Hoffmann T.: Modeling Sequences ...

But also our approach has some advantages. First, using higher-order con-
structs it allows often to specify a problem involving sequences not only very
precise and concise but also executable with RelView. Such a speci�cation
then additionally may be used for prototyping purposes as already mentioned
above. At Kiel University we have found it also very attractive to use executable
speci�cations for producing good examples in teaching.

Second, if a sequence immediately induces a relation, then our approach of
identifying both allows to exploit this for further relational computations. We
have applied this technique already in Section 6 and used C : X $ C (the se-
quence of strongly connected components / the canonical epimorphism) for com-
puting the relation of the reduced graph. Another example for this is the compu-
tation of the so-called block-articulation graph with the sketch of which we will
conclude. Given an undirected graph g = (X;R), it is very easy to formulate the
well-known depth-�rst search algorithm as a RelView-program and, based on
it, a program which computes the well-known lowpoint-function as a mapping
lowpoint : X $ X in the relational sense; see [BHL99]. This immediately leads
to relational programs for the vector v : X $ 1 describing the set A of articula-
tions (or: cut vertices) and the relation B : X $ B columnwise enumerating the
blocks (or: biconnected components) of g1. Hence, inj(v)B : A $ B associates an
articulation a to a block b if and only if a 2 b. The (undirected) block-articulation
graph has the binary direct sum A + B as vertex set and connects two vertices
a and b if and only if a is an articulation, b is a block, and a 2 b. Using the
injective embedding mappings {1 : A $ A+B and {2 : B $ A+B, it is obvious

that its relation can be computed by {1
Tinj(v)B{2 [{2

TBTinj(v)
T
{2.

References

[Beh98] Behnke R.: Prototyping relational speci�cations and programs with
RelView. In: Buth B., Berghammer R., Peleska J. (eds.): Tools for sys-
tem development and veri�cation. BISS Monographs 1, Shaker Verlag, 22-42
(1998)

[BBS97] Behnke R., Berghammer R., Schneider P.: Machine support of relational
computations. The Kiel RelView system. Bericht 9711, Institut f�ur Infor-
matik und Praktische Mathematik, Univ. Kiel (1997)

[BBM97] Behnke R., Berghammer R., Meyer E., Schneider P.: RelView { A system
for calculating with relations and relational programming. In: Astesiano E.
(ed.): Proc. Conference on Fundamental Approaches to Software Engineering
(FASE '98), LNCS 1382, Springer Verlag, 318-321 (1998)

[BBH99] Behnke R., Berghammer R., Ho�mann T., Leoniuk B., Schneider P.: Appli-
cations of the RelView system. In: Berghammer R., Lakhnech Y. (eds.):
Tool support for system speci�cation, development and veri�cation. Ad-
vances in Computing, 33-47 (1999)

[BeZ86] Berghammer R., Zierer H.: Relational algebraic semantics of deterministic
and nondeterministic programs. Theoretical Computer Science 43, 123-147
(1986)

[BGS94] Berghammer R., Gritzner T., Schmidt G.: Prototyping relational speci�ca-
tions using higher-order objects. In: Heering, J. et al. (eds.): Proc. Workshop

1 An articulation is a vertex whose removal strictly increases the number of components
of a graph and a block is a maximal subset of pair-wise reachable vertices without
an articulation.

120 Berghammer R., Hoffmann T.: Modeling Sequences ...

on Higher Order Algebra, Logic and Term Rewriting (HOA '93), LNCS 816,
Springer Verlag, 56-75 (1994)

[BKU96] Berghammer R., Karger B. von, Ulke C.: Relation-algebraic analysis of Petri
nets with RelView. In: Margaria T., Ste�en B. (eds.): Proc. Workshop
on Tools and Applications for the Construction and Analysis of Systems
(TACAS '96), LNCS 1055, Springer Verlag, 49-69 (1996)

[BHL99] Berghammer R., Ho�mann T., Leoniuk B.: Rechnergest�utzte Erstellung von
Prototypen f�ur Programme auf relationalen Strukturen. Bericht Nr. 9905,
Institut f�ur Informatik und Praktische Mathematik, Univ. Kiel (1999)

[BeH00] Berghammer R., Ho�mann T.: Deriving relational programs for computing
kernels by reconstructing a proof of Richardson's theorem. Science of Com-
puter Programming 38, 1-25 (2000)

[BiM97] Bird R., de Moor O.: Algebra of programming. Int. Series in Computer
Science, Prentice Hall (1997)

[BKS97] Brink C., Kahl W., Schmidt G. (eds.): Relational methods in Computer
Science. Advances in Computing Science, Springer Verlag (1997)

[ChT51] Chin L.H., Tarski A.: Distributive and modular laws in the arithmetic of
relation algebras. Univ. of California Publ. in Math. (new series) 1, 341-384
(1951)

[Dij76] Dijkstra E.W.: A discipline of programming. Prentice-Hall (1976)
[DGB97] Doornbos H., van Gasteren N., Backhouse R.: Programs and datatypes. In:

Brink C. et al. (eds.): Relational methods in Computer Science. Advances
in Computing Science, Springer Verlag, 150-165 (1997)

[Gri81] Gries D.: The science of computer programming. Springer Verlag (1981)
[Moe91] M�oller B.: Relations as a program development language. In: M�oller B. (ed.):

Constructing programs from speci�cations. North-Holland, 373-397 (1991)
[ScS93] Schmidt G., Str�ohlein T.: Relations and graphs. Discrete Mathematics for

Computer Scientists, EATCS Monographs on Theoretical Computer Science,
Springer Verlag (1993)

[Tar41] Tarski A.: On the calculus of relations. Journal of Symbolic Logic 6, 73-89
(1941).

[Zie91] Zierer H.: Relation algebraic domain constructions. Theoretical Computer
Science 87, 163-188 (1991)

Appendix

Proof of Lemma 2.1: (i) We use the two Theorems 4.4.7.iii (note that Rp is a
vector) and 2.4.5.ii of [ScS93] followed by the assumption pTp = I and get

syq(Rp;Rp) = L = pTp = I :

(ii) The following derivation uses in the �rst step Theorem 4.4.1.ii of [ScS93] and
in the last two steps Theorem 4.4.1.vi of [ScS93] (in combination with the fact
that pT is a mapping) and Theorem 4.4.1.ii of [ScS93]:

syq(R;S)p = syq(S;R)
T
p = (pTsyq(S;R))

T

= syq(Sp;R)
T
= syq(R;Sp) :

(iii) The inclusion syq(R; v) � syq(R; v)L is trivial; the remaining inclusion is
shown by the following calculation which essentially uses that the vector property
is maintained by multiplication from left and negation:

syq(R; v)L � RT v L \ R
T

v L = RT v \ R
T

v = syq(R; v) :

121Berghammer R., Hoffmann T.: Modeling Sequences ...

(iv) In the �rst two steps of the following calculation we use Theorem 4.4.5.i
of [ScS93] (in combination with the assumption on R) and Theorem 4.4.3.i of
[ScS93]; the last step is trivial:

syq(S;R)R = syq(S;R)syq(R;R) = syq(S;R) \ syq(S;R)L = syq(S;R) :

(v) The assumption RL � v is equivalent to vL � R due to the Schr�oder

equivalences (2) and transposition yields LvT � R
T

. Since v is non-empty, the
same holds for vTv. Hence, the vector property v = vL and the Tarski rule (3)
show vTv = L and we obtain the desired result by

syq(R; v) = RT v \ R
T

v � R
T

v � LvTv = L = O :

Proof of Lemma 4.1. Let {1 and {2 be the two injective embedding mappings
used in the de�nition of R+ S. First we show the auxiliary equation

R@S = R @ S ; (15)

i.e., R{1 [S{2 = R {1[S {2: The axioms (7) imply that {1 and {2 are surjective.
Therefore, we get

L = L{1 [L{2 = (R [R){1 [(S [S){2 = R {1 [S {2 [R{1 [S{2

which is equivalent to R{1 [S{2 � R {1[S {2. To prove the remaining inclusion
we start with the inclusions (R{1[S{2){1

T � R and (R{1[S{2){2
T � S which hold

due to the axioms (7). Now, the Schr�oder equivalences yield R {1 � R{1 [S{2
and S {2 � R{1 [S{2 and these inclusions yield R {1 [S {2 � R{1 [S{2 .

(i) First we use the de�nition of the symmetric quotient, the above auxiliary
equation (15), and a de Morgan law and obtain

syq(R@S;R@S) = (R@S)
T
(R @ S) \ (R @ S)

T

(R@S)

= (R@S)
T
(R @ S) [(R @ S)

T

(R@S) :

From this equation we get

syq(R@S;R@S)

= (R{1 [S{2)
T
(R {1 [S {2) [(R {1 [S {2)

T

(R{1 [S{2)

= {1T(RTR [R
T

R){1 [{2T(ST S [S
T

S){2 [{1T(: : :){2 [{2T(: : :){1

= {1T syq(R;R) {1 [{2T syq(S; S) {2 [{1T syq(R;S) {2 [{2T syq(S;R) {1

if we apply the de�nitions of the concatenation operation and of the symmetric
quotient, distributivity, and de Morgan's laws. Now, the desired result follows

122 Berghammer R., Hoffmann T.: Modeling Sequences ...

from the subsequent calculation:

syq(R@S;R@S) = {1T I {1 [{2T I {2 [{1TL{2 [{2TL{1 assumptions

= ({1T I [{2TL){1 [({2T I [{1TL){2

= ({1T I [{2TL)@ ({2T I [{1TL) de�nition @

= {1T I [{2TL @ {2T I [{1TL (15)

= I {1 [L{2
T

@ I {2 [L{1
T

= I @ L
T

@ L@ I
T

de�nition @

= (I@O)
T
@(O@ I)

T
(15)

= {1
T@ {2

T de�nition @

= {1
T{1 [{2

T{2 de�nition @

= I (7) :

(ii) This proof is very similar to the proof of (i), i.e., uses also only the de�nitions
of the operators syq and @, some elementary relation-algebraic transformations,
and the above auxiliary equation (15). It is left to the reader.

(iii) From the axioms (7) we immediately get that {1 and {2 are total relations.
Using this in the last step, the following calculation shows the desired equation:

(R@S)L = (R{1 [S{2)L = R{1L [S{2L = RL [SL :

123Berghammer R., Hoffmann T.: Modeling Sequences ...

