
A Neural Abstract Machine

Egon Börger
Dipartimento di Informatica, Università di Pisa

boerger@di.unipi.it

Diego Sona
Dipartimento di Informatica, Università di Pisa

sona@di.unipi.it

Abstract: In an attempt to capture the fundamental features that are common to
neural networks, we define a parameterized Neural Abstract Machine (NAM) in such a
way that the major neural networks in the literature can be described as natural exten-
sions or refinements of the NAM . We illustrate the refinement for feedforward networks
with back-propagation training. The NAM provides a platform and programming lan-
guage independent basis for a comparative mathematical and experimental analysis
and evaluation of different implementations of neural networks. We concentrate our
attention here on the computational core (Neural Kernel NK) and provide abstract
interfaces for the other NAM components.

Key Words: neural networks, neural abstract machine, abstract state machines, dis-
tributed computation.

Category: D.2.1 - D.2.2 - F.1.1 - I.2.5

1 Introduction

There is a variety of models for neural networks, tailored to process different tasks
(classification, regression, clustering, etc.), using different structures (like arrays,
sequences, directed acyclic graphs [Giles and Gori(1998)]) and different training
techniques [Haykin(1999), Bishop(1995)]. Although most of these models share
certain basic features that are characteristic for neural networks, the simulators
that have been developed to support the fine tuning of a supposedly general
neural network to the particular task to be performed, typically only make use
of built-in libraries for different models, instead of being based upon model
similarities.

In this paper we define a parameterized Neural Abstract Machine (NAM)
in an attempt to capture the fundamental features that are common to neural
networks, in such a way that the major models in the literature can be de-
scribed as natural extensions or refinements of the NAM , e.g. by instantiating
the appropriate parameters. We illustrate the refinement for the case of feed-
forward networks with backpropagation training. The NAM can also be used
as a platform and programming language independent basis for a comparative
mathematical and experimental analysis and evaluation of different implemen-
tations of neural networks. We concentrate our attention on the computational

Journal of Universal Computer Science, vol. 7, no. 11 (2001), 1006-1023
submitted: 7/6/01, accepted: 1/10/01, appeared: 28/11/01 Springer Pub. Co.

core, called Neural Kernel (NK), and provide abstract interfaces for the other
components.

The NK we define comes with abstract and parameterized classes of basic
objects (e.g. computational units) and of actions to be performed (e.g. initializ-
ing the internal state of neural units, scheduling of computational tasks, etc.).
The mathematical framework we use is that of Abstract State Machines (ASMs
[Gurevich(1995)]), which provides the appropriate rigour together with the free-
dom of abstraction needed for our task. We suppose the reader to be familiar
with this notion. For a textbook definition we refer to [Stärk et al.(2001)]. We
exploit the enhancement of the characteristic built-in parallelism of ASMs by the
composition technique introduced in [Börger and Schmid(2000)] for structuring
large machines. This approach allows to view an entire submachine computation
as happening simultaneously with abstract atomic (non-durative) actions, pro-
viding the possibility to reuse machine components as shown in [Börger(2001)].

2 Neural Networks

A Neural Network (NN) can be defined as a directed graph of simple computing
units that are connected by weighted links. Its overall behaviour can be seen
as that of a black box: after having taken an input, it does some internal com-
putation and then yields an output. Thus for the input providing environment,
a neural network computation appears as a global atomic action on the input,
although the network behaviour is appropriately described by a finite sequence
of atomic actions of its computing units.

These units are divided into input units (the ones which for their subcom-
putation take some input from the environment), output units (the ones which
send their output to the environment and possibly to other units), and inter-
nal units (the other ones). Through the graph structure and the computational
model, the units come with a partial order that determines the scheduling of
unit computations, which are usually of data-flow type. Every computing unit
may have internal states associated to it and expects input to be provided, by
the environment and by the units preceding it with respect to the partial order,
and to be scheduled for its computation. In a given state, when scheduled, a
computing unit consumes its input by performing a computation that is consid-
ered as internal and atomic, resulting in a possible change of the internal state
and a propagation of the output to the units which follow in the given partial
order. For example, such a computation step for unit k may take the following
form:

netk =
n∑

i=0

wki · uki (1)

yk = f(netk) (2)

1007Boerger E., Sona D.: A Neural Abstract Machine

where n + 1 is the number of units sending their output to unit k, wki and uki

are respectively the weight and the input of the link connecting unit i to unit
k, and f is the activation function, which usually is nonlinear. The result yk is
propagated as input to all the following units.

The well-definedness of the global neural network step is guaranteed by the
condition that per input, each unit performs only one computation, together with
the common property of network graphs to be acyclic. When cycles are admitted,
they are usually appropriately delayed with respect to the environmental input,
but for example this does not hold for the Boltzmann machine [Haykin(1999),
Chap. 11].

Neural networks have two functioning modes, which can be called operative
and training. During the operative mode the data flow propagation as described
above goes in the direction of the arcs, starting at the input units, until the
output units are reached. For this reason we refer to this phase also as for-
ward propagation. Practically all neural networks exhibit this form of forward
propagation. A differentiation between different models comes through the train-
ing mode, to which we refer also as backward propagation mode for reasons to
be explained below. In this phase the internal parameters of the network may
be modified, in the example above the weights of the links connecting the ele-
ments (the neurons). The appropriate adaptation of these parameters is usually
achieved via a procedure, called training algorithm. In the case of so-called su-
pervised models, this algorithm optimizes the mean error made by the network
on a set of classified examples, which are supposed to come with the information
on the responses expected from the model.

A typical measure of the error is given by the following cost function:

J(W) =
1
2

∑
i∈Ou

||di − yi||2 (3)

where W is the matrix of all weights (adaptive parameters), yi and di are re-
spectively the actual and the desired output of the i-th output element, and Ou

is the set of output units.
The majority of training algorithms are based on the backward propagation

of error information. In back-propagation training, which is also called gradient
descent training, the adaptive parameters are modified by an amount which is
proportional to the gradient of the cost function and can be computed on the
basis of information which is available at a computational unit and its succes-
sor units. This inverse dependency implies an inverse propagation of data from
the output units to the input units [see Fig. 1]. Our abstract model for NK de-
fined below comes with this forward/backward feature, which can however be
appropriately refined also for unsupervised models [Sona and Sperduti(2001)].

1008 Boerger E., Sona D.: A Neural Abstract Machine

Backward

Forward
ui

u j

uk

u l

um

Figure 1: The bidirectional flow of data in a Neural Network trained with a
Gradient Descent based algorithm

3 The Neural Kernel

3.1 States of the Neural Kernel

The Neural Kernel NK interacts with the environment by taking input from it,
via a 0-ary monitored function input, and by providing its response as output
via a controlled 0-ary function output:

input : INPUT
output : OUTPUT

where we take input and output as sequences of abstract DATA, to be instantiated
later:

INPUT : DATA*
OUTPUT : DATA*

As a consequence we access by appropriate abstract functions certain types of
information that comes with the input and is needed to drive the network com-
putation, for example information on the initialization of units, tokens and iden-
tifiers associated to the input, or whether the NK should work in forward or
backward propagation mode, etc.

inputType : INPUT → INPUT TYPE
INPUT TYPE = {forward, backward}

This allows one to refine INPUT for specialized neural networks.
To be prepared for both a synchronous and asynchronous models of interac-

tion between the environment and NK , we use a shared function

newInputToBeConsumed : BOOL

through which the environment signals to the NK the presence of new unused
data, whereas when consuming the input, NK resets that function to avoid the
reuse of the same (occurrence of the) input. For the same reason we indicate the
control state of the NK by another Boolean valued function:

1009Boerger E., Sona D.: A Neural Abstract Machine

readyForNewComputation : BOOL

This function is controlled by NK and allows the environment to know if the
NK is performing an internal computation or whether it has terminated its
previous computation, so that the result can be found in the appropriate output
location and that NK is ready for a new input. In the next section we model
readyForNewComputation by modeNK = input.

As explained in the introduction, we view neural networks as composed
out of standard computational blocks, formally reflected as elements of a do-
main UNIT. As a consequence of this block diagram view [Santini et al.(1995)]
[Wan and Beaufays(1998)] [Nerrand et al.(1993)] [Berthold and Fischer(1997)]
[Campolucci et al.(2000)], units can be instantiated to neurons, synapses, layers
of neurons, even to neural networks, but also to products of vectors and matrixes,
if one wants to reflect the architectural view [Tsoi(1998b)] and [Tsoi(1998a)].
Each unit can be seen as an agent, recognizable by the NK via a function that
identifies all the units which currently constitute the neural network:

network : P(UNIT)

where P stands for power-set. The above described input units, which constitute
the input side of the interface of a Neural Network, and the analogous output
units, which constitute the output side of the interface with the environment,
are formalized by the following two functions:

inputUnits : P(UNIT)
outputUnits : P(UNIT)

The information flow among the units is reflected by two functions, both
monitored by NK and controlled by the environment, which intrinsically describe
the network topology. By this separation of responsibilities one can reflect that
for each new input elaboration performed by NK , the environment could update
these functions, with the NK automatically adapting itself to the new network
topology. In particular, these two functions describe the units from which a given
unit receives information, respectively the units which are the destination of the
information produced by the given unit:

source : UNIT → P(UNIT)
dest : UNIT → P(UNIT)

We treat the input of a unit as part of its internal state, which is updated
when the source units send out the result of their computation. In this way the
output of a unit can be retrieved from the input locations of its destination
units. This is formalized, for forward and backward input type, by two functions
describing the input coming from the external environment:

1010 Boerger E., Sona D.: A Neural Abstract Machine

inForwardext : UNIT → DATA*
inBackwardext : UNIT → DATA*

These two functions for external input can be defined as a function of the given
unit and of (a copy of) the environmental input.

inForwardext(u) = getNetInput(u, inputCopy)
inBackwardext(u) = getNetError(u, inputCopy)

where getNetInput and getNetError are two auxiliary functions, providing the
appropriate projection of the external input vector and to be instantiated when
the necessity arises.

getNetInput : UNIT × INPUT → DATA*
getNetError : UNIT × INPUT → DATA*

The two functions for internal input are functions of the owner unit and of the
sender unit.

inForward int : UNIT × UNIT → DATA
inBackward int : UNIT × UNIT → DATA

This separation of different input functions allows us to associate the (free)
parameters—the weights of the connections—with the respective input signal to
be transmitted.

3.2 Rules of the Neural Kernel

We define NK as a machine that operates in two distinct and mutually exclusive
phases. In its input phase, NK waits for external data. When new input has
arrived, NK starts the corresponding neural computation and enters its compute
phase, in which it is isolated from the environment and performs all the unit
computations until no more units can be executed (we will see below that as
part of this isolation, in the rule activateNeuralKernel NK makes an internal
copy of the input), then the NK returns to the waiting mode for new input,
preparing itself for a new input elaboration, and possibly providing the result of
the terminated data elaboration. This view of NK is formalized by the following
ASM rule (see also the equivalent flowchart formulation in [Fig. 2], which uses
the equivalence between these diagrams and ASM rules defined in [Börger(1999),
Section 3.2] and [Stärk et al.(2001), pg.16 Fig.2.1]).

1011Boerger E., Sona D.: A Neural Abstract Machine

activate
Neural
Kernel

input compute

NK step

clearState
more units to
be computed

be consumed
new input to

Figure 2: The structure of one macro step of NK

NeuralKernel =
if (modeNK = input and newInputToBeConsumed) then

modeNK := compute
activateNeuralKernel

if (modeNK = compute) then
if (moreUnitsToBeComputed) then

NK-Step
else

clearState
modeNK := input

As we are going to illustrate in the following sections, by refining this ab-
stract high-level description, i.e. defining the submachines occurring in it, one
can obtain a variety of instantiations of the NK , depending on the particular
computational model to be described.

3.2.1 Activation, Step, and Termination of NK

The activateNeuralKernel machine has to initialize the NK for the new input
computation, which should not be influenced by newly arriving input. This can
be guaranteed by switching to the compute mode and by working in this mode
with an internal copy of the current input, simultaneously updating the function
newInputToBeConsumed (whereby it is signaled also to the environment that
the new input has been read for the elaboration). Working with a copy of the
input taken at the moment of starting the NK -subcomputation is compatible
with both a synchronous and an asynchronous model of interaction between the

1012 Boerger E., Sona D.: A Neural Abstract Machine

environment and NK . The elaboration itself is prepared by scheduling the units
that are to be executed next, in reaction to the new external input. This is
formalized by the following definition:

activateNeuralKernel =
newInputToBeConsumed := false
copyNetInput(input)
scheduledUnits := nextExecutableUnits(∅, inputType(input))

where copying the environmental input can be defined as:

copyNetInput(input) =
inputCopy := input
inputType := inputType(input)

NK has terminated its current internal computation if there are no more units
that need to be processed, i.e. when the set scheduledUnits becomes empty:

moreUnitsToBeComputed = scheduledUnits
= ∅

For the updates of scheduledUnits, which happen during the initialization
of NK and at each NK -step (see below), we use an auxiliary unit selection
function nextExecutableUnits, which schedules the units to be activated in the
next step, taking into account the set of currently computing units and the input
type. In this way we separate the scheduling and the unit computation (see
below) into two independent machine components, which can then be refined
in an orthogonal manner to reflect different scheduling and unit computation
strategies.

Technically, the NK-Step rule realizes the orthogonality of unit computation
and unit scheduling by exploiting the parallelism of ASMs. All the units that
have to process their input information are simultaneously called for execution,
and the set of units that will be processed in the next NK step is determined.

NK-Step =
forall (u ∈ scheduledUnits) do

computeUnit(u)
scheduledUnits := nextExecutableUnits(scheduledUnits, inputType)

The clearState rule has been introduced only to prepare instantiations of
NK where upon termination of a round, NK does some specific actions. For the
moment the reader may consider it as a skip statement.

clearState =
skip

1013Boerger E., Sona D.: A Neural Abstract Machine

3.2.2 The Unit Computation

The computeUnit rule changes the state of the given unit and propagates the
result of the unit computation as input to the following units or as network
output to the environment. The state of the units can be rather complex, and our
abstract formulation can be refined by a variety of neural network instantiations.
Here we specify only that it can change in two different ways, depending on the
input type.

computeUnit(u) =
if (inputType = forward) then

let (result = forwardValue(u)) in
propagateForward(u, result)
updateLocalStateForward(u, result)

if (inputType = backward) then
let (result = backwardValue(u)) in

propagateBackward(u, result)
updateLocalStateBackward(u, result)

For reasons of modular design, in this rule we use abstract functions to hide
the specifics of the internal unit computation that determines the result to be
propagated and the resulting state change:

forwardValue : UNIT → RESULT
backwardValue : UNIT → RESULT
updateLocalStateForward(UNIT, RESULT)
updateLocalStateBackward(UNIT, RESULT)

The forward propagation transmits the computed value to every destination
unit of the given unit, and in case of an output unit also to the corresponding
output location.

propagateForward(u, dataToPropagate) =
forall (d ∈ dest(u)) do

inForward int(d, u) := intValueForw(d, u, dataToPropagate)
if (u ∈ outputUnits) then

output(u) := extValueForw(u, dataToPropagate)

We proceed similarly for the backward propagation where the result of the
local computation is transmitted to the units that precede the current unit.

propagateBackward(u, dataToPropagate) =
forall (s ∈ source(u)) do

inBackward int(s, u) := intValueBack(s, u, dataToPropagate)
if (u ∈ inputUnits) then

outputBack(u) := extValueBack(u, dataToPropagate)

1014 Boerger E., Sona D.: A Neural Abstract Machine

w
z

y v

u
x

s

t

orderedUnitsForward = [{x, y}, {z}, {u, v, w}, {s, t}]
orderedUnitsBackward = [{s, t}, {u, v, w}, {x, z}, {y}]

Figure 3: Coding the data-flow propagation into the scheduler

As part of the propagation there is also a local data transformation, which
we describe in terms of abstract functions, to be refined for each particular unit
instantiation.

intValueForw : UNIT × UNIT × RESULT → DATA
extValueForw : UNIT × RESULT → DATA
intValueBack : UNIT × UNIT × RESULT → DATA
extValueBack : UNIT × RESULT → DATA*

3.2.3 Scheduling

The scheduling process appears in our model in the form of two functions.

scheduledUnits : P(UNIT)
nextExecutableUnits : P(UNIT) × INPUT TYPE → P(UNIT)

The controlled function scheduledUnits maintains the information on the
units which are currently ready for the computation, and is updated using the
scheduling function nextExecutableUnits. This description reflects the multitude
of possible schedulers. One possible refinement is to select the units depending
upon an ordering among them, which is reasonably assumed to be updatable by
the environment and thereby appropriately reflected by two functions:

orderedUnitsForward : P(UNIT)*
orderedUnitsBackward : P(UNIT)*

The graph depicted in [Figure 3] shows an example how the flow of data in a
neural network can be scheduled within the two ordering functions.

The scheduler itself then becomes a function that is derived from the unit
ordering as follows:

1015Boerger E., Sona D.: A Neural Abstract Machine

nextExecutableUnits(U, inputType) =
case (inputType) of

forward → selectNextUnits(U, orderedUnitsForward)
backward → selectNextUnits(U, orderedUnitsBackward)

endcase

where an auxiliary function selectNextUnits allows one to still vary the actual
schedule, e.g. by different search algorithms through the given ordering.

selectNextUnits : P(UNITS) × P(UNITS)* → P(UNITS)

As another example we consider the specialization of nextExecutableUnits for
a typical feedforward neural network model without internal feedbacks, trained
with the backpropagation algorithm. What characterizes this model is that the
activation of neural units follows the data-flow principle for both forward and
backward information flow, in the sense that a unit can be activated only when
all its inputs are ready.

It suffices to associate to each unit a flag actionState indicating whether the
unit has been already activated during the elaboration of the current environ-
mental input. It is assumed (and has to be guaranteed upon instantiating NK)
that initially, all the units get their flag set to waiting. Upon activating a unit,
its flag is updated to executed as an extension of the machines updateLocalState-
Forward respectively updateLocalStateBackward. In this way, a unit has all the
inputs ready and becomes eligible for the scheduler, when all the preceding units
have been activated. This allows to refine the scheduler as follows:

nextExecutableUnits(U, inputType) =
case (inputType) of

forward →
{u ∈ network | actionState(u)
= executed and

∀u′ ∈source(u) : u′ ∈ U or actionState(u′) = executed}
backward →

{u ∈ network | actionState(u)
= executed and
∀u′ ∈dest(u) : u′ ∈ U or actionState(u′) = executed}

The clearState rule has to be refined to clear all the actionState flags.

clearState =
forall (u ∈ network) do

actionState(u) := waiting

1016 Boerger E., Sona D.: A Neural Abstract Machine

uin
win

wi1
ui1

iy

j
ijiji

net = w uΣ y = f net()i i

Figure 4: The figure schematize the typical computations performed by a neural
unit during its forward propagation.

4 Refinement for Feedforward NNs with Backpropagation
Training

4.1 Feedforward and Backpropagation Training

In a feedforward neural network, the computation of the neurons—the compu-
tational units— in the operative mode is described by the equations 1 and 2 [see
also Fig. 4].

In the backpropagation training mode, the weights of the links connecting the
neurons are modified by an amount(∆wij), computed deriving the cost function
(3) with respect to the weights. This yields an inverse propagation of data from
the output neurons to the input neurons, as described by the following equations
for the backpropagation in the i-th computational unit [see Fig. 1]:

∆wij = −ηδiuij (4)

δi =

−f ′
i(net i) · (di − yi) if i is an output unit

−f ′
i(net i) ·

(∑
k∈dest(i) δkwki

)
otherwise

(5)

where wij are the weight parameters associated to the links from unit j to unit i,
∆wij is the amount of weight change inferred by the error made by the network,
f ′

i is the first derivative of the activation function, and η is the learning rate of the
algorithm. If the neuron is an output unit, its internal weights update depends
on the error information (di − yi) coming from the environment; otherwise, the
internal weights update depends on the δs backpropagated from the following
units.

1017Boerger E., Sona D.: A Neural Abstract Machine

4.2 Refining the State for Neurons

The state—we refer to it as status—of the neural units, which comprises the
internal and external input functions, is enriched by additional functions for the
internal and external weights (the adaptive parameters) and the deltaWeights,
where the latter are used for storing the information on the weight changes for
training the network. We also include the net function into the refined state, to
be computed and used during both forward and backward propagation. Formally
this comes up to have a status function that associates to each unit its STATUS.

status : UNIT → STATUS

where the ASM domain STATUS can be defined as:

STATUS =(inForward int : UNIT → DATA,
inForwardext : DATA*,
inBackward int : UNIT → DATA,
inBackwardext : DATA*,
weights int : UNIT → WEIGHT,
weightsext : WEIGHT*,
deltaWeightsint : UNIT → WEIGHT,
deltaWeightsext : WEIGHT*,
net : NET)

Without loss of generality we set

WEIGHT = float
NET = float

Below, instead of status we use directly its projections. In particular, for each
function defined in STATUS, we define a function with the same signature as
expressed in object-oriented notation in the following example:

inForward int(u, v) = status(u).inForward int(v)

where status(u).inForward int(v) stands for inForward int(status(u))(v).
When transmitting information from the environment to neural units or vice
versa, also the receiving or sending unit name is considered as part of the sent
data. One can reflect this by stipulating that data are pairs of units and message
content (the proper value of the data):

DATA = (UNIT, RESULT)

RESULT = float

Below we will only use the corresponding second projection function, defined
both for elements and sequences of DATA:

1018 Boerger E., Sona D.: A Neural Abstract Machine

result : DATA → RESULT
result : DATA* → RESULT*

4.3 Refining the Forward Unit Computation

The submachine computeUnit consists of three constituent machines for com-
puting and propagating the local result and for updating the local state, which
we are going to instantiate in this section for input of type forward.

The local result computing function forwardValue can be refined as follows
to compute the forward output of a neuron as described by equations 1 and 2:

forwardValue(u) =
let netValue = scalarProduct (result(inForwardext(u)), weightsext(u))

+
∑

s∈source(u) result(inForward int(u, s)) · weights int(u, s)
in

activationFunction(netValue)

where activationFunction stands for the nonlinear function f in equation 2 and
scalarProduct is a derived function that computes the product of two vectors.
The two value forwarding functions extValueForw and intValueForw, used by
propagateForward, in this case simply pass the data to be propagated unchanged,
formally:

extValueForw : UNIT × RESULT → DATA
extValueForw(u, dataToPropagate) = (u, dataToPropagate)
intValueForw : UNIT × UNIT × RESULT → DATA
intValueForw(d, u, dataToPropagate) = (undef, dataToPropagate)

The update of the local state of a unit is refined for input of type forward as
computing net, formally:

updateLocalStateForward(u, forwardResult) =
net(u) := scalarProduct(result(inForwardext(u)), weightsext(u)) +∑

s∈source(u) result(inForward int(u, s)) · weights int(u, s)

The same equation could obviously be used to define net not as controlled but
as derived function.

4.4 Refining the Backward Unit Computation

In this section we instantiate the three abstract constituents of the submachine
computeUnit for inputs of type backward.

The local result computing function backwardValue can be refined as follows
to compute the backward output of a neuron as described by equations 4 and 5:

1019Boerger E., Sona D.: A Neural Abstract Machine

backwardValue(u) = derivedActivationFunction(net(u)) ·
(
∑

result(inBackwardext(u)) +∑
d∈dest(u) result(inBackward int(u, d)))

where derivedActivationFunction is the first derivative of the neural activation
function, the first sum is done over all result elements of the sequence in in-
Backwardext(u) coming from the environment, and the second sum is done over
all δs coming from the following units. In this way we take the sum of all error
contributions that are backpropagated to the considered unit.

The machine propagateBackward uses two abstract value functions which can
here be refined to pass their arguments to an auxiliary function vectorResult that
computes a vector of DATA containing the backpropagated δs which are to be
transmitted to the environment. Formally:

extValueBack : UNIT × RESULT → DATA*
extValueBack(u, dataToPropagate) =

vectorResult(u, dataToPropagate, weightsext(u))

intValueBack : UNIT × UNIT × RESULT → DATA
intValueBack(d, u, dataToPropagate) =

(undef, dataToPropagate · weightsint(u, d))

where vectorResult is a function that given the current unit name, the message
to transmit, and the list of weights, prepares the list of DATA to be passed to
the environment.

vectorResult : UNIT × RESULT × WEIGHTS* → DATA*
vectorResult(u, data, weights) =

if (length(weights) ≥ 1) then
let (value = head(weights)· data) in

[(u, value)] · vectorResult(u, data, tail(weights))
else

[]

The update of the unit local state is refined for input of type backward as follows:

1020 Boerger E., Sona D.: A Neural Abstract Machine

updateLocalStateBackward(u, backwardResult) =
if (updateWeights(inputCopy)) then

weightsext(u) := weightsext(u)+ η(u) · (deltaWeightsext(u)
+ backwardResult · result(inForwardext(u)))

deltaWeightsext(u) := [0, . . . , 0]
forall (s ∈ source(u)) do

weights int(u, s) := weights int(u, s) + η(u)· (deltaWeightsint(u, s)
+ backwardResult · result(inForward int(u, s)))

deltaWeightsint(u, s) := 0
else

deltaWeightsext(u) := deltaWeightsext(u)+
backwardResult · result(inForwardext(u)))

forall (s ∈ source(u)) do
deltaWeightsint(u, s) := deltaWeights int(u, s)+

backwardResult · result(inForward int(u, s)))

where updateWeights is a projection function that extracts the required flag
from the copy of the input location. With this flag the environment signals to
the NK whether to update the adaptive parameters of the neural network or to
temporarily store the changes leaving the parameters unchanged.

5 Conclusion and Future Work

We have defined the computational kernel of a Neural Abstract Machine, making
explicit the basic computational paradigm of a generic neural network. We have
refined this abstract machine in a natural way to a machine for feedforward
neural networks with backpropagation training. In [Sona and Sperduti(2001)]
an alternative refinement for such nets is provided where the units can be
synapses, neurons and functional units. Also the Boltzmann machine is derived
there as an instance of our abstract neural machine. Work in progress is on
NAM specification for training algorithms for recurrent neural networks (BPTT
[Rumelhart et al.(1986)] and RTRL [Williams and Zipser(1989)]) for sequences
and structures [Giles and Gori(1998)]. We plan also to work on further refine-
ments reflecting other computational paradigms (fuzzy, probabilistic, symbolic,
etc.) and on other abstract components, one for controlling the interaction be-
tween the environment and the neural kernel (e.g. providing inputs and taking
outputs, dynamically creating and initializing or destroying networks or single
computational units), one for a scheduler, one for a debugger, one to access
databases for the persistence of data, models and programs, etc.

1021Boerger E., Sona D.: A Neural Abstract Machine

Acknowledgements

We are grateful to Alessandro Sperduti for suggesting to build an abstract neural
machine and for helpful discussions.

References

[Berthold and Fischer(1997)] Berthold, M. and Fischer, I., 1997. Formalizing Neural
Networks Using Graph Transformations. In Proc. of the IEEE Int. Conf. on Neural
Networks, vol. 1, pp. 275–280. IEEE.

[Bishop(1995)] Bishop, C., 1995. Neural Networks for Pattern Recognition. Oxford
University Press.

[Börger(1999)] Börger, E., 1999. High Level System Design and Analysis using Ab-
stract State Machines. In Current Trends in Applied Formal Methods (FM-Trends
98), eds. D. Hutter, W. Stephan, P. Traverso, and M. Ullmann, vol. 1641 of LNCS ,
pp. 1–43. Berlin Heidelberg New York: Springer-Verlag.

[Börger(2001)] Börger, E., 2001. Design for Reuse via Structuring Techniques for
ASMs. In Proc. EUROCAST’2001 (Las Palmas). Springer LNCS.

[Börger and Schmid(2000)] Börger, E. and Schmid, J., 2000. Composition and Sub-
machine Concepts for Sequential ASMs. In Computer Science Logic (Gure-
vich Festschrift). Proc. 14th International Workshop CSL, eds. P. Clote and
H. Schwichtenberg, Springer LNCS 1862, pp. 41–60.

[Campolucci et al.(2000)] Campolucci, P., Uncini, A., and Piazza, F., 2000. A Signal-
Flow-Graph Approach to On-line Gradient Calculation. Neural Computation 12,
no. 8:1901–1927.

[Giles and Gori(1998)] Giles, C. and Gori, M., eds., 1998. Adaptive Processing of Se-
quences and Data structures. LNAI. Heidelberg, Germany: Springer.

[Gurevich(1995)] Gurevich, Y., 1995. Evolving Algebras 1993: Lipari Guide. In Speci-
fication and Validation Methods, ed. E. Börger, pp. 9–36. Oxford University Press.

[Haykin(1999)] Haykin, S., 1999. Neural Networks, A Comprehensive Foundation.
Prentice Hall, second edn.

[Nerrand et al.(1993)] Nerrand, O., Roussel-Ragot, P., Personnaz, L., Dreyfus, G., and
Marcos, S., 1993. Neural Networks and Nonlinear Adaptive Filtering: Unifying
Concepts and New Algorithms. Neural Computation 5, no. 2:165–199.

[Rumelhart et al.(1986)] Rumelhart, D. E., Hinton, G. E., and Williams, R. J., 1986.
Learning Internal Representations by Error Propagation. In Parallel Distributed
Processing: Explorations in the Microstructure of Cognition. Vol. 1: Foundations,
eds. D. Rumelhart, J. McClelland, and the PDP Research Group. MIT Press.

[Santini et al.(1995)] Santini, S., Bimbo, A. D., and Jain, R., 1995. Block structured
recurrent neural networks. Neural Networks 8:135–147.

[Sona and Sperduti(2001)] Sona, D. and Sperduti, A., 2001. Modeling in the neural
abstract machine framework. LFTNC 2001 - NATO Advanced Research Workshop
on Limitations and Future Trends in Neural Computation- Siena, Italy 22 - 24
October 2001. Accepted.

[Stärk et al.(2001)] Stärk, R., Schmid, J., and Börger, E., 2001. Java and the Java Vir-
tual Machine: Definition, Verification, Validation.. Berlin-Heidelberg-New York:
Springer-Verlag.

[Tsoi(1998a)] Tsoi, A., 1998a. Gradient Based Learning Methods. LNCS 1387:27–62.
[Tsoi(1998b)] Tsoi, A., 1998b. Recurrent Neural Network Architectures: An Overview.

LNCS 1387:1–26.
[Wan and Beaufays(1998)] Wan, E. and Beaufays, F., 1998. Diagrammatic Methods

for Deriving and Relating Temporal Neural Network Algorithms. Lecture Notes in
Computer Science 1387:63–98.

1022 Boerger E., Sona D.: A Neural Abstract Machine

[Williams and Zipser(1989)] Williams, R. J. and Zipser, D., 1989. A Learning Algo-
rithm for Continually Running Fully Recurrent Neural Networks. Neural Compu-
tation 1:270–280.

1023Boerger E., Sona D.: A Neural Abstract Machine

