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Abstract: In this paper, we propose a generic mechanism for extending decision pro-
cedures by means of a lemma speculation mechanism. This problem is important in
order to widen the scope of decision procedures incorporated in state-of-the-art veri�-
cation systems. Soundness and termination of the extension schema are formally stated
and proved. As a case study, we consider extensions of a decision procedure for the
quanti�er-free fragment of Presburger Arithmetic to signi�cant fragments of non-linear
arithmetic.
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1 Introduction

The lack of automated support is probably the main obstacle to the applica-
tion of formal method techniques in the industrial setting. As witnessed by the
success of model checking techniques, formal methods are readily employed in
industry as soon as automated reasoning tools providing a suÆciently high de-
gree of automation are available. On the other hand, the only way to meet the
requirements posed by many industrial applications is to combine the expres-
siveness of general purpose provers with the eÆciency of specialized reasoners
(such as, e.g., decision procedures and uni�cation algorithms). Unfortunately
this turns out to be a surprisingly diÆcult task. The main problem is that only
a tiny portion of the proof obligations arising in many practical applications falls
exactly into the domain the specialized reasoners are designed to solve.

To illustrate, let us assume that a decision procedure for Presburger Arith-
metic over Integers is available and consider the problem of proving the formula:

(l � min(a) ^ 0 < k ^ a 6= [ ])) l < max(a) + k (1)

where l and k are constants denoting arbitrary integers, a is a constant denoting
an arbitrary list of integers, [ ] denotes the empty list of integers, max (min)
is a unary function symbol denoting a function which returns the maximum
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(minimum, resp.) element of the list of integers given as input, and the remaining
symbols (namely 0, +, and<) have their usual arithmetic interpretation. The key
point here is that the decision procedure for Presburger Arithmetic is only aware
of the interpretation of the arithmetics symbols (i.e. 0, +, and <) and treats all
the terms whose top-most function symbol is non-arithmetic as uninterpreted.
Under such assumptions, the decision procedure can not possibly establish the
validity of (1).

Boyer and Moore recognized this diÆculty when they incorporated a deci-
sion procedure for the quanti�er-free fragment of Presburger Arithmetic over
naturals into their prover [BM88]. To cope with the problem, they proposed an
elaborated incorporation schema between the rewriter and the decision proce-
dure. One of the key ingredient of the e�ectiveness of such incorporation schema
is augmentation. This mechanism aims at making the decision procedure aware
of properties of function symbols it is otherwise not aware of through the ap-
propriate use of available lemmas. Going back to our example, if the following
lemma is available

X 6= [ ]) min(X) � max(X) (2)

(where X is a variable ranging over lists of integers), then augmentation inspects
the internal state of the decision procedure (which stores the negation of (1),
namely l � min(a) ^ 0 < k ^ a 6= [ ] ^ l 6< max(a) + k), instantiates (2) with
the substitution fa=Xg, and �nally extends the internal state of the decision
procedure with the resulting instance. The new state is easily found unsatis�able
by the decision procedure (hence we conclude that (1) holds, by refutation).
Notice that conditional lemmas can be a source of problems: when trying to
establish the conditions of the lemmas the prover can be recursively invoked and
special devices must be put in place to ensure termination. In our example, the
(instantiated) hypothesis of the lemma, namely a 6= [ ], can be readily relieved
by inspecting the initial state of the decision procedure.

In this paper, we address the problem of lifting decision procedures
for a given theory T to proof procedures capable of proving formulae
belonging to non trivial extensions of T . In the example above, T is the
theory of Universal Presburger Arithmetic over integers and the extension of
T under consideration contains (2). For concreteness, we consider a simpli�ed
variant of the Fourier-Motzkin elimination method over rationals as a procedure
for the theory of Universal Presburger Arithmetic over integers.1 The method is
sound but incomplete (although it can be extended to a decision procedure over
integers, as shown in [KN94]). This situation reects the common practice in
state-of-art-veri�cation systems to adopt incomplete methods for decidable the-
ories on the basis of pragmatical considerations (see, e.g., [NO78] for a discussion
of this issue).

This paper makes two contributions.

{ First, a generic extension schema for decision procedures is presented. The
key ingredient of such a schema is a lemma speculation mechanism which `re-
duces' the validity problem of the extended theory to the validity problem of
the base theory T . The schema is generic both in the decision procedure and

1 However, most of the discussion in this paper carries over to other decision procedures
for the theory of Universal Presburger Arithmetic, such as the incremental version
of the Simplex method described in [Nel81].
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in the lemma speculation mechanism. It enjoys basic theoretical properties
such as soundness and termination.

{ Second, three instances of the extension schema lifting a decision proce-
dure for the theory of Universal Presburger Arithmetic based on (a variant
of) the Fourier-Motzkin elimination method are described: augmentation,
aÆnization, and their combination. Augmentation copes with user-de�ned
functions whose properties can be expressed by conditional lemmas. It is
seen in isolation and not in cooperation with other modules (e.g. a rewriter)
as in [BM88, AR98, AR00]. This, we hope, will clarify the idea underly-
ing it and foster the adoption of this powerful technique in other systems.
AÆnization is a mechanism for the `on-the-y' generation of lemmas. It is
a signi�cant improvement over augmentation, since it relieves the user from
the burden of supplying lemmas about multiplication. Finally, a combination
of augmentation and aÆnization puts together the exibility of the former
with the automation of the latter. Since the theory of Universal Arithmetic
is ubiquitous in mechanical veri�cation, the proposed extended procedures
aims at enhancing the power of existing veri�cation systems.

Plan of the paper. The paper begins with the abstract description of our
extension schema (Section 2). Then it presents three instances of the exten-
sion schema lifting the Fourier-Motzkin based decision procedure for Universal
Presburger Arithmetic over integers (Section 3). Some experimental results are
presented in Section 4. The related work is discussed in Section 5 and some �nal
remarks are drawn in Section 6.

2 Extending Decision Procedures

We assume the usual notion of quanti�er-free �rst-order language, term, formula,
logical consequence (in symbols, j=), validity, satis�ability, and theory (see, e.g.,
[End72]). Let T be a theory. We say that a syntactical object o is in L(T ) to
abbreviate that o is in the language of T . Let � and  be two formulae of L(T ).
� is T -valid if, and only if, T j= �. � is T -entailed by  (in symbols,  j=T �) if,
and only if,  ) � is T -valid, where ) is the logical connective for implication.
� is T -equivalent to  if, and only if, � is T -entailed by  and  is T -entailed
by �.

Let Tc and Tj be two �rst-order theories s.t. Tc � Tj and the predicate
symbols of L(Tj) are those of L(Tc). Following [NO78], we consider the problem
of proving the un-satis�ability of ground conjunctions of literals in L(Tj).

The objective of our extension schema is to build a proof procedure capable
of establishing the Tj-validity of a non trivial superset of Tc on top of a decision
procedure for Tc. By an `extensible' decision procedure, we mean a state-based,
incremental, and resettable procedure. Its state represents conjunctions of liter-
als stored in some internal form, e.g. a form in which the satis�ability of the
set of literals can be detected by a computationally inexpensive check. To be
resettable and incremental, the decision procedure must have the capability to
add and remove literals from its state without restarting from scratch. These
characteristics are of paramount importance to obtain decision procedures of
practical interest which are eventually integrated in larger veri�cation systems
(see, e.g. [NO78]).
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2.1 The Decision Procedure

We assume to work with the following sets of objects. lit is the set of ground
literals of L(Tj). state is the set of states of the decision procedure, representing
conjunctions of elements in lit; l1 ^ :::^ ln (also denoted with

Vn
i=1 li) is in state

if li (i = 1; :::; n) is in lit. bool is the set of boolean values.
Two interface functions model the (extensible) decision procedure.

{ simp : lit � state �! state. simp(l; S) computes and returns the new state
S0 resulting from the addition of a literal l to S in such a way that S0 is
Tc-entailed by l ^ S. For termination it is required that

simp(l; S0) � simp(l; S) (3)

holds, for all literals l and for all states S and S0 s.t. S0 � S, where � is an
ordering relation over states whose strict version, �, is well-founded.

{ unsat : state �! bool. unsat(S) characterizes a sub-set of the unsatis�able
states whose Tc-unsatis�ability can be checked by means of a computation-
ally inexpensive check. unsat(S) implies that S is Tc-unsatis�able.

Example 1. (A Decision Procedure for Universal Presburger Arithmetic.) Con-
sider the �rst-order language consisting of the numerals :::;�2; �1; 0; 1; 2; :::,
variables, the function symbol +, the (in�x) binary predicate symbols <, �,
=, �, and >, and the usual logical connectives. The intended structure of this
language interprets numerals as integers,2 variables range over integers, + is
interpreted as addition, <, �, �, and > are interpreted as the usual ordering
relations, and = is interpreted as the identity relation. We call the theory of this
structure, the theory of Universal Presburger Arithmetic over Integers (UPAI).
The theory of Universal Arithmetic over Integers (UAI) is an extension of UPAI
with multiplication �. Tc (Tj) is a �rst-order theory containing UPAI (UAI, resp.)
and n-ary function symbols other than + (other than + and �, resp.) interpreted
as functions from n-tuples of integers to integers. Notice that Tc � Tj .

The Fourier-Motzkin elimination method is based on the idea of eliminating
one variable at a time in the hope of obtaining a `trivially' unsatis�able inequal-
ity, e.g. 0 � �1. It can easily be lifted to a proof procedure for Tc.

3 We assume
that <, =, �, and > (in the language of UPAI) are preliminary eliminated in
favour of � (e.g. x < 0 can be rewritten to x � �1 by exploiting the integral
property of integers). The literals in lit are inequalities in the normal form

c1 �m1 + � � �+ cn �mn � c (4)
2 In rest of the paper, we will use the term `integer' in place of `numeral'. The context
will make it clear which one we are referring to.

3 It is well-known that the Fourier-Motzkin method has exponential space complexity
and it is incomplete over integers (although a proposal to make it complete is de-
scribed in [KN94]). Despite these bad theoretical properties, the method is usable in
practice as observed, e.g., in [BM88] and it is implemented in some state-of-the-art
veri�cation systems (such as Acl2 [KM97], STeP [M+94], and Tecton [KMN94]).
The variant of the Fourier-Motzkin method described here simplify the argument of
termination for the extended versions of the decision procedure since the ordering
over multiplicands is also used by the lemma speculation mechanism (see Examples
2 and 3). Finally, it is worth noticing that other decision procedures for UPAI (such
as the Simplex method) can be modelled in our framework.
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where n � 0 (if n = 0, then (4) stands for 0 � c), c; c1; :::; cn are relatively prime
integers (called coeÆcients), m1; :::;mn are terms in L(Tj) (called multiplicands)
whose top-most function symbols are di�erent from + s.t. mi+1 �m mi where
�m is a total ordering over multiplicands (i = 1; :::; n), and ci �mi (i = 1; :::; n)
abbreviates the termmi+� � �+mi in whichmi occurs ci times.m1 is the heaviest
multiplicand in (4) w.r.t. the total ordering �m. This is lifted to inequalities
lexicographically in the obvious way. An element in the set state is a pair hC;Mi
(denoted with CM ), where C is a conjunction of inequalities in lit and M is a
set of multiplicands.

Let � and �0 be two inequalities of the form (4) both havingm as their heaviest
multiplicand, k (k0) is the coeÆcient of m in � (�0, resp.), k and k0 are of opposite
sign, and elim(�; �0) is the normal form of the linear combination of � and �0

not containing m. The inequality elim(�; �0) is entailed by � and �0. Let CjM
denote the conjunction of inequalities in CM not containing any element of M
as heaviest multiplicand. If the heaviest multiplicand m of � is �m-smaller or
equal to any element in M , then simp(�; CM ) = C 0

M[fmg where C
0 is the closure

of elim on �^CjM in the sense that for any �0 in C
0 we have that elim(�; �0) 2 C 0

(if elim is de�ned). Otherwise, simp(�; CM ) = CM . (Therefore, M contains all
the multiplicands already eliminated by a Fourier-Motzkin elimination step.) It
is trivial to verify that C 0 is Tc-entailed by �^C, if C 0

M 0 = simp(�; CM ). Under the
assumption that the initial state is closed under elim, we obtain an incremental
version of the decision procedure by restricting the computation of the closure
to the input inequality and its consequences only. Given the states CM and C 0

M 0 ,
we de�ne CM � C 0

M 0 if, and only if, the heaviest multiplicand in CjM is �m-less
than the heaviest multiplicand in C 0jM 0 . It is easy to verify that the de�nitions
of simp and of � enjoy (3). unsat(CM ) holds if an inequality 0 � c is in C s.t. c
is a negative integer. This implies that C is Tc-unsatis�able. 4

2.2 The Extension Schema

Let lemma be the set whose elements represent (ground) formulae of the formVm
j=1 cj or of the form

Vn
i=1 qi )

Vm
j=1 cj (n � 1 and m � 1), where q1; :::; qn

and c1; :::; cm are in lit.
The lemma speculation mechanism is modelled by the following function.

{ genlemma : state �! state � lemma�.4 This function speculates lemmas Tj-
entailed by the state of the procedure. If genlemma(S) = hS0; [1; :::; s]i
then S0 is Tc-equivalent to S and k (k = 1; :::; s) is Tj-entailed by S. For
termination it is also required that

S0 � S (5)

and for each k (k = 1; :::; s) of the form
Vn
i=1 qi )

Vm
j=1 cj it is also required

that (for i = 1; :::; n)5

simp(:qi; S0) � S (6)

simp([c1; :::; cm]; S
0) � S: (7)

4 If A is a set, A
� denotes the set of (�nite) lists of elements in A. [o1; :::; on] denotes

an element of A
�, where o1; :::; on are in A.

5 If l is an atom in lit, then :l abbreviates the negation of l in lit. If l is the negation
of an atom a in lit, then :l stands for a in lit.

128 Armando A., Ranise S.: A Practical Extension Mechanism ...



where simp([c1; :::; cm]; S) abbreviates simp(cm; :::; simp(c1; S):::). For each k
(k = 1; :::; s) of the form

Vm
j=1 cj , only (7) is required to hold.6

We are now in the position to precisely de�ne our extension schema.

extend : lit� � state �! state

extend([l1; :::; lm]; S) =

let S1 = simp([l1; :::; ln]; S) in

if unsat(S1) then S1
else let hS2; [1; :::; s]i = genlemma(S1) in

extstate(s; :::; extstate(1; S2):::)

We add the literals l1; :::; ln to the state S (�rst let construct) and we check
whether the resulting state S1 is Tc-unsatis�able (test of the conditional). If
it is, we simply return S1 (then branch). Otherwise (else branch), by invoking
genlemma, we try to speculate Tj-entailed formulae (second let construct) which
will hopefully enable us to extend the state of the procedure. In the last line
of extend, we return the nested application of the function extstate over the
formulae of the list [1; :::; s]. (If genlemma returns the empty list of formulae,
extstate(s; :::; extstate(1; S2):::) simpli�es to S2.)

extstate(; S) attempts to extend S by using formula  (Tj-entailed by S).

extstate : lemma � state �! state

extstate(
Vn
i=1 qi )

Vm
j=1 cj ; S) =

if entailed(q1; S) and ::: and entailed(qn; S)

then simp([c1; :::; cm]; S) else S

extstate(
Vm
j=1 cj ; S) = simp([c1; :::; cm]; S)

The conclusions c1; :::; cm of the formula
Vn
i=1 qi )

Vm
j=1 cj are added to the state

S of the decision procedure and the resulting new state is returned (then branch),
provided that S entails all the conditions q1; :::; qn (test of the conditional). If this
is not the case, we simply return S (else branch). If the lemma is unconditional
(i.e. of the form

Vm
j=1 cj), we simply add c1; :::; cm. All the obvious improvements

(such as to stop adding c1; :::; cm as soon as an unsatis�able state is obtained)
are not considered here for simplicity.

entailed checks whether a literal l is Tj-entailed by the state of the procedure
S by adding the negation of l to S and checking whether the resulting state is
Tc-unsatis�able.

entailed : lit � state �! bool

entailed(l; S) = unsat(extend([:l]; S))
It is important to notice that if a formula � has been shown unsatis�able by

the decision procedure for Tc, there is no performance loss when invoking on �
the extended version of the decision procedure. This is so because we resort to
the lemma speculation mechanism only when the decision procedure for Tc fails
to prove the unsatis�ability of �.
6 The intuition underlying these requirements is discussed in Example 2, Section 3.1.
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2.3 Properties of the Extension Schema

Since entailed and extend are mutually recursive via extstate, checking for entail-
ment may involve relieving further conditions. This makes the termination of
the proposed extension schema not obvious.

Theorem1 (Termination). extend([l1; :::; ln]; S) terminates for all lists of lit-
erals [l1; :::; ln] and for all states S.

Proof. All the recursive calls to extend occur in extstate(s; :::; extstate(1; S2):::)
and are of the form extstate(k; S

k
2 ), where

S02 = S2
Sk2 = if unsat(extend([:qk1 ]; Sk�12 )) and ::: and unsat(extend([:qknk ]; Sk�12 ))

then simp([ck1 ; :::; c
k
mk

]; Sk�1
2

)

else Sk�12

(8)
where k is of the form

Vnk
i=1 q

k
i )

Vmk

j=1 c
k
j , nk � 1, mk � 1, and k = 1; :::; s.

(We do not consider lemmas of the form
Vmk

j=1 c
k
j , since it is trivial to conclude

in this case.) We must show that in each (possible) recursive call (see the test
of the conditional in (8)) a suitable measure function is decreased according to
a well-founded ordering. Let simp be such a measure function and � be the
associated well-founded ordering. We must prove that

simp(:qkj ; Sk�12 ) � simp([l1; :::; ln]; S) (9)

holds for j = 1; :::; nk and k = 1; :::; s.
From (5) and (3), it is easy to see that

simp([l1; :::; ln]; S2) � simp([l1; :::; ln]; S): (10)

If we can prove for j = 1; :::; nk and k = 1; :::; s that

simp(:qkj ; Sk�12 ) � simp([l1; :::; ln]; S
0
2); (11)

then (9) readily follows from (11), (10), and the fact S02 = S2 in (8).
We prove (11) by induction on s. The induction hypothesis is

simp(:qkj ; Sk�12 ) � simp([l1; :::; ln]; S
0
2) (12)

for j = 1; :::; nk. According to (8) and (7), there are two cases to consider.

{ Sk2 = Sk�12 . By (12), it is trivial to derive simp(:qkj ; Sk2 ) � simp([l1; :::; ln];

S02), for j = 1; :::; nk.

{ Sk2 � Sk�12 . From (3), we have simp(:qkj ; Sk2 ) � simp(:qkj ; Sk�12 ). Then, by

(12), we derive simp(:qkj ; Sk2 ) � simp([l1; :::; ln]; S
0
2), for j = 1; :::; nk. ut

Another fundamental property enjoyed by our extension schema is soundness.
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Theorem2 (Soundness). For all lists of literals [l1; :::; ln] and for all states
S, if S0 = extend([l1; :::; ln]; S), then S

0 is Tj-entailed by l1 ^ ::: ^ ln ^ S.
Proof. From the assumption Tc � Tj and the requirement that S0 is Tc-entailed
by l ^ S (where simp(l; S) = S0), for all literals l and for all states S, it is easy
to see that

S1 is Tj-entailed by l1 ^ ::: ^ ln ^ S: (13)

There are two cases to consider according to the test of the conditional in extend.
If unsat(S1), then S1 is returned and it is trivial to conclude from (13). Other-
wise, from (13), the assumption Tc � Tj , and the fact that genlemma(S1) =
hS2; [1; :::; s]i is s.t. S2 is Tc-equivalent to S1, we derive

S2 is Tj-entailed by l1 ^ ::: ^ ln ^ S: (14)

If we can prove that
Sk2 is Tj-entailed by S02 (15)

for all k = 1; :::; s, then we conclude from (15), (14), and the base case of (8).
We prove (15) by induction on s. The induction hypothesis is

Sk�12 is Tj-entailed by S02 : (16)

According to (8) and the fact that simp(l; S) = S0 is s.t. S0 is Tc-entailed by l^S
for all states S and for all literals l, two cases are to be considered.

{ Sk2 = Sk�12 . It is trivial to conclude by (16).

{ Sk2 is Tj-entailed by c
k
1 ^ :::^ckmk

^Sk�12 . From (16), the assumption Tc � Tj ,
and the facts that k is Tj-entailed by S1 (since genlemma(S1) = hS2; [1; :::;
s]i), that S2 is Tc-equivalent to S1, and that S02 = S2 in (8), we derive

k is Tj-entailed by Sk�12 : (17)

If k is of the form
Vmk

j=1 cj , then we conclude that Sk2 is Tj-entailed by S02
from (17) and (16). Otherwise, k has the form

Vnk
i=1 qi )

Vmk

j=1 cj . It is easy

to see (from the de�nition of entailed) that

qi is Tj-entailed by Sk�12 (18)

for all i = 1; :::; nk. From (17) and (18), we derive

mr̂

j=1

cj is Tj-entailed by Sk�12 : (19)

Then, by (16) and (19), we conclude Sk2 is Tj-entailed by S02 . ut
It would be interesting to precisely characterize classes of lemma specula-

tion mechanisms which guarantee the completeness of the extended procedures.
Unfortunately, there are three main problems in achieving completeness in the
typical veri�cation e�orts our extension schema has been designed for. Firstly, it
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is common practice to adopt an incomplete method to prove formulae in Tc for
eÆciency reasons (see Example 1). However, this problem is of little concern in
practice since experiments show that this kind of incompleteness rarely occurs in
real veri�cation e�orts (see, e.g., [BM88, NO78]). Secondly, our extension schema
does not handle disjunction of literals which are sometimes necessary to design
complete reduction mechanisms for the satis�ability problem of certain theories
(see Example 3). In practice, this is not a big problem since decision procedures
are usually incorporated in larger systems where other reasoning modules are
encharged to process the formulae (e.g. by case analysis). These modules put
formulae in a form in which they can be decided by the the decision procedures.
Finally, it is diÆcult to give a syntactic characterization of a decidable theory
which is also useful in practice (see, e.g. [SJ80], for a discussion of this problem).
Preliminary investigations about `completeness-preserving' lemma speculation
mechanisms to extend a decision procedure for ground equality are reported in
[ARR00].

3 Extensions of a Decision Procedure for Universal

Presburger Arithmetic over Integers

The extension schema is parametric both in the decision procedure (i.e. simp
and unsat) and in the lemma speculation mechanism (i.e. genlemma). Example 1
describes a proof procedure satisfying requirement (3). In what follows, we focus
on three instances of genlemma (satisfying requirements (5), (6), and (7)), which
allow to obtain three sound and terminating procedures capable of establishing
the validity of formulae belonging to non trivial extensions of Tc (where Tc is
UPAI extended with arbitrary function symbols, as in Example 1).

3.1 Augmentation

Augmentation [BM88, AR98, AR00] extends the information available to the
decision procedure with selected instances of lemmas encoding properties of
symbols the decision procedure does not know anything about. For example,
� is uninterpreted for Tc and interpreted for Tj (where Tj is UAI extended with
arbitrary function symbols). By devising a suitable set of lemmas about �, it is
possible to enable the decision procedure for Tc to decide formulae whose valid-
ity depends on properties of multiplication, e.g. multiplying two positive integers
we obtain a positive integer. However, augmentation can cope with user-de�ned
function whose relevant arithmetic properties are expressed by suitable lemmas
(e.g. formula (1) in Section 1). Let R be a set of Tj-valid formulae of the formVn
i qi ) c, where c; q1; :::; qn are (possibly) non-ground literals.7 We illustrate

how augmentation works (in the presence of conditional lemmas) by means of
an example.

We assume that R contains the Tj-valid formula encoding a simple property
about the signs of multiplicands:

(X � 0 ^ Y � 0)) X � Y � 0; (20)

7 Adapting what follows to unconditional lemmas is trivial and therefore it is not
discussed.
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where X and Y are implicit universally quanti�ed integer variables. We want to
prove that the following formula is L(Tj)-valid:

a � �1 ^ b � 0 ^ �c � 0) (a+ b) � c 6> 0 (21)

(where A 6> B denotes the negation of A > B).
By invoking simp on the negation of (21) and the empty initial state, we

obtain the state S0:8

a � �1 ^ b � 0 ^ �c � 0 ^ �(a+ b) � c � �1: (22)

It is easy to see (by reasoning about the sign of multiplicands) that S0 is
Tj-unsatis�able but the decision procedure for Tc is unable to decide the Tj-
unsatis�ability of S0 since it does not know anything about multiplication.

The idea underlying augmentation is to extend the state of the decision pro-
cedure with the conclusion of selected instances of lemmas in R, so to enable
the decision procedure to derive a Tc-unsatis�able state. To add the instanti-
ated conclusions of the formulae in R, we must �rst relieve their (instantiated)
conditions. Consider the instance of (20) obtained by applying the substitu-
tion f(a + b)=X; c=Y g, i.e. (a + b � 0 ^ c � 0) ) (a + b) � c � 0. Con-
ditions a + b � 0 and c � 0 are easily found to be Tj-entailed by S0. This
can be done by adding their negations to S0 with simp and check for the Tc-
unsatis�ability of the resulting states with unsat. Then, we are entitled to add
(a + b) � c � 0 to S0, obtaining (by invoking simp again) the new state S00, i.e.
a � �1^ b � 0 ^�c � 0^�(a+ b) � c � �1^ (a+ b) � c � 0^ 0 � �1, which is
readily found unsatis�able by unsat.

Example 2. (Extending the Decision Procedure of Example 1: Augmentation.)
The crucial step for the success of augmentation is the selection of suitable
instances of formulae in R. A sensible heuristics is to �nd instances of the con-
clusions of formulae in R promoting further Fourier-Motzkin elimination steps
when added to the current state of the decision procedure. We de�ne genlemma
as follows:

genlemma(CM ) = hCfmg[M ; [1; :::; s]i (23)

where k (k = 1; :::; s) is of the form
Vn
i=1 qi� ) c�, m is the heaviest multipli-

cand of CjM ,
Vn
i=1 qi ) c is in R, � is a substitution, and

1. m is also the heaviest multiplicand of c�, and its coeÆcients in CjM and in
c� are of opposite sign,

2. c� and qi� (i = 1; :::; n) are ground, and

3. qi� �m c� (i = 1; :::; n).

In order to ensure condition 2 above, we require that for any lemma
Vn
i=1 qi ) c

in R all the variables in
Vn
i=1 qi also occur in the heaviest multiplicand of c. For a

more general technique allowing extra variables in the conditions of the lemmas
in R see [BM88].

8 We have exploited the following transformation of formulae: for every integer ex-
pression A, replace A > 0 with �A � �1.
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The intuition underlying abstract requirement (5) is exempli�ed by the def-
inition above. In fact, genlemma adds the heaviest multiplicand m to the set
M of already eliminated multiplicands in order to allow the processing of the
conditions of the lemmas which would not be possible otherwise (recall the def-
inition of simp in Example 1 and consider requirement 3 above, which forces
each instantiated condition to be �m-smaller than c�). From (23) and the fact
that m is not in M , we have Cfmg[M � CM since m is the heaviest multipli-
cand in CjM and the heaviest multiplicand in Cjfmg[M is �m-smaller than m.
Hence, (5) is satis�ed. simp(c�; Cfmg[M ) � CM holds since the heaviest multi-
plicand in simp(c�; Cfmg[M ) is �m-smaller than m. Thus (7) is satis�ed. Fur-
thermore, we have simp(:qi�;Cfmg[M ) � CM (i = 1; :::; n). There are two cases
to be considered. First, the heaviest multiplicand of :qi� is m. Then the heav-
iest multiplicand of the state resulting from simp(:qi�;Cfmg[M ) is �m-smaller
than m. Second, the heaviest multiplicand of :qi� is �m-smaller than m. Then,
simp(:qi�;Cfmg[M ) = Cfmg[M (since no multiplicand can be eliminated) and
we conclude by (5). Thus (6) is also satis�ed. 4

3.2 AÆnization

If a suitable set R of lemmas is de�ned, augmentation increases dramatically
the e�ectiveness of the decision procedure. Unfortunately, devising a suitable R
(especially for multiplication) is a time consuming activity, which requires a good
understanding of the internal workings of augmentation. We now describe an
instance of genlemmawhich allows for the `on-the-y' generation of lemmas about
multiplication. We illustrate how aÆnization works by means of an example.

Consider again formula (21). By invoking simp on the negation of (21) and
the empty initial state, we obtain (22). The last literal in the conjunction, namely
(a+ b) � c � �1, is a hyperbolic inequality, i.e. an inequality of the form s � t �
k where s and t are terms in L(Tc) and k is an integer. By resorting to its
geometrical interpretation, it is easy to verify that s � t � �1 is Tj-equivalent
to (s � 1 ^ t � �1) _ (s � �1 ^ t � 1). Unfortunately, this formula is a
disjunction and the decision procedure for Tc can handle only conjunctions of
literals. However, since the semi-planes represented by s � 1 and s � �1 as those
represented by t � �1 and t � 1 are non-intersecting, we can derive the following
four Tj-entailed formulae: s � 1 ) t � �1, s � �1 ) t � 1, t � 1 ) s � �1,
and t � �1 ) s � 1. After instantiating s � �1) t � 1 with the substitution
f(a+ b)=s; c=tg, we are entitled to add its conclusion (namely c � 1) to S0, since
the instantiated condition (namely a+ b � �1) is found Tj-entailed by S0. Thus,
we obtain a new state S00:

a � �1 ^ b � 0 ^ �c � 0 ^ (a+ b) � c � �1 ^ c � �1 ^ 0 � �1
which is readily found Tc-unsatis�able by unsat.

In the general case, it turns out that any inequality of the form s�t � k (where
s and t are multiplicands and k is a strictly positive integer) is Tj-equivalent to
a formula of the form
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(s � 1 ^ t � 1 ^
m̂

i=1

�i) _ (s � �1 ^ t � �1 ^
n̂

j=1

�j) (24)

where �j (i = 1; :::;m) and �j (j = 1; :::; n) are inequalities which are linear in
s and t, m and n are natural numbers that depends on the value of k. More
precisely, the number of literals generated is O(k1=2). Fortunately, k is small
for inequalities found in practical veri�cation e�orts. To be useful, (24) must be
\compiled" into the following four lemmas:

s � 1) Vm
j=1 �j s � �1) Vn

j=1 �j
t � 1) Vm

j=1 �j t � �1) Vn
j=1 �j ;

(25)

by exploiting the disjointness of the semi-planes s � 1 and s � �1, as well
as t � 1 and t � �1. Similar reductions are possible for elliptical inequalities,
i.e. inequalities of the form a � s � s + b � t � t � k where s and t are integer
expressions, a, b, and k are integers. A general aÆnization theorem for convex
areas described by inequalities in two variables and its application to classes of
inequalities (among which hyperbolic ones) is described in [MP94].

Example 3. (Extending the Decision Procedure of Example 1: AÆnization.) Be-
low, we consider hyperbolic inequalities only. Extensions to other classes of in-
equalities are trivial. The implementation of genlemma is in three steps, i.e.

genlemma(CM ) = hCfmg[M ; compile(aÆnize(normalize(CjM )))i

where m is the heaviest multiplicand in CjM s.t. it is not in M and normalize se-
lects all inequalities with heaviest multiplicand m in CjM and transforms them
into hyperbolic inequalities if possible (for instance a � c + b � c 6> 0 is trans-
formed into (a + b) � c 6> 0); aÆnize takes a hyperbolic inequality and returns
the application of the aÆnization theorem to such an inequality, i.e. it returns
an instance of (24); compile transforms the aÆnized inequality into a list of Tj-
entailed formulae of the form s � 1 ) V

i �i or t � 1 ) V
j �j , where m is

s � t.
Let us assume that �m is s.t. s �m s + t, s �m s + t, s �m s � t, and

s �m s � t for any two terms s and t. Then, (5) holds for the same argument
given in Example 2. (6) and (7) hold because the heaviest multiplicand in �i
(i = 1; :::;m), �j (i = 1; :::; n), :(s � 1), and :(t � 1) is �m-smaller than
m (since s �m m and t �m m) and the heaviest multiplicand in Cjfmg[M is
�m-smaller than m.

The crucial step is normalize, i.e. the transformation of an inequality into a
hyperbolic inequality. This transformation can be seen as the problem of �nding
two (non-constant) multivariate polynomials s and t s.t. the polynomial obtained
by multiplying s and t is equal to the l.h.s. of �. Indeed, if we are able to factorize
multivariate polynomials, we can easily solve the problem of �nding s and t.
Unfortunately, no algorithm is known that runs in time polynomial in the length
of the adopted (sparse) representation (see [vzGG99] for a discussion). One way
to cope with this problem is to use some heuristic manipulations to transform
an inequality into the desired form (see [MP94] for more on this). 4
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3.3 Combining Augmentation and AÆnization

If on the one hand aÆnization can be seen as a signi�cant improvement over
augmentation since it does not require any user intervention, on the other hand
it fails to apply when inequalities cannot be transformed into a form suitable
for aÆnization. It turns out that augmentation and aÆnization can pro�tably
be combined to obtain the exibility of the former with the automation of the
latter. We illustrate the combination on a well-known example drawn from the
literature.

In [BM79], Boyer and Moore present the mechanical veri�cation of a propo-
sitional tautology checker for conditional expressions. A key ingredient in the
de�nition of such a checker is the recursive function norm, which puts condi-
tional expressions into normal form. Since Boyer and Moore's logic admits a
recursive function de�nition only if its termination is proved, we must verify
that norm terminates on all possible conditional expressions. A well-known ar-
gument for proving the termination of norm is based on exhibiting a measure
function that decreases (according to a given ordering) at each norm's recursive
call. One such a function, called ms, is reported in [Pau86]. Then, the task is
to check whether ms is decreasing (w.r.t. the < relation over integers) at each
norm's recursive call. 0 < ms(u) � ms(y) + ms(u) � ms(z) is one of the proof
obligations formalizing the fact that ms is decreasing.

We assume that R contains the formula 0 < ms(E), where E is a variables
ranging over conditional expression. At the beginning, the state of the decision
procedure is S, i.e. ms(u) �ms(y)+ms(u) �ms(z)� 0, which is Tj-unsatis�able
but unsat is unable to detect it. First, we resort to aÆnization. The factorization
of the literal in S is ms(u) � (ms(y) +ms(z)) � 0. Then, it is possible to gener-
ate a list of Tj-entailed formulae containing 0 � ms(u) ) ms(y) +ms(z) � 0.
To relieve the condition of the formula, namely 0 � ms(u), augmentation is
required. In fact, it is immediately relieved if we consider 0 < ms(u) as an in-
stance of the available lemma in R. Then, we are entitled to add the conclusion
of the speculated fact, namely ms(y) +ms(z) � 0, to S and we obtain the state
S0, i.e. ms(u) � ms(y) + ms(u) � ms(z) � 0 ^ ms(y) + ms(z) � 0. We resort
to augmentation by instantiating twice the available lemma with substitutions
fz=Eg and fy=Eg, obtaining the state S00, i.e. ms(u) �ms(y)+ms(u) �ms(z) �
0 ^ms(y) +ms(z) � 0 ^ �ms(z) � �1 ^ �ms(y) � �1 (notice that ms(y) > 0
and ms(z) > 0 have been transformed into �ms(y) � �1 and �ms(z) � �1,
respectively, as suggested in footnote 8). Finally, we eliminate the multiplicands
ms(y) and ms(z) in S00 obtaining the state ms(u) �ms(y) +ms(u) �ms(z) �
0^ms(y) +ms(z) � 0^�ms(z) � �1^�ms(y) � �1^ms(z) � �1^ 0 � �2,
which is readily found Tc-unsatis�able by unsat.9

The realization of this instance for genlemma can easily be gleaned from
Examples 2 and 3, and the observation that the top-most function symbol of the
heaviest multiplicand (in the state of the procedure) triggers the invocation of
either aÆnization or augmentation.

9 It is worth noticing that if the following lemma (X � 0 ^ Y � 0) ) X � Y � 0 is
also in R, then 0 < ms(u) �ms(y)+ms(u) �ms(z) can be decided by augmentation
alone.
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# S Problem Results

Au Af AA

1 [Pau86]
` ms(x) > 0 ^ms(y) > 0 ^ms(z) > 0)

ms(x) +ms(x) �ms(y) +m(x) �ms(z) > 0
{

p p

2 [Pau86] ms(E) > 0 ` 0 < 1 +m(z)
p

{
p

3 [Pau86] ms(E) > 0 ` ms(u) �ms(y) +ms(u) �ms(z) > 0 { {
p

4 [BM88]
0 < I ) J � I � J; ms(X) > 0 `
ms(a)2 < 2 �ms(a)2 �ms(b) +ms(a)4

p
{

p

5 [BM88] ms(X) > 0 ` ms(a)2 < 2 �ms(a)2 �ms(b) +ms(a)4 { {
p

6 [Bj�98]
` m � l + d � r ^ r < 0 ^ x+ t � d ^ t > 0)

m � l+ r � x+ r � t {
p p

7 [Har96] ` x � 0) x2 � x+ 1 6= 0 {
p p

8 [Har96] ` x � 0) x2 � x+ 1 6= 0 {
p p

9 [Har96] ` x > 4) x2 � 5 � x+ 6 � 0 {
p p

10 [BM88]
Æ1(PAT;LP;C) � LP ` lp+ lt � maxint ^ i � lt

) i+ Æ1(pat; lp; c) � maxint

p
{

p

Table 1: Experimental Results

4 Experimental Results

Our extension schema must be judged w.r.t. its e�ectiveness in enabling a deci-
sion procedure to decide proof obligations arising in practical veri�cation e�orts.
We discuss the instances described in Section 3 by running three prototype im-
plementations on a set of proof obligations extracted from the literature. The
prototypes are coded in RDL, a system for simplifying formulae in (extensions
of) quanti�er-free �rst-order logic with equality.10 The functionalities simp and
unsat implement a rational based version of the Fourier-Motzkin elimination
method (as described in Example 1).

Table 1 reports the results of our computer experiments. S refers to the
source of the problem. Results records the successful (

p
) or the unsuccessful

({) attempt to solve a problem. Au, Af, and AA refer to our implementation
of augmentation, aÆnization, and their combination (respectively). Problem
lists the available lemmas11 (if any) and the formula to be decided. ` is the
binary relation characterizing the deductive capability of the extended decision
procedure (we have that ` is contained in j=Tj ). The selected problems are dif-
�cult for decision procedures integrated in current state-of-the-art veri�cation
systems. As a matter of fact, the online version of STeP fails to solve all of
them. However, most of the problems are successfully solved by the improved
version of STeP described in [Bj�98]. Furthermore, the selected problems are
representative of various veri�cation scenarios. Problems 1, 2, 3, 4, and 5 are
proof obligations arising in establishing the termination of recursive functions

10
RDL distribution can be accessed via the Constraint Contextual Rewriting Home
Page, http://www.mrg.dist.unige.it/ccr.

11 Capitalized letters denote implicitly universally quanti�ed variables.
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and of term rewriting systems using the method of polynomial orderings (see,
e.g., [DJ90]). Problem 6 is the by-product of solving di�erential equations (this
relevant to the veri�cation of hybrid systems, see e.g. [Bj�98]). Problems 7, 8,
and 9 involve quadratic forms which can be found in routine algebraic manip-
ulations. Problem 10 is a proof obligation extracted from the veri�cation of a
string matching algorithm.

Our experiments show the exibility of augmentation (cf. problems 2, 4, and
10), the high degree of automation achieved by aÆnization (cf. problems 1, 6,
7, 8, and 9), and the power of their combination (cf. problems 3 and 5). Let us
compare problems 4 and 5. The lemma about multiplication (i.e. 0 < I ) J �
I � J) is supplied in problem 4 but it is not in problem 5. Augmentation solves
problem 4 thanks to the supplied lemmas, but aÆnization fails to do so since
it is not able to use the `positivity lemma' ms(X) > 0. Only the combination
of augmentation and aÆnization can solve problem 5. This suggests that Acl2
[KM97] and its predecessor nqthm featuring only augmentation can greatly be
enhanced by our aÆnization technique. Let us turn to problem 6. STeP [M+94]
solves it by resorting to a partial method for quanti�er elimination (see [Bj�98]
for details). Instead, our extension schema is able to prove the formula with
simpler mathematical techniques. The comparison is somewhat diÆcult since the
method used by STeP works over the rationals and our aÆnization technique
only work over integers. However, our aÆnization technique can be used also
over rationals to approximate classes of non-linear inequalities. Finally, without
x � 0 (x � 0) aÆnization would not be able to solve problem 7 (8, resp.). This
shows the importance of the context in which proof obligations are proved.

The timings are all within 1.7 sec and in most cases the order of magnitude
is 1=10 of a second.12 Problem 4 takes about 1.7 sec since augmentation is
repeatedly invoked. Problem 5 takes about 1 sec since aÆnization speculates
lemmas which are readily used by the decision procedure. In some situations, the
combination of augmentation and aÆnization may result in better performances
besides a higher degree of automation.

5 Related Work

In Acl2 (as in its predecessor, nqthm [BM79]) the augmentation mechanism
is tailored to a decision procedure for Presburger Arithmetic, which closely re-
sembles that described in Example 1. The termination of the resulting schema
is not discussed in [BM88]. In [AR98, AR00], the authors describe Constraint
Contextual Rewriting (CCR), a terminating schema for the incorporation of
rewriting with a decision procedure and augmentation. In CCR, augmentation
is not seen in isolation and it is the only possible form of lemma speculation.
Both in Acl2 and in CCR, it is possible to relieve hypotheses falling outside
the domain of the extended decision procedure since a full-edged rewriter is
invoked. Simplify [DNS96] features cooperating decision procedures (following
the paradigm proposed in [NO78]). It implements a form of augmentation based
on a heuristic matching algorithm which �nds suitable instances of universally
quanti�ed formulae but it is not guaranteed to terminate.

12 Benchmarks run on a 400 MHz Pentium II running Linux. RDL was compiled using
Sicstus Prolog, version 3.8.

138 Armando A., Ranise S.: A Practical Extension Mechanism ...



pvs features tightly coupled decision procedures (following the paradigm
proposed in [Sho84]). A mechanism to access a data base of lemmas containing a
large number of lemmas about multiplication is implemented. However, pvs|in
most situations|must be manually guided to �nd suitable instances of these
lemmas. This activity can be frustrating since the user is asked to scan through
quite a large number of available formulae. Our aÆnization technique provides
the desired degree of automation. The version of STeP described in [Bj�98]
implements a rational based version of the Fourier-Motzkin method, extended
to handle multiplication by (partial) quanti�er elimination and reasoning about
the sign of multiplicands. A similar procedure can be obtained as an instance of
our extension schema by using `compilation' techniques to eliminate disjunctions
(in the same spirit of compile in Section 3.2).

Theory reasoning (see [BFP92] for an overview) is an elegant deduction
paradigm which gives a uni�ed view of various logical calculi. Our extension
schema can be seen as an instance of incremental literal level theory reasoning
where the background reasoner plays the role of our extensible decision proce-
dure and the speculated lemmas are added to the formula to be proved. However,
the goal of our work is pragmatic in that the proposed extension schema aims
at lifting decision procedures currently available in state-of-the-art veri�cation
systems. In [Har96], Harrison describes the LCF implementation of a quanti�er
elimination procedure for the elementary theory of reals (including multiplica-
tion). Since the theoretical complexity of such a procedure greatly restricts its
usability, Harrison devises an optimized version for the fragment of Universal
Presburger Arithmetic. Our aÆnization technique (and more in general our ex-
tension schema) takes the opposite approach to lift a decision procedure for
Universal Presburger Arithmetic to a proof procedure for Universal Arithmetic.

SoleX [MR98] is a mechanism for the domain independent extension of con-
straint solvers so to deal with programmer-de�ned constraints. This work resem-
bles augmentation in allowing interpreted function symbols by means of guarded
rewrite rules and in being domain independent. More precisely, SoleX can be seen
as an instance of augmentation where no recursive invocation of the mechanism
is allowed to relieve conditions of lemmas.

6 Conclusions

We have presented an extension mechanism which enables decision procedures to
tackle problems falling outside the scope they have been originally designed for.
We have shown that the schema is both sound and terminating. We have pre-
sented three instances of the mechanism and shown that they enable a decision
procedure for the universal fragment of Presburger Arithmetic over integers to
tackle non-linear problems of signi�cant diÆculty. Computer experiments con-
�rm the validity of the proposed approach. We plan to incorporate the extension
mechanism in CCR so to enhance the deductive capabilities of the resulting sim-
pli�cation process.
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