
Partial Updates: Exploration

Yuri Gurevich
(Microsoft Research

One Microsoft Way, Redmond, WA 98052, USA
gurevich@microsoft.com)

Nikolai Tillmann
(Microsoft Research

One Microsoft Way, Redmond, WA 98052, USA
t-niktil@microsoft.com)

Abstract: The partial update problem for parallel abstract state machines has man-
ifested itself in the cases of counters, sets and maps. We propose a solution of the
problem that lends itself to an efficient implementation and covers the three cases
mentioned above. There are other cases of the problem that require a more general
framework.

Key Words: Abstract state machine, AsmL, ASM thesis, partial updates, subma-
chines, synchronous parallelism, updates

Categories: F.1.1, F.1.2, F.3.2, D.3.3

1 Introduction

The Abstract State Machine (ASM) thesis states that, for every computer sys-
tem A, there is an ASM B such that B is behaviorally equivalent to A and in
particular step-for-step simulates A [G93, G95]. The thesis inspired numerous
applications of ASMs [ASM, Br95, Br99, FSE].

In [G00], the thesis is proved for sequential computer systems. Sequential sys-
tems are sequential-time and bounded-parallelism. A system is sequential-time if
its runs are finite or infinite sequences of states. A system is bounded-parallelism
if there is a fixed bound on the degree of the parallelism of single steps in com-
putations of the system; see details in [G00]. In [BG*], the thesis is proved for
computer systems that are unbounded-parallelism but bounded-sequentiality. A
system is bounded-sequentiality if there is fixed bound on the lengths of se-
quences of events that must occur in a particular order during any single step.
The abstract state machines of [BG*] are essentially the parallel (but not dis-
tributed) ASMs of the Lipari guide [G95]; see details in [BG*].

The problem of partial updates, addressed in this paper, arises in the context of
sequential-time computer systems of unbounded parallelism, in other words, syn-
chronous parallel systems. The problem bothered the first author from the time

Journal of Universal Computer Science, vol. 7, no. 11 (2001), 917-951
submitted: 7/6/01, accepted: 1/10/01, appeared: 28/11/01  Springer Pub. Co.

of the Lipari guide [G95]. It manifested itself first in the form of the cumulative
updates of a counter. Imagine a synchronous parallel computer system A such
that A contains an integer counter c and such that different parts of A increment
c during the same step. The value of c at the end of a step of A is the value of c
at the beginning of the step plus the sum of all the increment parameters. If you
see the individual changes as usual assignments, the semantics is all screwed up:
the cumulative effect of increments by 2 and by 3 is a contradiction rather then
the expected increment by 5, and the cumulative effect of two increments by 2 is
an increment by 2 rather than the expected increment by 4. How should we deal
with counters in the ASM model of the computer system A? (One may wonder
if there is a real system A of that kind. We have some imperfect examples but
one does not need a perfect example to worry about such systems in the context
of the ASM thesis.)

The second manifestation of the partial-update problem was related to sets.
Imagine that one part of a synchronous parallel computer system treats a set
variable s as a unit, subject to usual assignments, while another part, during the
same step, treats that same set variable s as an aggregate, subject to insertions
and deletions of members. How do we reconcile the two points of view in the
ASM model of the computer system?

The third manifestation of the partial-update problem was related to the devel-
opment of AsmL, a powerful ASM-based specification language [FSE]. In AsmL
2, the current version of AsmL, map variables replace dynamic functions of pos-
itive arity. Often you need to change a map variable m only at some particular
argument, say at 1. How do you do that in the ASM paradigm, and how do you
combine such a partial update with usual updates? So far, the partial-update
problem for maps seems similar to that of sets, but it is more complicated. The
value m(1) of m at the argument 1 can be again a map. You may want to change
m(1) at the argument 2 leaving the rest of m unchanged. And m(1)(2) can be
again a map, and so on and so forth.

Partial updates can be eliminated in the traditional ASM setting; see [Section 4].
But the development of AsmL required more practical algorithms for the integra-
tion of partial updates. The problem was complicated by the use of submachines
in AsmL1. In violation of the bounded sequentiality assumption discussed above,
the number of the steps of a submachine B of a program A is not bounded a
priori. For example B may run to completion (that is until its state stabilizes),
whatever number of steps it takes, during one step of A. Furthermore, B may
have submachines of its own.

In this paper, we do not eliminate partial updates. We develop a systematic
1 AsmL is not the first ASM-based language to employ submachines; see [A00, S99].
A theoretical study of submachines was conducted in [BS00].

918 Gurevich Y., Tillmann N.: Partial Updates: Exploration

solution of the partial-update problem that allows the programmer to freely use
partial updates to modify counters, sets and maps in the main program and in
submachines and in submachines of submachines, and so on, without worrying
how submachines will report modifications and how to integrate modifications2.

The basis of our approach is illustrated best on the example of a counter. How
does a counter do in parallel all the increments? Typically it doesn’t. Instead,
it performs increments sequentially but the result does not depend on the order
in which the updates are executed. So the presumed parallel execution is an
abstraction.

At this point, we need a couple of mathematical definitions. Consider a collection
F of unary operations over a set S. Recall that two operations f and g commute
if f(g(x)) = g(f(x)) for all x in S. Say that f and g malcommute if f(g(x)) �=
g(f(x)) for all x in S. Say that F is apt if every two operations in F either
commute or malcommute.

We view modifications, like counter increments or map alterations, as unary
operations. It turns out that in each of the three cases mentioned above —
counters, sets and maps — the collection of modifications is apt. In this paper,
we restrict attention to apt cases where the collection of modifications is apt.
Notice that it is easily checkable in apt cases whether two modifications f, g

commute; just check g(f(x)) = f(g(x)) for any one x.

Now consider an apt case. Call a multiset M of modifications consistent if their
composition is order independent. It is easy to check that the composition of the
modifications in M is order independent if and only if every two modifications
commute. This gives us a simple generic algorithm for checking consistency in
apt cases. (In the cases of counters, sets and maps, more efficient algorithms for
checking consistency follow from our results in [Sections 10-13]).

Any location
 can be modified by the main program as well as by submachines of
all levels (submachines of the main program, their submachines, etc.). Consider
the computation of any submachineM during a single step of its parent machine.
SupposeM makes n steps. Let µi be the multiset of modifications of
 produced
by M or reported by its submachines during the ith step of M . At the end
of the ith step, M composes µi into one modification fi. If i < n, then M

applies fi to the content of its local version of
 to update the current state
of M . (Initially, when M is created by its parent, the content of M ’s version
of
 is the current content the parent’s version of
.) After the nth step, M
computes the composition fn ◦ · · · ◦ f1 and reports it to its parent machine.
(At this point, M dies, and its version of
 dies with it.) The main machine, at
every step, composes all modifications produced by it and reported to it into
2 Our treatment of maps extends that of an earlier version of [GSV01].

919Gurevich Y., Tillmann N.: Partial Updates: Exploration

one modification which it applies to
 to update its own state. If inconsistency is
detected in the process then the computation fails. The reporting and integration
procedures are described in [Sections 7 and 8].

A disgruntled ASMer may not like that we “pollute” the clean ASM paradigm
with partial updates. He/she may be comforted by the fact that partial up-
dates can be eliminated. Besides, the current framework of apt cases is rather
restricted. We intend to revisit the partial update problem.

In the rest of the paper, the traditional ASM setting means the setting without
partial updates. The setting with partial updates will be called new.

We presume that the reader has some familiarity with abstract state machines
(ASMs); the Lipari guide [G95] would do.

2 Preliminaries

2.1 Multisets

Intuitively, a multiset is a set with multiple occurrences of elements. For example,
a multiset �a, b, b, a, b� contains a with multiplicity 2 and b with multiplicity 3.
The underlying set of a multiset µ will be called the domain of µ and denoted
dom(µ). Thus dom(�a, b, b, a, b�) = {a, b}.
Every map m whose range consists of positive integers yields a multiset µ with
dom(µ) = dom(m) where the multiplicity of an element a is m(a). Every multiset
µ can be obtained this way; the generating map is the characteristic function χµ

of µ. The characteristic function of the empty multiset is the empty map.

Let µ1 and µ2 be multisets with domains d1 and d2 and characteristic functions
χ1, χ2 respectively, let d = d1∪d2, and for each i ∈ {1, 2}, let fi be the extension
of χi to d such that fi(a) = 0 for a ∈ d − di. The sum m1 +m2 is the multiset
with domain d and characteristic function f1(a) + f2(a).

We use ceiling brackets for multisets in the same way as braces are used for sets.
By analogy with set comprehension, we use multiset comprehension. Let s be a
set or multiset, let p be a unary relation over s, and let f be a function over s.
Then

�f(x) | x ∈ s where p(x)�
is a multiset µ with domain d � {f(x) | x ∈ s where p(x)}. What is the char-
acteristic function χµ of µ? If s is a set then χµ(y) is the cardinality of the set
{x | x ∈ s where p(x) ∧ f(x) = y}. Otherwise

χµ(y) =
∑
x∈sy

χs(x) where sy = {x | x ∈ dom(s) where p(x) ∧ f(x) = y}

920 Gurevich Y., Tillmann N.: Partial Updates: Exploration

Until now, we viewed multisets as generalizations of sets. There is another view of
the notion of multiset, as an abstraction of the notion of sequence. You abstract
from the order of the members of the sequence but not from the number of
the occurrences of a member in the sequence. The second view suggests the
implementation of multisets as sequences.

2.2 ASMs

As we said in the introduction, we assume that the reader is familiar with the
Lipari Guide [G95]. In particular we assume that the reader knows the notions
of vocabulary, state, location, update, update set, and rule. For brevity, elements
of an ASM may be called points.

The update set of a rule R at a state X will be denoted ∆XR, and the value
of a term (or expression) t at a state X will be denoted ∇Xt. (This notation is
borrowed from an earlier version of [GSV01].) The subscript may be omitted if
the state is clear from the context.

Recall that an update set ∆ of a state X is consistent if it contains at most one
update per location. If ∆ is consistent then X + ∆ is the state which results
from X by executing the updates in ∆.

2.3 The background of a state

In the ASM paradigm, a state is comprehensive. It is not reduced to indicating
the current values of the variables. For example, if you deal with sets at all, then
the state contains all sets that are or may become relevant later. The concept
of state background was introduced in [BG00]; see also [GSV01] and [BG*]. The
background of state does not change during state’s evolution. It contains true,
false, undef. Here we presume that the background includes integers and is
closed under finite sets, multisets, sequences and maps. In other words, if x is
a finite set of elements of a state X , or a finite multiset of elements of X , or a
finite sequence of elements of X , or a finite map from elements of X to elements
of X then x is an element of X . In principle, the background may contain some
infinite sets, multisets, sequences or maps, but here we are interested only in
finite ones. In the rest of the paper, by default, sets, multisets, sequences and
maps are finite. (We still speak about the base set of a state even though it may
be infinite, but in most cases of possibly infinite sets we try to use the term
collection.)

Our map notation follows that of [GSV01]. It is pretty much self-explanatory.
For example, the map {i1 �→ r1, i2 �→ r2} has domain {i1, i2} and maps i1 to r1,
and i2 to r2. The atomic maps {i1 �→ r1} and {i2 �→ r2} are called maplets. An

921Gurevich Y., Tillmann N.: Partial Updates: Exploration

arbitrary map can be thought of as a set of maplets. The empty map is denoted
{→}.
Formally, maps are elements of the state, and the mapping information is con-
tained in a static apply function: if m is a map and apply(m, i) = r �= undef

then m includes the maplet {i �→ r}. The domain of a map m is the set {i |
apply(m, i) �= undef} and the range is the set {apply(m, i) | i ∈ dom(m)}. (No-
tice that the range never contains undef.) We write x(i) instead of apply(x, i).

2.4 Sequential composition and submachines

In ASMs, the default composition of rules is the parallel composition. That is
why the rule

do in-parallel

P

Q

is usually abbreviated to
P

Q

But the sequential composition

do sequentially

P

Q

is used as well though its semantics is more complicated [G00]. It is executed in
two successive substeps. The second substep may overwrite some changes made
during the first substep. If a clash occurs at either substep, the whole step is
aborted.

Börger and Schmid use infix notation P seq Q [BS00] for sequential composi-
tion. AsmL uses notation

step

P

step

Q

so that the user pays a syntactic price for every substep. The hope is that the
user will not use sequential composition without a good reason.

In the rest of this subsection, we recall (though not literally) some definitions
from [BS00]. First we define the sequential composition of update sets ∆1 and
∆2. The intention is that ∆1 is executed first, and then ∆2 is executed in the
state resulting from the execution of ∆1. Recall that an update consists of a

922 Gurevich Y., Tillmann N.: Partial Updates: Exploration

location and the new value. If u is an update, let Loc(u) be the location of u.
If ∆ is an update set then Loc(∆) = {Loc(u) : u ∈ ∆}. We don’t distinguish
between inconsistent update sets.

Definition 2.1 If update sets ∆1 and ∆2 are consistent then

∆1 seq ∆2 � {u ∈ ∆1 : Loc(u) /∈ Loc(∆2)} ∪∆2

And if ∆1 or ∆2 is inconsistent then the composition is the inconsistent update
set. �
Now the semantics of the sequential composition of rules can be defined.

Definition 2.2
∆X(P seq Q)� ∆XP seq ∆Y Q

where Y = X +∆X(P). �

Even though∆Y Q is an update set over Y , it is also an update set overX because
X and Y have the same vocabulary and the same elements and therefore the
same locations and the same possible updates; see [G00]. Thus the sequential
composition of update sets makes sense.

Once the sequential composition is defined, its repeated application leads to the
iteration of a rule:

Rn �
{
skip n = 0

Rn−1 seq R n > 0

If some ∆XRn is equal to ∆XRn+1 then so is any ∆XRm with m > n. In
this case ∆XRn is denoted limk→∞ ∆XRk. If some ∆XRn is inconsistent then
limk→∞ ∆XRk is inconsistent. If no ∆XRn is equal to ∆XRn+1 or inconsistent
then limk→∞ ∆XRk is undefined. The iterate rule has the following semantics:

∆X(iterate R)� lim
k→∞

∆XRk

2.5 AsmL

AsmL (Abstract State Machine Language) is an advanced ASM-based specifi-
cation language developed at Microsoft Research [FSE]. It extends the language
of the parallel ASMs of the Lipari Guide [G95] in a number of directions. Some
extensions are briefly described in [GSV01]. For the present paper, the two most
relevant extensions are the use of submachines and partial updates. This pa-
per provides the theoretical foundation for the treatment of partial updates in
AsmL.

923Gurevich Y., Tillmann N.: Partial Updates: Exploration

3 Challenges

In the introduction, we mentioned three manifestations of the partial-update
problem. Here we expand on that theme.

3.1 Sets

One can think of a set in two different ways.

– A set is one entity. Accordingly it is natural to treat a set variable s as a
nullary function and assign new values to it, e.g. s := {1,2,3}.

– A set is a composite object. Accordingly it is natural to treat a set variable
s as a relation so that we can insert elements into and remove elements from
the set, e.g. s(1) := true, or s(2) := false.

It may be desirable to exploit both points of view in a program so that one can
overwrite a whole set as well as insert elements into it and remove elements from
it. Furthermore, we should be able to make in parallel consistent changes that
use both points of view, like this:

do in-parallel

s := {1, 2, 3}
s(1) := true

s(4) := false

How to reconcile the two points of view?

3.2 Maps

In the case of maps, we have a similar problem. A map m can be seen as a single
entity, or as a set of maplets {i �→ r}. You may want to replace the whole map
m. You may want to add, remove or change a single maplet. Actually the map
problem is more involved. It involves recursion. The value r of a maplet {i �→ r}
can be a map in its own right. You may want to zoom in and add, remove or
change only a maplet of r. Again, you want to make in parallel consistent changes
like this:

do in-parallel

m(1) := { 2 �→ 3 }
m(2) := { 3 �→ 4 }
m(1)(2) := 3

m(1)(3) := undef

924 Gurevich Y., Tillmann N.: Partial Updates: Exploration

Here the first and second clauses partially update m, and the third and fourth
clauses partially update the submap m(1) of m. Notice that we cannot see m(1)
as a mere abbreviation for apply(m, 1) in these clauses because apply is a static
function. So what should the clauses mean in the ASM world?

3.3 Counters

In this paper, a counter is integer-valued and the only counter-changing opera-
tions are these:

– incr(k) increments the counter value by k.

– overwrite(n) updates the counter value to n.

Again, you want to make consistent changes in parallel, and the question is how
to program them properly in the ASM world.

4 Partial Updates in the Traditional Setting

The question arises how to deal with partial updates in the traditional ASM
setting which has only total updates. One natural (to ASMers) point of view
is that partial updates involve different levels of abstraction. A counter, for
example, can be placed outside our system, as a separate vassal agent, with
smaller steps. During one step, our program sends instructions to the counter,
and the counter performs them in some order. Care should be taken on how our
program will read the counter correctly.

Let us rephrase the question: Can partial updates be accommodated (rather than
avoided) in the traditional ASM setting? Again, the answer is yes. We mention
below two ways to achieve the goal.

Notice that the set challenge is dominated by the map challenge. In fact, sets can
be represented by maps whose only possible value is true. On the other hand,
the map challenge and the counter challenge are quite different. Two identical
modifications of a map have the same effect as one of them while two identical
increments of a counter accumulate. Changes to a map at two different indices
(say at 1 and at 2) affect separate parts of the map. There is nothing like that
in the case of a counter.

925Gurevich Y., Tillmann N.: Partial Updates: Exploration

4.1 Registry Solution

4.1.1 Maps

The following solution is sketched in [GSV01]. Introduce an auxiliary binary
dynamic function MR (an allusion to Map Registry). The first argument of MR
is intended to represent a map variable; for simplicity we do not distinguish
here between the variable and its representative. The second argument of MR
is intended to be a sequence. Instead of changing a map variable m directly,
register the changes with MR. For example, suppose that currently m(1) is also a
map and m(1)(2) = 7 and that you want to change m(1)(2) to 11. Use the rule

MR(m, [1, 2]) := 11

When all desired changes have been registered with MR, an additional Appendix
step is made, in which the new values of the map variables are computed from
the entries in MR and all locations of MR are reset to undef. This step fails if there
are conflicting entries in MR.

4.1.2 Counters

As in case of maps, we can use an auxiliary registry function, say CR (an allusion
to Counter Registry). But this registry function is ternary. The first argument
is intended to reflect the variable in question, the second argument is intended
to reflect the kind of modification, and the third argument is intended to be a
new element (imported from the reserve). There are only two kinds of counter
modifications: incr and overwrite. Instead of incrementing a counter c by n,
import a new element r and assign n to CR(c, incr, r). The element r is a tag
that distinguishes this particular assignment from from any other.

Again, an additional step is required that integrates all modifications of any
counter and overwrites all CR-locations to undef. It is an error if a nonzero
increment and an overwrite are applied to the same counter.

Remark 4.1 One can argue with our policy of disallowing concurrent overwrites
and nonzero-increments. There are other possible policies, e.g. add all increments
to the overwrite value, or if increments and overwrites both occur then ignore all
increments (or ignore all overwrites). Our policy will be justified in [Section 10].
�

4.1.3 The General Picture

The solutions for maps and counter challenges have the following common pat-
tern.

926 Gurevich Y., Tillmann N.: Partial Updates: Exploration

First, register all modifications by means of an auxiliary registry function.

Second, use the registry to check for consistency and compute new values for
your variables in a special Appendix step.

4.2 A General Result

A more general solution is given in [BG*]. There, different parts of a given
computer system can send all kinds of messages to each other. In particular, a
message could be a command to increment a counter c by 2 or a command to
alter a map m at 1 to 7. Nevertheless, by the main theorem of [BG*], there is a
traditional ASM that is behaviorally equivalent to A. Thus partial updates can
be eliminated.

The main theorem of [BG*] applies only to bounded-sequentiality systems, with
a fixed bound on the lengths of sequences of events that must occur in a particu-
lar order during any computation step. The parallel machines of the Lipari guide
[G95] are like that. However, the partial-update elimination result is later gener-
alized in [BG*] to the case of computer systems built from bounded-sequentiality
systems by means of submachines.

5 Particles

In this and the following three sections, we develop a systematic approach to
deal with partial updates directly.

In the traditional ASM setting, location contents are changed by updates and
only by updates. That is preserved in the new setting; at the end of each step,
an ASM produces a set of updates that are used to change location contents.
The new aspect is this. During one step, in addition to updates, an ASM issues
modifications, like increment a counter c by 7, or alter a map variablem at index
1 to 7. At the end of every step, all updates and modifications are integrated
into updates.

What are these modifications? They can be viewed as unary operations over
appropriate domains. The increment-by-7 modification is the operation

incr7(x) � x+ 7

over integers. The map alteration at index 1 to value 7 is an operation over maps;
a map x is transformed into a map y � alter1�→7(x) that behaves as follows:

y(i) =

{
7 if i = 1

x(i) otherwise

927Gurevich Y., Tillmann N.: Partial Updates: Exploration

5.1 Clients Types

ASMs of the Lipari guide are essentially untyped. We say “essentially” rather
than “completely” because there is a separate Boolean type there. AsmL, because
it is integrated into an industrial environment, is typed. Here we also use a bit
of type discipline; this is not necessary but convenient.

We presume that there are types, like counters, sets and maps, which we will call
client types for brevity. For each client type T , there is an associated type whose
elements are modification operations over T . These modifications will be called
particles, or more exactly T particles. For example, incr7 is a counter particle,
and alter1�→7 is a map particle.

Remark 5.1 The term particle is admittedly strange. Here are our justifications
of it. First, the concept is central to the new setting, and so we wanted it to have
a simple name. Second, modifications are combined to produce a single update,
and so they are parts, or particles, of the resulting update. Third, we recalled
that, in quantum physics, particles can be seen as special functions, and so there
is a precedent of calling some functions particles. �

Intuitively, a T particle f is an operation on (the collection of elements of type)
T , and so f can be applied to any T element a to produce another T element
f(a). But in the ASM paradigm of abstract states, a particle is just an element.
To this end, we have a special particle-apply that takes a particle f and an
element a and returns the desired f(a).

Remark 5.2 In the ASM paradigm, the collection of states of an ASM is closed
under isomorphisms, so that any structure isomorphic to a state is itself a state.
Only the isomorphism type of the state matters. Thus we cannot assume that
modification operations themselves always belong to the state. We can assume
only that they are represented by some elements. For simplicity of exposition,
we are going to ignore this pedantic point. �

Further, particles f, g over a given client type T can be composed; g ◦ f is a T

particle h such that h(x) = g(f(x)) for all x of type T . Here ◦ is a static binary
operation in the state.

Remark 5.3 The application and composition functions may be polymorphic.
Alternatively, there may be a separate pair of apply and composition functions
for every client type T . We don’t care. We will apply particles only to legitimate
client elements, and we will compose only particles of the same particle universe.
Having separate apply and composition functions for every client type may be
useful if one contemplates a generalization where the composition of T particle
may differ from the usual function composition. �

928 Gurevich Y., Tillmann N.: Partial Updates: Exploration

5.2 Apt Client Cases

If T is a client type and if f, g are T particles, then a priori we have the following
three scenarios:

1. (g ◦ f)(x) = (f ◦ g)(x) for all x of type T , in other words g ◦ f = f ◦ g, so
that f and g commute.

2. (g ◦ f)(x) �= (f ◦ g)(x) for all x of type T . In this case, we will say that f
and g malcommute.

3. (g ◦ f)(x) = (f ◦ g)(x) for some x of type T , and (g ◦ f)(x) �= (f ◦ g)(x) for
some x of type T .

We will say that the case of a client type T is apt if every two T particles either
commute or malcommute.

In this paper, we are primarily interested in apt particle types.

6 Partial Updates

Recall that traditional ASM updates are called total updates in this paper. Recall
that a total update u is given by a pair (
, v) where
 is a location and v is an
element (intentionally, the new content of
). Usually u and (
, v) are identified.
But here we have a problem. A partial update is also given by a pair (
, f); this
time around
 is a location of a client type T and f is a T particle. We don’t
want a partial update given by a pair (
, f) to be confused with a total update
given by the pair (
, f). The total update given by a pair (
, v) will be denoted
TU(
, v), and the partial update given by a pair (
, f) will be denoted PU(
, f).

Actually we would like to see total updates as special partial updates. To this
end, we introduce overwrite particles

overwrite(y) : x �→ y

Our intention is to identify TU(
, v) with PU(
, overwrite(v)) but we need to
be careful. The world of updates is untyped. In a given state, any location

and any point v form an update. The world of partial updates has some type
discipline. We don’t want to impose any particular type system. So we will just
assume the following.

– If
 is a location of a client type T and v is a value of type T then TU(
, v)
is identified with PU(
, overwrite(v)) where the particle overwrite(v) is a
T particle.

929Gurevich Y., Tillmann N.: Partial Updates: Exploration

– If
 is any other location and v is a legal content of
 according to your type
system, then TU(
, v) is PU(
, overwrite(v)) where the type of the particle
overwrite(v) is whatever is appropriate in your type system.

Of course, we will have to ensure that our treatment of overwrite particles is
consistent with this identification.

Remark 6.1 One can avoid the second-clause complications by using only
client-type overwrite particles. Then total updates of non-client locations do
not fit our current partial-update framework. The remainder of this section can
be easily adjusted to this. �

For future reference, we note the following.

Lemma 6.2 Suppose that T is any client type and consider two T particles such
that one of them is an overwrite. Then (i) the composition of the two particles,
in either order, is an overwrite, and (ii) the two particles either commute or
malcommute.

Proof The first claim is obvious, and the second follows from the first. �

The ostensible meaning of a partial update PU(
, f) is to modify the current
content v of
 to f(v). But modifications (at least those modifications that are
not total updates) do not really change location contents. They are integrated
into total updates which can change location contents.

A partial-update multiset ψ is a multiset of partial updates. The concept of a
partial-update multiset is a generalization of a set of total updates. In the case
of partial updates, we really need multisets and not only sets. Think for example
about counter increments.

6.1 Partial Update Rules

Traditionally, if you fire a rule R in a state X then the result is a set of updates
of X . Now we deal with partial updates. Firing a rule R in a state X results in
a multiset of partial updates of X ; this multiset will be denoted ∆̃XR (notice
the tilde).

930 Gurevich Y., Tillmann N.: Partial Updates: Exploration

Definition 6.3 The Partial Update Rule (Partial Assignment) R is a rule

f(t̄)← t0

where f(t̄) is a term of some client type T , and t0 is a term whose type is that
of T particles. Let X be a state. Then

∆̃XR � �PU(
, g)�

where
 = (f,∇X t̄) and g = ∇X t0. �

7 Integration

Consider one step of an ASM that transforms a state X to a state Y . At the end
of a step, the ASM is supposed to produce an update set, that is a set of total
updates. So the multiset ψ of partial updates, generated during the step, should
be transformed into an update set. This is done by means of an integrator that
integrates partial updates separately for each location
.

Proviso 7.1 All client cases are apt.

7.1 Integration of Particles

By way of motivation, consider a counter c. Suppose that the current value of c
is 0 and let f, g be increment particles with parameters 5 and 7 respectively. We
expect that partial updates PU(c, f) and PU(c, g) will be integrated into a total
update TU(c, 12). Does it mean that the counter performs the two increments
simultaneously? Not necessarily. The counter can perform the two increments
in the order they come to it. It is important though that the result does not
depend on the order.

Definition 7.2 1. Suppose that T is a client type, and let M be a multiset
�f1, . . . , fn� of T particles.M is consistent if every composition fi1 ◦ · · ·◦fin

of its members gives the same particle. Here (i1, . . . , in) ranges over all
permutations of (1, . . . , n).

2. A multiset of overwrite particles overwrite(v1), . . . , overwrite(vn) is con-
sistent if v1 = · · · = vn.

�
Concerning the first part, the composition of zero particles is the identity par-
ticle. This justifies the obviously desired conclusion that the empty multiset of
particles is consistent.

931Gurevich Y., Tillmann N.: Partial Updates: Exploration

The two parts of the definition overlap but agree on the common multisets.

Lemma 7.3 Suppose that T is a client type, and let M be a multiset of T

particles. The following conditions are equivalent:

1. M is consistent.

2. Every two members of M commute.

Proof Clearly 2 implies 1. It remains to prove that 1 implies 2. We assume that
there are noncommuting particles f, g in M and prove that M is inconsistent.
By the Proviso above, the case of T is apt, and so f and g malcommute. Let h
be the composition of the other particles of M in any order and let x be any
point. Since f and g malcommute, we have

(f ◦ g ◦ h)(x) = (f ◦ g)(h(x)) �= (g ◦ f)(h(x)) = (g ◦ f ◦ h)(x)

and so M is inconsistent. �

Notice that f ◦ g ◦ h and g ◦ f ◦ h differ at every element of type T .

Remark 7.4 Every particle type is closed under composition and thus forms
a semigroup. In any semigroup, the composition of elements f1, . . . , fn is order
independent if every two elements fi, fj commute. So pairwise commutativity is
sufficient for order independence. However it is not necessary. Here is a coun-
terexample. Consider matrices, say 2 × 2 integer matrices, together with the
usual matrix multiplication. Choose some noncommuting matrices f1, f2 and let
f3 be the zero matrix. Multiply f1, f2, f3 in any order; the result is always the
zero matrix. Instead of matrices we could speak about linear transformations of
the appropriate vector space. �

Definition 7.5 If a multiset M of particles is consistent then the product (or
parallel composition) Π(M) of M is f1 ◦ · · · ◦ fn; otherwise the product is unde-
fined. �

7.2 Integration of Partial Updates

Let ψ be a partial-update multiset, Loc(ψ) be the set of locations
 such that
some partial update of
 occurs in ψ. Let
 range over Loc(ψ) and define ψ� to
be the multiset �f | PU(
, f) ∈ ψ�.

932 Gurevich Y., Tillmann N.: Partial Updates: Exploration

Definition 7.6 A partial-update multiset ψ is consistent if every ψ� is consis-
tent. �
We assume that ψ is consistent and explain how to integrate ψ. For each location

 ∈ Loc(ψ), the integrator computes the product Π(ψ�). The new content of

is v� � (Π(ψ�))(∇X
) and the resulting total update is TU(
, v�).

We use this occasion to define the product Π(ψ) of the partial-update multiset
ψ:

Π(ψ) � �PU(
,Π(ψ�)) |
 ∈ Loc(ψ)�

8 Reporting

We saw above, in [Subsection 2.4], that the use of submachine requires sequential
composition of update sets. In the presence of particles the situation becomes
more complicated. We need sequential composition of particles obtained by par-
allel composition; this is addressed in [Subsection 8.1]. Further, the very notion
of submachines needs a generalization; this is done in [Subsection 8.2].

8.1 Sequential Composition

Recall the [Definition 2.1] of the sequential composition of update sets. We are
going to define the sequential composition of partial-update multisets ψ and ψ′.
The intention is that ψ is executed first and then ψ′ is executed in the state
resulting from the execution of ψ′.

Definition 8.1 Let ψ and ψ′ be two consistent partial-update multisets and
let L = Loc(ψ) ∪ Loc(ψ′). For each
 ∈ L, let g� = Π�f | PU(
, f) ∈ ψ� and
g′� = Π�f | PU(
, f) ∈ ψ′�. Then

ψ seq ψ′ � �PU(
, g′� ◦ g�) |
 ∈ L�

�
Notice that the resulting partial-update multiset (actually a set) ψ seq ψ′ is
consistent when both ψ and ψ′ are consistent. We don’t distinguish between
different inconsistent partial-update multisets. If ψ or ψ′ is inconsistent then
ψ seq ψ′ is the inconsistent partial-update multiset.

Remark 8.2 We have g′� ◦ g� rather than g� ◦ g′� because of the way our com-
position works: (f2 ◦ f1)(x) = f2(f1(x)). �

Now we are ready to define the semantics of the sequential composition of rules
that may involve partial updates.

933Gurevich Y., Tillmann N.: Partial Updates: Exploration

Definition 8.3
∆̃X(P seq Q)� ∆̃XP seq ∆̃Y Q

where Y is X plus the result of the integration of ∆̃XP . �

8.2 Submachines

We write

machine

R

to encapsulate a rule R in a submachine. From the point of view of the parent
program, a submachine B of a machine A is an oracle for A. During one step of
A, B can have a complicated run during which it computes some modifications
of the state of A. But B does not change the state of A. Instead, it reports the
results to A. In the traditional setting, B reports an update set which is added
to the update set of A; recall that we consider only one step of A. What should
B report in the new setting? Notice that B may have submachines of its own
which may have submachines of their own and so on. It seems reasonable to
require that every submachine summarizes partial updates and reports a set of
partial updates with at most one partial update per location.

If the partial-update multiset ∆̃XR is consistent then machine R produces the
set

∆̃X(machine R)� Π(∆̃XR)

of partial updates.

Remark 8.4 The submachine machine R behaves like the sequential composi-
tion of R and skip:

∆̃X(machine R) = ∆̃X(R seq skip) = ∆̃X(skip seq R)

holds for every rule R and every state X . �

Remark 8.5 In the traditional setting, the encapsulation is useful only if R is
a sequential composition or iteration of rules. You can have a submachine

machine

do in-parallel

x := 3

y := 5

934 Gurevich Y., Tillmann N.: Partial Updates: Exploration

but here the encapsulation does not buy you anything. This changes in the new
setting. The following submachine, for example,

machine

do in-parallel

c ← incr(1)

c ← incr(-1)

will report only a zero increment of c. This makes a difference. Suppose that
the main program issues an overwrite of c at the same step, and there are no
other modifications of c issued at the same step. An overwrite commutes with
zero increment but does not commute with any other increment, and so the
encapsulation above turns an inconsistent scenario to a consistent one. �

9 Preamble to Examples

In the rest of the paper we apply the theory developed in [Sections 5-8] to coun-
ters, sets, maps and one additional client type. In each case, we describe the
particles, give a simple commutativity criterion and prove that the case is apt.

Some particles may have individual names. The identity particle

identity : x �→ x

is an example. But typically particles come in families containing many particles.
Each particle family is the range of a special static function F of positive arity.
For example, the counter incrementing particles form the range of the function
incr with integer domain. Since the background is closed under tuples, we may
assume without loss of generality that every family-generating function F is
unary. Thus every particle f of the F family has the form F (x) where F is a
particle-family generating function and x is an argument for F . It is presumed
that, if f belongs to the family of F , then the equation f = F (x) has a unique
solution. This solution will be called the control of f in F . It is produced by a
special parameter recovery function ctrl F (f). We will allow ourselves to omit
the index when it is obvious from the context.

10 Example: Counters

Think about a counter as a location holding an integer value which can be
modified by overwrite and increment particles.

Remark 10.1 Instead of integer counters, one can deal with e.g. real counters.
�

935Gurevich Y., Tillmann N.: Partial Updates: Exploration

The increment particle performs a simple addition:

incr(k) : x �→ x+ k where k is an integer

Notice that in this example incr(0) coincides with the identity particle.

The following theorem implies an algorithm which computes whether two par-
ticles commute.

Theorem 10.2 Two counter particles commute and if and only if one of the
following conditions holds.

– Both particles are increment particles.

– The particles are overwrite particles with the same control.

– One particle is an overwrite particle and the other one an increment particle
with control zero.

Proof Obvious. �

Theorem 10.3 The case of counters is apt. In other words, every two counter
particles either commute or malcommute.

Proof By the previous theorem, one of the noncommuting particle is an over-
write. Use [Lemma 6.2]. �

Remark 10.4 In [Subsection 4.1.2], we mentioned different a-priori-possible
policies for handling concurrent overwrites and increments. The particle frame-
work leads us unambiguously to our policy where an overwrite and an increment
can be executed in parallel if and only if the increment’s control is zero. �

11 Example: Maps

In the case of maps, we have the identity particle and the overwrite and alter
particle families. An alter particle changes only parts of the given map, leaving
the rest of the map as it is. An overwrite particle, on the other hand, throws
away the old value completely and replaces it with a new value.

On the first glance, the matter is simple. Think about a map as a set of maplets
i �→ vi. A simple alter particle affects only one maplet i �→ vi replacing the old
value vi with a new value v′i. Accordingly the control should be a pair [i, v

′
i].

A more complicated alter particle affects several maplets replacing old values

936 Gurevich Y., Tillmann N.: Partial Updates: Exploration

vi with new values v′i. Accordingly the control should be a set {[i, v′i] : i ∈ I}
and thus a map in its own right. This would work if we were willing to restrict
attention to maps say from integers to integers, but we don’t. The value vi

may be a map in its own right and you may want just to alter it rather than
replace it. Thus the control of f may involve another alter particle gi such that
v′i = gi(vi). The control of gi may involve yet another alter particle. In that sense
the definition of alter particles involves recursion. We give a formal description
of such recursive modifications in the next subsection where we abstract from
our particles and deal with so-called transformers instead.

11.1 Map Transformers of Finite Rank

This is a mathematical digression whose goal is to identify a family of map-
transforming particles called alterers.

11.1.1 The Setup

To simplify the exposition, we abstract from some aspects of ASMs so that our
framework contains only things needed for this mathematical digression. So we
assume the following.

S is a collection whose elements will be called atoms; one of the atoms is called
undef and none of the atoms is a map. Let S0 = S, and let Sn+1 be the collection
of maps m over S0∪· · ·∪Sn. (According to [Section 2], m is finite, that is domain
of m is finite, and its range does not contain undef.) Let S∗ = S0∪S1∪S2∪· · · .
Every map over S∗ is an element of S∗. In the rest of this subsection, a map is
a map over S∗. Elements of S∗ will be called points. Thus a point is either an
atom or a map.

A binary operation apply on S∗ reflects the behavior of maps:

apply(x, y) =

{
x(y) if x is a map and y ∈ dom(x)

undef otherwise

Here x(y) means of course the value of the map x at point y. The point of this
trivial remark will become apparent in the next paragraph.

XS is the structure formed by the collection S∗, and the binary operation apply
and the nullary operations undef and emptymap (and possibly some additional
operations which play no role in this subsection but may be needed in the next
subsection). For each point (that is element) x, XS “knows” whether x is a
map, and if yes then what map it is exactly. In that sense, the nature of points
is immaterial; instead of XS , we can work with any isomorphic copy of XS .

937Gurevich Y., Tillmann N.: Partial Updates: Exploration

Therefore we cannot exploit the fact that elements of S∗ \ S are genuine maps,
that is finite functions. As far as the structure XS is concerned, they are just
elements. It is the function apply that makes them behave as if they are maps.
Instead of apply(x, y), we write x(y), even if x is not a map. This makes every
point look like a total function which equals undef almost everywhere. As far as
apply is concerned, every atom looks like the empty map (but only the empty
map is the interpretation of the nullary symbol emptymap in XS).

T is the collection of all unary operations over S∗. Elements of T will be called
transformers. Even though a transformer f is applied to every point, it is conve-
nient to think about it as primarily a map transformer. In this connection, the
argument of the transformer will be often denoted m.

C is the collection of finite functions c from S∗ to T . In other words, the domain
of any c ∈ C is a finite subset of S∗ and the range is a subset of T . Elements of C
will be called controllers. This terminology is justified by the following definition.

11.1.2 Ranked Transformers and Controllers

Definition 11.1 An element c ∈ C controls a transformer f if, for all points m
and x,

(fm)(x) =

{
(cx)(mx) if x ∈ dom(c)

mx otherwise

�

Here fm = f(m), cx = c(x) and mx = m(x). For better readability, we allow
ourselves to omit some parentheses when the intended meaning is clear from the
context.

Let us try to explain the definition. A transformer f transforms any pointm into
a map m′ = f(m). If m is not a map then m′ = f(emptymap). The interesting
case is when m is a map. So letm be a map, and let x be any point. The question
is what is m′(x). If x ∈ dom(c) then c(x) is a transformer; in this case m′(x) is
obtained by applying the transformer c(x) to m(x). Otherwise m′(x) = m(x).

Example 11.2 Let consty be the constant transformer such that consty(x) =
y. Let c be the controller {0 �→ const1} and let f be the function controlled
by c. If m is an atom (say orange; we cannot rule out that some our points
are oranges, and oranges are no maps) then f(m) is the map {0 �→ 1}. Indeed
(fm)(0) = (c0)(m0) = 1 and, if x �= 0 then (fm)(x) = m(x) = undef. �

938 Gurevich Y., Tillmann N.: Partial Updates: Exploration

Definition 11.3 Let c be a controller. For every point x, we define an associated
transformer

cx �
{
c(x) if x ∈ dom(c)

identity otherwise

�

Example 11.4 Let c be again {0 �→ const1}. Then c0 = const1 and every
other cx = identity. �

Corollary 11.5 A transformer f is controlled by a controller c if and only if
(fm)(x) = cx(mx) for all points m,x.

Lemma 11.6 Every transformer has at most one controller.

Proof By contradiction assume that a transformer f has two distinct con-
trollers c and d. Then there are points x, y such that cx(y) �= dx(y). Now let
m = {x �→ y}. We have

(fm)(x) = cx(mx) �= dx(mx) = (fm)(x)

which is impossible. �

By induction on n, we define controllers and transformers of rank n.

Definition 11.7 – A transformer f is of rank 0 if it is a constant transformer.

– The empty controller is of rank 0. A nonempty controller c is of rank n

if its range consists of transformers of rank ≤ n and there is at least one
transformer of rank n there.

– A transformer f is of rank n > 0 if there is a controller of rank n − 1 that
controls f .

Transformers of positive rank are alterers. �

Corollary 11.8 If c is a controller such that every transformer in the range of
c is ranked then c is ranked.

Proof The empty controller has rank 0. If c is nonempty, then the rank of c is
the maximal rank of transformers in the range of c. (We use the fact that the
domain of c is finite. It implies that the range of c is finite and so the maximal
rank in question exists.) �

939Gurevich Y., Tillmann N.: Partial Updates: Exploration

Lemma 11.9 The collection of ranked transformers is closed under composi-
tion.

Proof Let f and g be ranked transformers. By induction on rank(f)+ rank(g)
we prove that the transformer h � g◦f is ranked. If f or g is constant then so is
h. So we can assume that f and g have positive ranks. Let c, d be the controllers
of f, g respectively. Using [Corollary 11.5], we have

(hm)(x) = (g(fm))(x) = dx((fm)x) = dx(cx(mx))

We construct a controller e such that ex = dx ◦ cx for all points x. (To ease
reading, we abbreviate identity to id.)

– The domain of e is dom(c)∪dom(d). So if x /∈ dom(e) then ex = id = id ◦ id =
dx ◦ cx.

– If x ∈ dom(c)−dom(d) then e(x) = c(x). For such x, ex = cx = id◦cx = dx◦cx.
Since c is ranked, e(x) is ranked.

– If x ∈ dom(d)−dom(c) then e(x) = d(x). For such x, ex = dx = dx◦id = dx◦cx.
Since d is ranked, e(x) is ranked.

– If x ∈ dom(c)∩ dom(d), set e(x) = d(x) ◦ c(x). For such x, ex = d(x) ◦ c(x) =
dx ◦ cx. Notice that rank(cx) ≤ rank(c) < rank(f). Similarly, rank(dx) <
rank(g). Thus rank(cx) + rank(dx) < rank(f) + rank(g). By the induction
hypothesis, e(x) is ranked.

By [Corollary 11.5], e controls h. By the construction of e, the range of e consists
of ranked transformers. By [Corollary 11.8], e is ranked. Thus h is ranked. �

11.2 Maps and Map Particles

Now we are in a position to define the relevant maps and the relevant particles
properly. Let X be a state and S any collection of non-map elements of X that
contains undef. For example, S could be the collection of integers or binary
strings extended with undef. Our X is like XS except that it contains more
elements and its vocabulary is richer. In the rest of this section, we deal only
with maps that belong to S∗. Strictly speaking, we should speak about S-maps.
In order to simplify the exposition, we just speak about maps. In any case, we
have a well defined notion of alterers.

Remark 11.10 Let us clarify the sentence about X being like XS . Since X

is closed under maps (see [Subsection 2.3]), X includes the whole collection S∗

940 Gurevich Y., Tillmann N.: Partial Updates: Exploration

constructed in the previous section. As a result, the structure XS of the previous
section is a substructure but not of X itself but rather of the structure obtained
from X by removing all function names except for apply, undef and emptymap

from the vocabulary of X . (In logic terms, XS is a substructure of a reduct of
X). �

The map particles of a state X consist of the identity particle, (map-) overwrite
and alter particles of X . The alter family of particles consists of alterers, that is
of positive-rank transformers. The controller of an alterer f is the control of the
particle f . Notice that the control itself is a finite map from elements of X to
elements of X . The particle f = alter({→}) with the empty control is similar
to but does not coincide with the identity particle over maps: If x is an atom
(that is an element of A), then f(x) = {→} �= x. Thus we do need a separate
identity particle.

The overwrite particles are exactly transformers of rank 0. Such transformers
do not have controllers in the sense of the previous subsection but they do have
controls: the control of overwrite(y) is the point y. (It is because of overwrite
particles that we have to distinguish between controls and controllers.)

Lemma 11.11 Let f and g be alter particles and let c = ctrl f and d = ctrl g.
Then f and g commute if and only if cx and dx commute for all x ∈ dom(c) ∩
dom(d).

Proof If x /∈ dom(c) then cx = identity and therefore cx and dx commute.
Similarly, cx and dx commute if x /∈ dom(d). Thus it suffices to prove that f and
g commute if and only if, for every point x, cx and dx commute. Let h = g ◦ f ,
h′ = f ◦ g, ex = dx ◦ cx and e′x = cx ◦ dx. We show that h and h′ differ at some
point if and only if there exist points x, y such that ex(y) �= e′x(y).

First suppose that h and h′ differ at some m which means that the maps hm
and h′m differ at some point x. Using [Corollary 11.5], we show that ex(mx) �=
e′x(mx).

ex(mx) = dx(cx(mx)) = dx((fm)(x)) = (g(fm))(x) = (hm)(x)

�= (h′m)(x) = (f(gm))(x) = cx((gm(x)) = cx(dx(mx)) = e′x(mx)

Second suppose that, for some points x, y, ex(y) �= e′x(y). We show that h and
h′ differ at m � {x �→ y}.

(hm)(x) = (g(fm))(x) = dx((fm)(x)) = dx(cx(mx)) = ex(mx) = ex(y)

�= e′x(y) = e′x(mx) = cx(dx(mx)) = cx((gm)(x)) = (f(gm))(x) = (h′m)(x)

�

941Gurevich Y., Tillmann N.: Partial Updates: Exploration

The following Theorem implies an algorithm which computes whether two par-
ticles commute.

Theorem 11.12 Two map particles f and g commute if and only if one of the
following conditions holds.

1. f or g is the identity particle.

2. Both f and g are overwrite particles and ctrl f = ctrl g.

3. f is an alter particle, g is an overwrite particle and f(ctrl g) = ctrl g.

4. f is an overwrite particle, g is an alter particle and g(ctrl f) = ctrl f .

5. Both f and g are alter particles with c = ctrl f , d = ctrl g and cx and dx

commute for all x ∈ dom(c) ∩ dom(d).

Proof First, assume that f and g commute. If f or g is the identity particle,
condition 1 holds. Otherwise, if f or g is an overwrite particle, it is obvious that
condition 2, 3 or 4 holds. For the remaining case that both f and g are alter
particles it follows from [Lemma 11.11] that condition 5 holds.

Second, each of the conditions 1-4 obviously implies commutativity. Condition
5 implies commutativity by [Lemma 11.11]. �

Theorem 11.13 The case of maps is apt. In other words, every two map par-
ticles either commute or malcommute.

Proof Let f and g be map particles which do not commute. We will show that
they malcommute.

Since the identity particle commutes with every other particle, the claim is trivial
in the case when f or g is the identity particle. We assume that neither of them
is the identity particle and prove the claim by induction on minrank(f, g) �
min{rankf, rankg}.
The case minrank(f, g) = 0. At least one of f, g is an overwrite. Use [Lemma 6.2].

The case minrank(f, g) > 0. Both f and g are alter particles. Let c = ctrl f

and d = ctrl g be the controllers. Assume that f, g do not commute. By
[Lemma 11.11], there is a point x ∈ dom(c) ∩ dom(d) such that cx and dx do
not commute. Clearly minrank(cx, dx) < minrank(f, g). By the induction hy-
pothesis cx and dx differ at every point. Let m be any point. We show that
h(m) �= h′(m). It suffices to show that (hm)(x) �= (h′m)(x). We have

(hm)(x) = g(f(m))(x) = dx((fm)x) = dx(cx(mx))

�= cx(dx(mx)) = cx((gm)x) = f(g(m))(x) = (h′m)(x)

�

942 Gurevich Y., Tillmann N.: Partial Updates: Exploration

12 Example: Counter Maps

Counter maps are a marriage of maps and counters. In addition to overwrite
and alter particles, counter maps admit increment particles. You can see counter
maps as a generalization of multisets in two directions: negative multiplicities
and nested map-like structure.

First we extend the background structure to accommodate counter maps. The
rest of this section is similar to the previous section; we explain the necessary
changes.

12.1 Counter Map Background

Recall that undef does not belong to the range of a map. The meaning ofm(x) =
undef is thatm is not defined at x. In this section we consider a similar collection
of finite functions except that the role of undef is played by number zero.

Let us make this more precise. In our abstract states, a map is any element
x such that either x is the interpretation of the name emptymap or else the
set {y | apply(x, y) �= undef}, the domain of x, is finite and nonempty. Counter
maps are defined in exactly the same way except that (i) another apply function,
apply′, is used and (ii) the set {y | apply(x, y) �= undef} is replaced with the
set {y | apply′(x, y) �= 0}, the domain of counter map x. One can say that
apply′ defaults to 0 while apply defaults to undef. In this section, apply′(x, y)
is abbreviated to x(y).

In [Section 2] we assumed that the state background is closed under maps. Here
we assume that, in addition, the state background is closed under counter maps.
In other words, if m is a counter map from elements of the state to elements of
the state then m itself is an element of the state.

12.2 The Setup

As in the setup of the previous section, S is a collection whose elements will be
called atoms and which contains undef; this time we assume that it includes the
integers as well. No atom is a counter map.

We build collections S0, S1, . . . and the collection S∗ = S0 ∪ S1 ∪ S2 ∪ · · · as
in the previous section except that this time we use counter maps rather than
usual maps. As before, T is the collection of all unary functions over S∗, called
transformers, and C is the collection of finite functions from S∗ to T , called
controllers.

943Gurevich Y., Tillmann N.: Partial Updates: Exploration

12.2.1 Ranked Transformers and Controllers

We reuse the previous-section’s definitions of controlled transformers and con-
stant transformers (except that now we are talking about counter maps rather
than usual maps). In addition, we use an additional category of transformers:

Definition 12.1 A transformer f is an increment, if there exists an integer
number k such that f(x) = x⊕ k for every point x where

x⊕ k �
{
x+ k if x is an integer

undef otherwise

�
The operator ⊕ is a modified addition operator to be applied not only to integers
but also to other elements of S∗. Notice that, contrary to apply′, ⊕ defaults to
undef. We make the following observations on the composition of increment and
controlled transformers:

Lemma 12.2 Let f be a controlled transformer and g an increment trans-
former. Then g◦f and f ◦g are constant transformers, and f and g malcommute.

Proof First, consider g ◦ f . By the definition of controlled transformers, f(x)
is always a counter map. Hence, by definition of ⊕, g(f(x)) = undef because
f(x) is not an integer.

Second, consider f ◦ g and let x be any element of S∗. Then g(x) is an integer, if
x is an integer, or undef otherwise. In any case, g(x) is an atom; let’s call it a.
Since a is an atom, a(y) = 0 for all points y. Further, let c be the controller of
f . By [Definition 11.1] (adjusted to counter maps), f(a) is a counter map and

(fa)(y) =

{
(cy)(0) if y ∈ dom(c)

0 otherwise

and so f(g(x)) = f(a) does not depend on x and differs from g(f(x)) = undef.
�

Modify the previous-section’s notion of ranked transformers by including the
increment transformers into the category of transformers of rank 0.

Lemma 12.3 The collection of (revised) ranked transformers is closed under
composition.

Proof The proof of [Lemma 11.9] remains valid except that the base of induc-
tion needs two additional clauses.

944 Gurevich Y., Tillmann N.: Partial Updates: Exploration

1. If both f and g are increment transformers then g ◦ f is an increment trans-
former.

2. If one of the transformers is an increment and the other is an alterer, then, by
[Lemma 12.2], their composition, in either order, is a constant transformer.

�

12.3 Counter Maps and Counter-Map Particles

The revised definitions and lemmas allow us to define the relevant counter maps
and counter-map particles properly. Let X be a state and S any collection of
non-counter-map elements of X that contains undef and includes integers. Our
X is like the previous-section’s XS (adjusted to counter maps) except that it
contains more elements and its vocabulary is richer. Thus we have again a well
defined notion of alterers; this time we also have the notion of increment.

As in the previous section, alterers give rise to the family of alter particles. The
family of increment particles consists of increment transformers. The control of
an increment particle f : x �→ x ⊕ k is k. Given an integer k, we write incr(k)
for the increment particle with control k.

Notice that, in contrast to the counter case, incr(0) is not the identity particle,
as incr(0)(x) = undef �= x for every non-integer point x.

The counter-map particles of a state X consist of the identity particle and
(counter-map) overwrite, increment and alter particles. Notice that the over-
write particle as well as the increment particle is a transformer of rank 0. We
explore the relation of increment and overwrite particles in the next definition
and lemma.

Definition 12.4 Particles incr(k) and overwrite(y) are compatible if

1. y = undef, or

2. y is an integer and k = 0.

�

Lemma 12.5 An increment and an overwrite particle are compatible if and only
if they commute.

Proof Let f = incr(k) and g = overwrite(y).

First, let f and g commute. We show that one of the conditions of [Defini-
tion 12.4] holds. By contradiction assume that y is neither undef nor an integer;

945Gurevich Y., Tillmann N.: Partial Updates: Exploration

then so is g(f(x)) = y. The other composition f(g(x)) = y⊕k is either undef or
an integer by definition of ⊕. Thus g(f(x)) �= f(g(x)) which cannot be as f and
g commute. Therefore our assumption was wrong and y is either undef or an in-
teger. If y is undef, condition 1 holds. So we may assume that y is an integer. By
contradiction assume that k �= 0. Then f(g(x)) = y ⊕ k = y + k �= y = g(f(x)).
This cannot be as f and g commute. Therefore our assumption was wrong and
k = 0, so that condition 2 holds.

Second, suppose that condition 1 or 2 of [Definition 12.4] holds. We show that
f and g commute.

– If y = undef, then for every x holds

f(g(x)) = f(undef) = undef⊕ k = undef = y = g(f(x))

– If y is an integer number and k = 0, then for every x holds

f(g(x)) = f(y) = y ⊕ 0 = y + 0 = y = g(f(x))

�

The following theorem implies an algorithm which computes whether two par-
ticles commute.

Theorem 12.6 Two counter-map particles commute if and only if one of the
following conditions holds.

1. Any case mentioned in [Theorem 11.12].

2. Both are increment particles.

3. They are compatible increment and overwrite particles.

Proof Let f and g be counter-map particles.

First, assume that f and g commute. If neither of them is an increment particle,
then the first part of the proof of [Theorem 11.12] remains valid unchanged and
implies that condition 1 must hold, so we may assume without loss of generality
that one of them, say f , is an increment particle. If the other, say g, is also
an increment particle, condition 2 holds obviously. If g is an overwrite parti-
cle it follows from [Lemma 12.5] that condition 3 holds. Finally it follows from
[Lemma 12.2] that g is not an alter particle.

Second, assume that one of the conditions holds. If condition 1 holds, the sec-
ond part of the proof of [Theorem 11.12] remains valid unchanged. Condition
2 obviously implies commutativity. If condition 3 holds then it follows from
[Corollary 12.5] that f and g commute. �

946 Gurevich Y., Tillmann N.: Partial Updates: Exploration

Theorem 12.7 The case of counter maps is apt. In other words, every two map
particles either commute or malcommute.

Proof Let f and g be counter-map particles. The proof of [Theorem 11.13] is
fine except that the base of induction changes as follows:

The case minrank(f, g) = 0. At least one of f, g is either an overwrite or an
increment particle.

If one is an overwrite particle, use [Lemma 6.2]. So we can assume that one is
an increment particle, say f , and g is not an overwrite particle. Then the claim
is trivial if g is the identity or an increment particle. If g is an alter particle, use
[Lemma 12.2]. �

13 Example: Sets

Let X be a state. In this section, we operate on a nonempty and possibly infinite
collection S of sets (that is finite sets) in the state X . Each of these sets consists
of elements of X and is an element of X . We presume that the collection S is
closed under union and set difference (and thus under intersection).

We consider the insertion of one or more elements and the removal of one of more
elements as special operations on sets in this section. Insertions and removals
may occur in parallel. They are consistent as long as no element is inserted and
removed at the same time. We call the joint insert-and-remove operation insrem.

Example 13.1 If S contains all finite subsets of integers then we have, in par-
ticular, the following insrem operations: f(x) � x ∪ {1, 7, 13}, g(x) � x \ {42}
and (g ◦ f)(x) = (x ∪ {1, 7, 13}) \ {42}. �

Remark 13.2 In applications, we have encountered only insertions, removals,
the combinations of the two, and overwrites. One may want to consider various
additional operations and first of all intersection. We notice only that the inte-
gration of the intersection operation into the particle framework of this section
is straightforward. Instead of insrem, there would be the combined operation of
insertion, removal and intersection, say insremint. �

The set particles consist of overwrite particles and insrem particles. The control
of an insrem particle consists of a pair [y+, y−] of disjoint sets where y+ contains
the elements which are to be inserted and y− those which are to be removed.

insrem([y+, y−]) : x �→ x ∪ y+ \ y− where y+ ∩ y− = ∅

947Gurevich Y., Tillmann N.: Partial Updates: Exploration

Remark 13.3 When we use the set operations union and difference together
without parentheses, we assume left associativity. So x∪y+ \y− means (x∪y+)\
y−. �

Notice that in this example insrem([∅, ∅]) coincides with the identity over sets,
so identity is one of set particles.

Lemma 13.4 The collection of set particles is closed under composition.

Proof Let f and g be set particles. If f or g is an overwrite particle, the
composition g ◦ f also is an overwrite particle, so we may assume that both f

and g are insrem particles. Let f = insrem([x+, x−]) and g = insrem([y+, y−]).
Define

h = insrem([x+ \ y− ∪ y+, x− \ y+ ∪ y−])

We first show that h is a legal insrem particle, that is that the part to be inserted
and the part to be removed are disjoint. Second, we will show that h = g ◦ f .

1. By contradiction assume that some α ∈ (x+ \ y− ∪ y+) ∩ (x− \ y+ ∪ y−).
Then α ∈ (x+ \ y−) or α ∈ y+.

(a) If α ∈ x+ \ y−, then α ∈ x+. Hence α /∈ x− and therefore α /∈ x− \ y+.
As α belongs to the union x− \ y+ ∪ y− but not to the first summand,
it must belong to the second summand: α ∈ y−. But then α /∈ x+ \ y−
which contradicts the assumption of this case.

(b) If α ∈ y+, then α /∈ y− by definition of insrem. Also, α /∈ x− \ y+.
Therefore α /∈ x− \ y+ ∪ y− which contradicts the choice of α.

2. For every set z the following holds:

g(f(z)) = z ∪ x+ \ x− ∪ y+ \ y−
(1)
= z ∪ (x+ \ y−) \ x− ∪ y+ \ y−
(2)
= z ∪ (x+ \ y−) ∪ y+ \ (x− \ y+) \ y−
= z ∪ (x+ \ y− ∪ y+) \ (x− \ y+ ∪ y−)

= h(z)

where (1) holds because y− is removed from the set in the end of the expres-
sions anyway, and (2) because z ∪ y+ \ (x− \ y+) = z \ x− ∪ y+ for every set
z.

�

948 Gurevich Y., Tillmann N.: Partial Updates: Exploration

Lemma 13.5 Let f = insrem([x+, x−]) and g = insrem([y+, y−]). Then f and
g malcommute if (x+ ∪ y+) ∩ (x− ∪ y−) �= ∅.

Proof Let α ∈ (x+ ∪ y+) ∩ (x− ∪ y−). Without loss of generality, α ∈ x+. It
follows that α /∈ x−. Hence α ∈ y−. For every set z′, α ∈ z′ ∪ x+ \ x− and
α /∈ z′ \ y−. This implies the following where the expressions in parentheses play
the role of z′.

α ∈ (z ∪ y+ \ y−) ∪ x+ \ x− = f(g(z))

α /∈ (z ∪ x+ \ x− ∪ y+) \ y− = g(f(z))

Therefore f(g(z)) �= g(f(z)) for every set z. �

Lemma 13.6 Let f = insrem([x+, x−]) and g = insrem([y+, y−]). Then f and
g commute if and only if (x+ ∪ y+) ∩ (x− ∪ y−) = ∅.

Proof First, let f and g commute. By contradiction assume (x+ ∪ y+)∩ (x− ∪
y−) �= ∅. Then, by [Lemma 13.5], f and g malcommute. That is a contradiction
and so the set is empty.

Second, let (x+ ∪ y+) ∩ (x− ∪ y−) = ∅. If follows that x− and y+ are disjoint,
and so are x+ and y−. Thus

z \ x− ∪ y+ = z ∪ y+ \ x− (1)

z ∪ x+ \ y− = z \ y− ∪ x+ (2)

for every set z. Therefore the following holds for every set z:

g(f(z)) = z ∪ x+ \ x− ∪ y+ \ y−
(1)
= z ∪ x+ ∪ y+ \ x− \ y−
= z ∪ (x+ ∪ y+) \ (x− ∪ y−)

= z ∪ (y+ ∪ x+) \ (y− ∪ x−)

= z ∪ y+ ∪ x+ \ y− \ x−
(2)
= z ∪ y+ \ y− ∪ x+ \ x−
= f(g(z))

�

The following theorem implies an algorithm which computes whether two par-
ticles commute.

Theorem 13.7 Two set particles f and g commute if and only if one of the
following conditions holds.

949Gurevich Y., Tillmann N.: Partial Updates: Exploration

1. Both are overwrite particles with the same control.

2. f is an insrem particle, g = overwrite(y) and f(y) = y.

3. f = overwrite(y), g is an insrem particle and g(y) = y.

4. Both are insrem particles with f = insrem([x+, x−]) and g =
insrem([y+, y−]) such that (x+ ∪ y+) ∩ (x− ∪ y−) = ∅.

Proof First, assume that f and g commute. If f or g is an overwrite particle
it is obvious that one of conditions 1 to 3 must hold. If both f and g are insrem
particles, [Lemma 13.6] implies condition 4.

Second, assume that one of the conditions holds. Each of the conditions 1 to 3
obviously implies commutativity. If condition 4 holds, then the commutativity
follows from [Lemma 13.6]. �

Theorem 13.8 The case of sets is apt. In other words, every two set particles
either commute or malcommute.

Proof Let f and g be set particles. If one of them is an overwrite particle,
use [Lemma 6.2]. So we may assume that f and g are insrem particles. Let
[x+, x−] = ctrl f and [y+, y−] = ctrl g. Assume that f and g do not commute.
Then, by [Lemma 13.6], the set (x+ ∪ y+) ∩ (x− ∪ y−) �= ∅. It follows from
[Lemma 13.5] that f and g malcommute. �

Remark 13.9 There exists a mapping of sets to maps with range {true} which
turns set particles into appropriate map particles. We give an informal descrip-
tion of this mapping.

A set x becomes the map x̂ = {α �→ true | α ∈ x}. (Clearly, the set can be
reconstructed from the map.)

A set-overwrite particle overwrite(x) corresponds to the map-overwrite parti-
cle overwrite(x̂). An insrem particle insrem([x+, x−]) corresponds to the map
particle

alter({α �→ overwrite(true) | α ∈ x+}
∪ {α �→ overwrite(undef) | α ∈ x−})

�

Acknowledgment

Discussions with all our colleagues in the Microsoft Research group on Foun-
dations of Software Engineering and especially with Andreas Blass were very

950 Gurevich Y., Tillmann N.: Partial Updates: Exploration

helpful. Margus Veanes worked on map modifications early on. Last-moment
remarks of the editor, Egon Börger, contributed to clarity.

References

[A00] Matthias Anlauff, “Xasm — an extensible component-based abstract
state machine language”, in Abstract State Machines: Theory and Ap-
plications, Y. Gurevich et al., editors, Springer-Verlag, Lecture Notes in
Computer Science 1912 (2000), 69–90.

[ASM] ASM Michigan web page, http://www.eecs.umich.edu/gasm, main-
tained by Jim Huggins.

[BG00] Andreas Blass and Yuri Gurevich, “Background, reserve, and Gandy ma-
chines,” in Computer Science Logic, P. Clote and H. Schwichtenberg, ed-
itors., Springer-Verlag, Lecture Notes in Computer Science 1862 (2000),
1–17.

[BG*] Andreas Blass and Yuri Gurevich, “Abstract state machines capture
parallel algorithms,” to appear. In the meantime, the paper can be found
at http://research.microsoft.com/~ gurevich.

[BGS99] Andreas Blass, Yuri Gurevich, and Saharon Shelah, “Choiceless polyno-
mial time,” Annals of Pure and Applied Logic 100 (1999), 141–187.

[Br95] Egon Börger, “Why Use Evolving Algebras for Hardware and Software
Engineering?”, in Theory and Practice of Informatics, M. Bartosek, J.
Staudek, J. Wiedermann, editors., Springer Verlag, Lecture Notes in
Computer Science 1012, 1995, 236–271.

[Br99] Egon Börger, “High level system design and analysis using Abstract
State Machines” in Current Trends in Applied Formal Methods, D. Hut-
ter, W. Stephan, P. Traverso, M. Ullman, editors., Springer Verlag, Lec-
ture Notes in Computer Science 1641, 1999, 1–43.

[BS00] Egon Börger and Joachim Schmid, “Composition and submachine con-
cepts for sequential ASMs,” in Computer Science Logic, P. Clote and H.
Schwichtenberg, editors., Springer-Verlag, Lecture Notes in Computer
Science 1862 (2000), 41–60.

[Bx97] Don Box, “Essential COM”, Addison Wesley Longman, 1997.
[FSE] Foundations of Software Engineering, Microsoft Research, web page,

http://research.microsoft.com/fse/.
[G93] Yuri Gurevich, “Evolving Algebras: An Attempt to Discover Semantics”,

Bull. European Assoc. for Theoretical Computer Science, no. 43, Feb.
1991, 264–284. [A slightly revised version appeared in Current Trends in
Theoretical Computer Science, G. Rozenberg and A. Salomaa, editors.,
World Scientific, 1993, 266–292.]

[G95] Yuri Gurevich, “Evolving algebra 1993: Lipari guide,” in Specification
and Validation Methods, E. Börger, ed., Oxford Univ. Press (1995) 9–
36.

[G97] Yuri Gurevich, “May 1997 Draft of the ASM guide,” Univ. of Michigan
Tech Report CSE-TR-336-97, found at [ASM].

[G00] Yuri Gurevich, “Sequential abstract state machines capture sequential
algorithms,” ACM. Trans. Computational Logic 1 (2000), 77–111.

[GSV01] Yuri Gurevich, Wolfram Schulte, and Margus Veanes, “Toward indus-
trial strength abstract state machines,” Tech. Report MSR-TR-2001-98,
Microsoft Research.

[S99] Joachim Schmid, “Executing ASM specifications with AsmGofer”,
http://www.tydo.de/AsmGofer, 1999.

951Gurevich Y., Tillmann N.: Partial Updates: Exploration

