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Abstract: We introduce a logic for non distributed, deterministic Abstract State Ma-
chines with parallel function updates. Unlike other logics for ASMs which are based
on dynamic logic, our logic is based on an atomic predicate for function updates and
on a definedness predicate for the termination of the evaluation of transition rules. We
do not assume that the transition rules of ASMs are in normal form, for example, that
they concern distinct cases. Instead we allow structuring concepts of ASM rules in-
cluding sequential composition and possibly recursive submachine calls. We show that
several axioms that have been proposed for reasoning about ASMs are derivable in
our system. We provide also an extension of the logic with explicit step information
which allows to eliminate modal operators in certain cases. The main technical result
is that the logic is complete for hierarchical (non-recursive) ASMs. We show that, for
hierarchical ASMs, the logic is a definitional extension of first-order predicate logic.

Key Words: Abstract State Machines, dynamic logic, modal logic, logical foundations
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1 Introduction

Gurevich’s Abstract State Machines (ASMs) are widely used for the specification
of software, hardware, algorithms, and the semantics of programming languages
[Gurevich 1993, Börger and Huggins 1998]. Most logics that have been proposed
for ASMs are based on variants of dynamic logic. There are, however, fundamen-
tal differences between the imperative programs of dynamic logic and ASMs. In
dynamic logic, states are represented with variables. In ASMs, states are repre-
sented with dynamic functions. The fundamental program constructs in dynamic
logic are non-deterministic iteration (star operator) and sequential composition.
The basic transition rules of ASMs consist of guarded parallel function updates.
Since parallel function updates may conflict, a logic for ASMs must have a clear
notion of consistency of transition rules. Therefore, rather than to encode ASMs
into imperative programs of dynamic logic or extend the axioms and rules of
dynamic logic to ASMs, we propose new axioms and rules which are directly
based on an update predicate for transition rules.

Since ASMs are special instances of transition systems, our logic contains a
modal operator, too [see van Benthem and Bergstra 1995]. We do, however, not
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stick to modal logic, since in some situations it can be more convenient and even
more economic to use functions with an additional argument that specifies the
nth state of the run of an ASM. This has been shown to be useful for proving
the equivalence of ASMs, e.g. for compiler correctness proofs from Prolog to the
WAM [Schmitt 1994] or from Java to the JVM [Stärk et al. 2001].

What comes closest to our system is known as dynamic logic with array
assignments [Harel 1983, Harel et al. 2000]. The substitution principle which
is used in its axiomatization is derivable in our system [see Lemma 18]. The
dynamic logic with array assignments, however, is not concerned with parallel
execution of assignments and therefore does not need a notion of consistency.

[Groenboom and Renardel de Lavalette 1995] introduce the Formal Language
for Evolving Algebras (FLEA), a system for formal reasoning about abstract
state machines. Their system is in the tradition of dynamic logic and contains
for every rule R a modal operator [R]. The intended meaning of [R]ϕ is that ϕ
holds always after the execution or R. The logic of their formal language contains
besides true and false a third truth-value which stands for undefined. Although
they consider parallel composition of transition rules, they have no formal notion
of consistency in their system. We adopt their modal operator such that the
basic axioms of their system are derivable in our logic [see Lemma 13]. We use,
however, the two-valued logic of the classical predicate logic.

[Schönegge 1995] extends the dynamic logic of the KIV system (Karlsruhe
Interactive Verifier) to turn it into a tool for reasoning about abstract state ma-
chines. The transition rules of ASMs are considered as imperative programs of
dynamic logic. While-programs of dynamic logic are used as an interpreter for
abstract state machines; loop-programs are used to apply an ASM a finite num-
ber of times. Schönegge’s rules for simultaneous function updates and parallel
composition of transition rules are derivable in our system [see Lemma 16]. His
sequent calculus is mainly designed as a practical extension of the KIV system
and not as a foundation for reasoning about transition rules and ASMs.

[Schellhorn and Ahrendt 1997] simulate abstract state machines in the KIV
system by formalizing dynamic functions as association lists, serializing parallel
updates and transforming transition rules into flat imperative program of the un-
derlying dynamic logic. [Schellhorn 1999] is able to fully mechanize a correctness
proof of the Prolog to WAM compilation in his dissertation. He argues that the
inconsistency of an ASM (clash in simultaneous updates) can only be detected
when the ASM is in normal form and that the transformation of the ASM into
normal form by a pre-processor is more efficient than a formalization of consis-
tency in terms of logical axioms as we do it in our system. We do think that a
suitable theorem prover can automatically process and simplify our consistency
conditions [see Lemma 11 and Table 5] without problems.

[Poetzsch-Heffter 1994] introduces a basic logic for a class of ASMs consisting
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of simultaneous updates of 0-ary functions (dynamic constants) and if-then-else
rules only. His basic axiom states that the truth of the weakest backwards trans-
former of a formula implies the truth of the formula in the next state. He then
derives partial correctness logics for a class of simple imperative programming
languages by specifying their semantics with ASMs of his restricted class. His
basic axiom is derivable in our system [see Lemma 19].

[Gargantini and Riccobene 2000] show how the PVS theorem prover can
provide tool support for ASMs. They show how ASMs can be encoded in PVS
(and hence in the underlying formal system which is Church’s simple theory of
types). Functions are encoded as PVS functions and an interpreter for ASMs is
implemented in PVS. The parallel rule application is serialized. The abstraction
level of the abstract states is preserved by assuming properties of certain static
functions rather than by implementing (explicitly defining) them in PVS. They
do not provide a technique for proving consistency of ASMs as we do in our logic.
We think that for verification of large ASMs a theorem prover like PVS should
directly provide support for transition rules such that the overhead introduced
by the encoding is avoided [see Shankar 2000].

The main technical result of this article is that the logic is complete for so-
called hierarchical ASMs (which do not contain recursive rule definitions). The
reader may wonder why a logic for a computationally universal mechanism like
hierarchical ASMs can be complete at all? The answer is that the logic is not
able to talk about ASM runs. Instead, the logic is talking about single steps of an
ASM, only. The logic is complete for statements about single steps of an ASM like
invariants of rules, consistency conditions for rules, or step-by-step equivalence of
rules. Moreover, the completeness theorem is for the uninterpreted logic where
the static functions do not have a fixed standard interpretation. If we allow
recursive rule definitions, then the logic cannot be complete, since iteration and
while-loops can be recursively defined and therefore it is possible to talk about
the outcome of ASMs runs.

The plan of this paper is as follows. In [Section 2] we give a short overview
on ASMs with sequential composition and (possibly recursive) rule definitions.
After some considerations on formalizing the consistency of transition rules in
[Section 3], we introduce in [Section 4] the basic axioms and rules of our logic.
In [Section 5] we argue why we restrict the logic to deterministic ASMs only. In
[Section 6] we prove that the logic is complete for hierarchical (non-recursive)
ASMs. Finally, in [Section 7], we consider an extension of the basic system where
the dynamic functions are augmented by an additional argument which indicates
the value of the dynamic function in the nth state. A preliminary version of the
paper appeared in the proceedings of CSL ’01 [Stärk and Nanchen 2001].
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2 ASM Rules and Update Sets

The notion of an abstract state is the classical notion of a mathematical struc-
ture A for a vocabulary Σ consisting of a a non-empty set |A| and of functions
fA from |A|n to |A| for each n-ary function name f of Σ. The terms s, t and
the first-order formulas ϕ, ψ of the vocabulary Σ are interpreted as usual in the
structure A with respect to a variable assignment ζ. The value of a term t in
the structure A under ζ is denoted by [[t]]Aζ ; the truth value of a formula ϕ in A

under ζ is denoted by [[ϕ]]Aζ [see Table 1]. The variable assignment which is ob-
tained from ζ by assigning the element a to the variable x is denoted by ζ a

x . By
FV(t) and FV(ϕ) we denote the set of free variables of t and ϕ.

Abstract State Machines (ASMs) are systems of finitely many transition rules
which update some of the functions of the vocabulary Σ in a given state at some
arguments. The functions of the vocabulary Σ are divided into static functions
which cannot be updated by an ASM and dynamic ones which typically do
change as a consequence of updates by the ASM. The transition rules R, S of
an ASM are syntactic expressions generated as follows (the function arguments
can be read as vectors):

1. Skip Rule: skip
Meaning: Do nothing.

2. Update Rule: f(t) := s

Syntactic condition: f is a dynamic function name of Σ
Meaning: In the next state, the value of f at the argument t is updated to s.

3. Block Rule: R S

Meaning: R and S are executed in parallel.
4. Conditional Rule: if ϕ then R else S

Meaning: If ϕ is true, then execute R, otherwise execute S.
5. Let Rule: let x = t in R

Meaning: Assign the value of t to x and execute R.
6. Forall Rule: forall x with ϕ do R

Meaning: Execute R in parallel for each x satisfying ϕ.
7. Sequence Rule: R ; S

Meaning: R and S are executed sequentially, first R and then S.
8. Try Rule: try R else S

Meaning: If R is consistent, then execute R, otherwise execute S.
9. Call Rule: ρ(t)

Meaning: Call ρ with parameter t.

A rule definition for a rule name ρ is an expression ρ(x) = R, where R is a
transition rule in which there are no free occurrences of variables except of x.
Rules are called by name. This means that in a call ρ(t) the variable x is replaced
in the body R of the rule by the parameter t. The parameter t is not evaluated in
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the state where the rule is called but only later when it is used in the body (maybe
in different states due to sequential compositions). Call-by-value evaluation of
rule calls can be simulated as follows:

ρ(y) = let x = y in R

Then upon calling ρ(t) the parameter t is evaluated in the same state.
The syntax of rules is related to the named parameterized ASM rules in

[Börger and Schmid 2000] which include also recursive definitions of transition
rules. Recursive rule definitions in combination with sequential compositions of
transition rules are maybe too powerful and not in the spirit of the basic ASM
concept [Gurevich 1993]. Nevertheless we include them and solve the technical
problems that arise in the logic with an explicit definedness predicate.

Definition 1 (ASM). An abstract state machine consists of a vocabulary Σ,
an initial state A for Σ, a rule definition for each rule name, and a distinguished
rule name of arity zero called the main rule name of the machine.

The semantics of transition rules is given by sets of updates. Since due to the
parallelism (in the Block and the Forall rules), a transition rule may prescribe to
update the same function at the same arguments several times, such updates are
required to be consistent. The concept of consistent update sets is made more
precise by the following definitions.

Definition 2 (Update). An update for A is a triple 〈f, a, b〉, where f is a dy-
namic function name, and a and b are elements of |A|.

The meaning of the update is that the interpretation of the function f in A has to
be changed at the argument a to the value b. The pair of the first two components
of an update is called a location. An update specifies how the function table of
a dynamic function has to be updated at the corresponding location. An update
set is a set of updates.

Definition 3 (Consistent update set). An update set U is called consistent,
if it satisfies the following property: If 〈f, a, b〉 ∈ U and 〈f, a, c〉 ∈ U , then b = c.

This means that a consistent update set contains for each function and each
argument at most one value. If an update set U is consistent, it can be fired in
a given state. The result is a new state in which the interpretations of dynamic
function names are changed according to U and nothing else changes.

Definition 4 (Firing of updates). The result of firing a consistent update
set U in a state A is a new state U(A) with the same universe as A satisfying
the following two conditions for the interpretations of function names f of Σ:
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[[s = t]]Aζ :=

�
true , if [[s]]Aζ = [[t]]Aζ ;
false, otherwise.

[[¬ϕ]]Aζ :=

�
true , if [[ϕ]]Aζ = false;
false, otherwise.

[[ϕ ∧ ψ]]Aζ :=

�
true , if [[ϕ]]Aζ = true and [[ψ]]Aζ = true;
false, otherwise.

[[ϕ ∨ ψ]]Aζ :=

�
true , if [[ϕ]]Aζ = true or [[ψ]]Aζ = true ;
false, otherwise.

[[ϕ→ ψ]]Aζ :=

�
true , if [[ϕ]]Aζ = false or [[ψ]]Aζ = true ;
false, otherwise.

[[∀xϕ]]Aζ :=

�
true , if [[ϕ]]Aζ a

x
= true for all a ∈ |A|;

false, otherwise.

[[∃xϕ]]Aζ :=

�
true , if there exists an a ∈ |A| with [[ϕ]]Aζ a

x
= true ;

false, otherwise.

Table 1: The semantics of formulas.

1. If 〈f, a, b〉 ∈ U , then fU(A)(a) = b.
2. If there is no b with 〈f, a, b〉 ∈ U , then fU(A)(a) = fA(a).

Since U is consistent, the state U(A) is determined in a unique way. Notice that
only those locations can have a new value in state U(A) with respect to state A

for which there is an update in U .
The composition ‘U ; V ’ of two update sets U and V is defined such that the

following equation is true for any state A:

(U ; V )(A) = V (U(A))

The equation says that applying the update set ‘U ; V ’ to state A should be
the same as first applying U and then V . Hence, ‘U ; V ’ is the set of updates
obtained from U by adding the updates of V and overwriting updates in U which
are redefined in V . If U and V are consistent, then U ; V is consistent, too.

Definition 5 (Composition of update sets).The composition of two update
sets U and V is defined by U ; V := {〈f, a, b〉 ∈ U | ¬∃c 〈f, a, c〉 ∈ V } ∪ V .

In a given state, a transition rule of an ASM produces for each variable
assignment an update set. Since the rule can contain recursive calls to other
rules, it is also possible that the rule does not terminate and has no semantics
at all. Therefore, the semantics of ASM rules is given by an inductive definition
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[[skip]]Aζ � ∅ (skip)

[[f(s) := t]]Aζ � {〈f, a, b〉} if a = [[s]]Aζ and b = [[t]]Aζ (upd)

[[R]]Aζ � U [[S]]Aζ � V

[[R S]]Aζ � U ∪ V (par)

[[R]]Aζ � U

[[if ϕ then R else S]]Aζ � U
if [[ϕ]]Aζ = true (if1)

[[S]]Aζ � U

[[if ϕ then R else S]]Aζ � U
if [[ϕ]]Aζ = false (if2)

[[R]]Aζ a
x
� U

[[let x = t in R]]Aζ � U
if a = [[t]]Aζ (let)

[[R]]Aζ a
x
� Ua for each a ∈ I

[[forall x with ϕ do R]]Aζ �
S

i∈I Ui
if I = {a ∈ |A| : [[ϕ]]Aζ a

x
= true} (forall)

[[R]]Aζ � U [[S]]
U(A)
ζ � V

[[R ; S]]Aζ � U ; V
if U is consistent (seq1)

[[R]]Aζ � U

[[R ; S]]Aζ � U
if U is inconsistent (seq2)

[[R]]Aζ � U

[[try R else S]]Aζ � U
if U is consistent (try1)

[[R]]Aζ � U [[S]]Aζ � V

[[try R else S]]Aζ � V
if U is inconsistent (try2)

[[R t
x
]]Aζ � U

[[ρ(t)]]Aζ � U
if ρ(x) = R is a rule definition (def)

Table 2: Inductive definition of the semantics of ASM rules.

of a predicate S(R,A, ζ, U) with the meaning ‘rule R yields in state A under the
variable assignment ζ the update set U .’ Instead of S(R,A, ζ, U), however, we
write [[R]]Aζ � U and present the closure conditions of the inductive definition in
[Table 2] as rules. The relation S(R,A, ζ, U) is then the least relation satisfying
the properties in [Table 2].

Note that for each state A and each variable assignment ζ there exists at
most one update set U such that [[R]]Aζ � U . Hence, the transition rules are
deterministic. We say that a rule R is defined in state A under the variable
assignment ζ iff there exists an update set U such that [[R]]Aζ � U . This means
that a rule R is defined in a state iff there is no infinite chain of recursive rule

986 Staerk R.F., Nanchen S.: A Logic for Abstract State Machines



calls in the evaluation of the rule. If there are no loops in the call graph of an
ASM, then all rules are defined in any state. If there are loops in the call graph
of an ASM, then the evaluation of a rule may not terminate, i.e. there may be
no update set U such that [[R]]Aζ � U .

Example 1. To illustrate the problem of definedness we consider a directed graph
G = 〈V,E〉 and the following recursive rule definition:

explore(x) =
reachable(x) := true
forall y with 〈x, y〉 ∈ E do explore(y)

For a vertex x ∈ V , the rule call explore(x) is defined iff there exists no infinite
path in the graph G starting at x. Moreover, if the rule call explore(x) is defined,
then its update set consists of all triples 〈reachable, y, true〉 such that there is
a path from x to y in the graph G.

The notion of ASM run is the classical notion of computation of transition
systems. A computation step in a given state consists in executing simultaneously
all updates of the main transition rule of the ASM, if these updates are consistent.
The run stops if the main transition rule is not defined or yields an inconsistent
update set. If the update set is empty, then the ASM produces an infinite run
(stuttering, never changing anymore the state). We do not allow that so-called
monitored functions change during a computation [see Section 5].

Definition 6 (Run of an ASM). Let M be an ASM with vocabulary Σ, ini-
tial state A and main rule name ρ. Let ζ be a variable assignment. A run ofM
is a finite or infinite sequence B0,B1, . . . of states for Σ such that the following
conditions are satisfied:

1. B0 = A.
2. If [[ρ]]Bn

ζ is not defined or inconsistent, then Bn is the last state.
3. Otherwise, Bn+1 = U(Bn), where [[ρ]]Bn

ζ � U .

Runs are deterministic and independent of the variable assignment ζ, since we
forbid global variables in rule definitions.

Remark. In the presence of sequential composition the following two rules are
not equivalent:

let x = t in R �≡ R t
x .

For a counter example, consider the following transition rule:

let x = f(0) in (f(0) := 1 ; f(1) := x)
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If we substitute the term f(0) for x, then we obtain:

f(0) := 1 ; f(1) := f(0)

In general, the two rules are not the same, because f(0) is evaluated in different
states. The following substitution property, however, is true for static terms t: If
t is static and [[t]]Aζ = a, then

[[R]]Aζ a
x
� U ⇐⇒ [[R t

x ]]
A
ζ � U.

If the term t contains dynamic functions, then the equivalence is not necessarily
true, because t could be evaluated in different states on the right-hand side (due
to sequential compositions).

3 Formalizing the Consistency of ASMs

Following [Groenboom and Renardel de Lavalette 1995] we extend the language
of first-order predicate logic by a modal operator [R] for each rule R. The in-
tended meaning of a formula [R]ϕ is that the formula ϕ is true after firing R.
More precisely, the formula [R]ϕ is true iff one of the following conditions is
satisfied:

1. R is not defined or the update set of R is inconsistent, or
2. R is defined, the update set of R is consistent and ϕ is true in the next state

after firing the update set of R.

Equivalently we can say that the formula [R]ϕ is true in state A under the
variable assignment ζ iff for each set U such that [[R]]Aζ � U and U is consistent,
the formula ϕ is true in the state U(A) under ζ [see Table 3].

In order to express the definedness and the consistency of transition rules we
extend the set of formulas by atomic formulas def(R) and upd(R, f, x, y). The
semantics of these formulas is defined in [Table 3]. The formula def(R) asserts
that the rule R is defined. The formula upd(R, f, x, y) expresses that rule R is
defined and yields an update set which contains an update for f at x to y.

The basic properties of ‘def’ and ‘upd’ are listed in [Table 4] and [Table 5].
Note, that the equivalences in [Table 4] and [Table 5] are not the definitions of
‘def’ and ‘upd’. The equivalences are just properties which are true under the
interpretation of ‘def’ and ‘upd’ given in [Table 3]. The equivalences cannot be
considered as definitions, since D9 and U9 depend on the rule definitions of the
given ASM and the call graph of the rule definitions can contain cycles.

The formula Con(R) used in D8, U7 and U8 is defined as follows:

Con(R) := def(R) ∧
∧∧

f dyn.

∀x, y, z (upd(R, f, x, y) ∧ upd(R, f, x, z) → y = z)
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[[ [R]ϕ ]]Aζ :=

�
true , if [[ϕ]]

U(A)
ζ = true for each consistent U with [[R]]Aζ � U ;

false, otherwise.

[[def(R)]]Aζ :=

�
true , if there exists an update set U with [[R]]Aζ � U ;
false, otherwise.

[[upd(R, f, s, t)]]Aζ :=

�
true, if ex. U with [[R]]Aζ � U and 〈f, [[s]]Aζ , [[t]]Aζ 〉 ∈ U ;
false, otherwise.

Table 3: The semantics of modal formulas and basic predicates.

D1. def(skip)

D2. def(f(s) := t)

D3. def(R S) ↔ def(R) ∧ def(S)

D4. def(if ϕ then R else S) ↔ (ϕ ∧ def(R)) ∨ (¬ϕ ∧ def(S))

D5. def(let x = t in R) ↔ ∃x (x = t ∧ def(R)) if x /∈ FV(t)

D6. def(forall x with ϕ do R) ↔ ∀x (ϕ→ def(R))

D7. def(R ; S) ↔ def(R) ∧ [R]def(S)

D8. def(try R else S) ↔ def(R) ∧ (Con(R) ∨ def(S))

D9. def(ρ(t)) ↔ def(R t
x
) if ρ(x) = R is a rule definition of M

Table 4: Axioms for definedness.

U1. ¬upd(skip, f, x, y)

U2. upd(f(s) := t, f, x, y) ↔ s = x ∧ t = y, ¬upd(f(s) := t, g, x, y) if f �= g

U3. upd(R S, f, x, y) ↔ def(R S) ∧ (upd(R, f, x, y) ∨ upd(S, f, x, y))

U4. upd(if ϕ then R else S, f, x, y) ↔ (ϕ∧ upd(R, f, x, y))∨ (¬ϕ∧ upd(S, f, x, y))

U5. upd(let z = t in R, f, x, y) ↔ ∃z (z = t ∧ upd(R, f, x, y)) if z /∈ FV(t)

U6. upd(forall z with ϕ do R, f, x, y) ↔
def(forall z with ϕ do R) ∧ ∃z (ϕ ∧ upd(R, f, x, y))

U7. upd(R ; S, f, x, y) ↔
(upd(R, f, x, y) ∧ [R](def(S) ∧ inv(S, f, x))) ∨
(Con(R) ∧ [R]upd(S, f, x, y))

U8. upd(try R else S, f, x, y) ↔
(Con(R) ∧ upd(R, f, x, y)) ∨
(def(R) ∧ ¬Con(R) ∧ upd(S, f, x, y))

U9. upd(ρ(t), f, x, y) ↔ upd(R t
z
, f, x, y) if ρ(z) = R is a rule definition of M

Table 5: Axioms for updates.
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It is true in a state iff the rule R is defined and yields a consistent update set:

[[Con(R)]]Aζ = true ⇐⇒ there exists a consistent U with [[R]]Aζ � U .

The formula inv(R, f, x) in U7 expresses that the rule R does not update the
function f at the argument x. It is a simple abbreviation defined as follows:

inv(R, f, x) := ∀y ¬upd(R, f, x, y)

Note, that it would be wrong to define the predicate upd(R, f, x, y) by saying
that f(x) is different from y in the present state but equal to y in the next state
after firing rule R:

upd(R, f, x, y) := f(x) �= y ∧ [R]f(x) = y (wrong definition)

Using this definition, the predicate upd(f(0) := 1, f, 0, 1) would be false in a
state where f(0) is equal to 1, although the rule f(0) := 1 does update the
function f at the argument 0 to 1.

4 Basic Axioms and Rules of the Logic

The formulas of the logic for abstract state machines are generated by the fol-
lowing grammar:

ϕ, ψ ::= s = t | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | ϕ→ ψ | ∀xϕ | ∃xϕ |
def(R) | upd(R, f, s, t) | [R]ϕ

A formula is called pure (or first-order), if it contains neither the predicate ‘def’
nor ‘upd’ nor the modal operator [R]. A formula is called static, if it does not
contain dynamic function names. The formulas used in If-Then-Else and Forall
rules must be pure formulas.

The semantics of formulas is given by the definitions in [Table 1] and [Ta-
ble 3]. The equivalence ϕ ↔ ψ is defined by (ϕ → ψ) ∧ (ψ → ϕ). A formula ϕ
is called valid, if [[ϕ]]Aζ = true for all states A and variable assignments ζ. A
formula ϕ is a logical consequence of a set of sentences Ψ (written Ψ |=M ϕ), if
[[ϕ]]Aζ = true for all states A and variable assignments ζ such that [[ψ]]Aζ = true
for every ψ ∈ Ψ . Note that the interpretation of rule names in transition rules de-
pends on a given abstract state machineM which is made explicit as a subscript
in Ψ |=M ϕ.

The substitution of a term t for a variable x in a formula ϕ is denoted by
ϕ t

x and is defined as usual. Variables bound by a quantifier, a let or a forall
have to be renamed when necessary. The substitution is also performed inside
of transition rules that occur in formulas. The following substitution property
holds.
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Lemma7 (Substitution). If t is static and a = [[t]]Aζ , then [[ϕ]]Aζ a
x
= [[ϕ t

x ]]
A
ζ .

We define two transition rules R and S to be equivalent, if they are defined and
consistent in the same states and produce the same next state when they are
fired. An observer from outside cannot distinguish two equivalent transition rules
by just looking at the runs generated by them.

Definition 8 (Equivalence). The formula R � S is defined as follows:

R � S :⇐⇒ (Con(R) ∨ Con(S)) → (Con(R) ∧ Con(S) ∧∧∧
f dyn.

∀x, y (upd(R, f, x, y) → (upd(S, f, x, y) ∨ f(x) = y)) ∧
∧∧

f dyn.

∀x, y (upd(S, f, x, y) → (upd(R, f, x, y) ∨ f(x) = y)))

The formula R � S has the intended meaning:

Lemma9. The formula R � S is true in A under ζ iff the following two condi-
tions are true:

1. [[Con(R)]]Aζ = true iff [[Con(S)]]Aζ = true.
2. If [[R]]Aζ � U , [[S]]Aζ � V and U and V are consistent, then U(A) = V (A).

We already know that the axioms D1–D9 and U1–U9 are valid for a given
abstract state machine M . Together with the following principles they will be
the basic axioms and rules of our logic L(M). We start with the standard ax-
ioms and rules of the classical predicate calculus with equality. The quantifier
axioms 1 and 2 as well as the substitution scheme, however, have to be restricted
to static terms which do not contain dynamic function names. The reason for
the restriction is that, if we substitute a term t for a variable x, then t can be
evaluated in different states due to sequential compositions of transition rules.

Axiom 3 is the so-called axiom K of modal logic. Together with the necessi-
tation rule 4 it allows to derive all modal principles that are valid in arbitrary
Kripke frames. Axiom 5 uses the fact that a rule R which is not defined or yields
an inconsistent update set cannot be fired in a state. Since there is no successor
state in this case, the necessity operator [R] is trivial. Axiom 6 can be applied
because the transition rules are deterministic. In modal logic the axiom for de-
terministic accessibility relations is written as ♦ϕ→ �ϕ or ¬�¬ϕ→ �ϕ.

The Barcan axiom 7 is true, since the universe does not change during the
run of an ASM. Hence the quantifiers range over the same set in every state of a
computation. Axioms 8 and 9 assert that the meaning of pure, static first-order
formulas (which do not contain dynamic function names) is the same in all states
of a computation.

Axiom 12 asserts that if a rule updates a function, then the rule is defined.
Axiom 13 says that, if a rule updates a function f at the argument x to the
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value y, then in the next state the value of f at x is equal to y. If the rule does
not update f at the argument x, then the value of f in the next state is the same
as in the present state [Axiom 14].

The extensionality axiom 15 asserts that the modal operators of two equiv-
alent transition rules are the same. Axioms 16 and 17 are well-known from dy-
namic logic. They express that the empty rule has no effect on a state and that
the sequential composition of transition rules corresponds to their sequential
execution.

I. Classical logic with equality: We use the axioms and rules of the classical
predicate calculus with equality. The quantifier axioms, however, are restricted.

II. Restricted quantifier axioms:

1. ∀xϕ→ ϕ t
x if t is static or ϕ is pure

2. ϕ t
x → ∃xϕ if t is static or ϕ is pure

III. Modal axioms and rules:

3. [R](ϕ→ ψ) ∧ [R]ϕ→ [R]ψ
4.

ϕ

[R]ϕ
5. ¬Con(R) → [R]ϕ
6. ¬[R]ϕ→ [R]¬ϕ

IV. The Barcan axiom:

7. ∀x[R]ϕ→ [R]∀xϕ if x /∈ FV(R).

V. Axioms for pure static formulas:

8. ϕ→ [R]ϕ if ϕ is pure and static
9. Con(R) ∧ [R]ϕ→ ϕ if ϕ is pure and static

VI. Axioms for def and upd:

10. D1–D9 in Table 4
11. U1–U9 in Table 5

VII. Update axioms for transition rules:

12. upd(R, f, x, y) → def(R)
13. upd(R, f, x, y) → [R]f(x) = y

14. inv(R, f, x) ∧ f(x) = y → [R]f(x) = y

VIII. Extensionality axiom for transition rules:

15. R � S → ([R]ϕ↔ [S]ϕ)

IX. Axioms from dynamic logic:

16. [skip]ϕ↔ ϕ

17. [R ; S]ϕ↔ [R][S]ϕ
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The notion of derivability is defined as usual. We write Ψ �M ϕ, if the
formula ϕ is derivable from the set of sentences Ψ using the axioms and rules
I–IX. Note that axioms D9 and U9 depend on the rule definitions of the given
abstract state machine M . Therefore, M has to be added as a parameter in
Ψ �M ϕ. Since the principles I–IX are valid, the logic is sound.

Theorem 10 (Soundness). If Ψ �M ϕ, then Ψ |=M ϕ.

Remark. The formula ∀xϕ → ϕ t
x is not valid for non-static terms t. Consider

the following tautology:

∀x (x = 0 → [f(0) := 1]x = 0).

If we substitute the term f(0) for x, then we obtain the formula

f(0) = 0 → [f(0) := 1]f(0) = 0.

This formula is not valid. Hence, the quantifier axioms must be restricted.

Several axioms use the formula Con(R) which asserts the consistency of the
transition rule R. For example, Con(R) is used in axioms 5 and 9 as well as
in the extensionality axiom 15. Since the notion of consistency is fundamental,
we mention several equivalences which express the consistency of a compound
transition rule in terms of consistency of its components.

Lemma11. The following consistency properties are derivable:

18. Con(skip)
19. Con(f(s) := t)
20. Con(R S) ↔ Con(R) ∧ Con(S) ∧ joinable(R,S)
21. Con(if ϕ then R else S) ↔ (ϕ ∧ Con(R)) ∨ (¬ϕ ∧ Con(S))
22. Con(let x = t in R) ↔ ∃x (x = t ∧ Con(R)) if x /∈ FV(t)
23. Con(forall xwithϕdoR) ↔ ∀x (ϕ→ Con(R) ∧ ∀y(ϕ y

x → joinable(R,R y
x))

24. Con(R ; S) ↔ Con(R) ∧ [R]Con(S)
25. Con(try R else S) ↔ Con(R) ∨ (def(R) ∧ Con(S))
26. Con(ρ(t)) ↔ Con(R t

x ) if ρ(x) = R is a rule definition of M

The predicate joinable(R,S) which is used in 20 to reduce the consistency of a
parallel composition R S into consistency properties of R and S is defined as
follows (where x, y, z are not free in R):

joinable(R,S) :=
∧∧

f dyn.

∀x, y, z (upd(R, f, x, y) ∧ upd(S, f, x, z) → y = z),

It expresses that the update sets of R and S do not conflict. This means, when-
ever R and S both update a function f at the same argument x, then the new
values of f at x are the same.
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Lemma12. The following principles are derivable:

27. Con(R) ∧ [R]f(x) = y → upd(R, f, x, y) ∨ (inv(R, f, x) ∧ f(x) = y)
28. Con(R) ∧ [R]ϕ→ ¬[R]¬ϕ
29. [R]∃xϕ↔ ∃x [R]ϕ, if x /∈ FV(R).

[Groenboom and Renardel de Lavalette 1995] introduce different axioms for tran-
sition rules. Their axioms FM1, FM2, AX1, AX2 are derivable in our system
using the update axioms 13 and 14.

Lemma13. The following principles of [Groenboom and Renardel de Lavalette
1995] are derivable:

30. s = x→ (y = t↔ [f(s) := t]f(x) = y)
31. s �= x→ (y = f(x) ↔ [f(s) := t]f(x) = y)
32. [R]f(x) = y ∧ [S]f(x) = y → [R S]f(x) = y

33. f(x) �= y ∧ ([R]f(x) = y ∨ [S]f(x) = y) → [R S]f(x) = y.

The following inverse implication of 32 and 33 is not mentioned in [Groenboom
and Renardel de Lavalette 1995] (maybe because of the lack of a consistency
notion), but is derivable in our system:

Con(R S) ∧ [R S]f(x) = y →
([R]f(x) = y ∧ [S]f(x) = y) ∨ (f(x) �= y ∧ ([R]f(x) = y ∨ [S]f(x) = y))

Several principles known from dynamic logic are derivable using the extension-
ality axiom 15.

Lemma14. The following principles are derivable:

34. [if ϕ then R else S]ψ ↔ (ϕ ∧ [R]ψ) ∨ (¬ϕ ∧ [S]ψ)
35. [let x = t in R]ϕ↔ ∃x (x = t ∧ [R]ϕ), if x /∈ FV(t) ∪ FV(ϕ).
36. [try R else S]ϕ↔ [R]ϕ ∧ (def(R) ∧ ¬Con(R) → [S]ϕ)
37. [ρ(t)]ϕ↔ [R t

x ]ϕ, if ρ(x) = R is a rule definition of M .

A more intensional equivalence of transition rules can be defined as follows:

R
.� S :⇐⇒ (def(R) ∨ def(S)) → (def(R) ∧ def(S) ∧∧∧

f dyn.

∀x, y (upd(R, f, x, y) ↔ upd(S, f, x, y)))

The formula R
.� S asserts that the transition rules R and S are defined in the

same states and yield the same update sets. The so obtained notion of equivalence
is stronger than the one used in the extensionality axiom 15.

Lemma15. R
.� S → R � S is derivable.
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[Schönegge 1995] uses in his sequent calculus for the extended dynamic logic new
rules that express the commutativity, the associativity and similar properties of
the parallel combination of transition rules. In our system, these properties are
derivable.

Lemma16. The following principles of [Schönegge 1995] are derivable:

38. (R skip)
.� R

39. (R S)
.� (S R)

40. ((R S) T )
.� (R (S T ))

41. (R R)
.� R

42. (if ϕ then R else S) T
.� if ϕ then (R T ) else (S T )

43. T (if ϕ then R else S)
.� if ϕ then (T R) else (T S)

If we can derive R
.� S, then we immediately obtain the principle [R]ϕ ↔ [S]ϕ

using [Lemma 15] and the extensionality axiom 15. It is not clear to us, whether
for example the commutativity of the parallel composition, [R S]ϕ ↔ [S R]ϕ,
could be derived in the formal system of [Groenboom and Renardel de Lavalette
1995].

Lemma17. The following properties of the sequential composition are derivable:

44. (R ; skip)
.� R

45. (skip ;R)
.� R

46. ((R ; S) ; T )
.� (R ; (S ; T ))

47. (if ϕ then R else S) ; T
.� if ϕ then (R ; T ) else (S ; T )

The dynamic logic with array assignments (see Harel [1983]) uses a substitution
principle which is derivable in our system. Let ϕ be a quantifier-free, pure (first-
order) formula. Then by ϕ t

f(s) we denote the formula which is obtained in the
following way. First, ϕ is transformed into an equivalent formula

ϕ↔ ∃x∃y
( n∧∧

i=1

f(xi) = yi ∧ ψ
)
,

where x = x1, . . . , xn, y = y1, . . . , yn and ψ does not contain f . Then we define:

ϕ t
f(s) := ∃x ∃y

( n∧∧
i=1

((xi = s ∧ yi = t) ∨ (xi �= s ∧ f(xi) = yi)) ∧ ψ
)

The substitution of t for f(s) can be generalized to arbitrary first-order formulas
by first bringing them into prenex form and then applying the transformation
to the quantifier-free kernel.

Lemma18. For any first-order formula ϕ, the following substitution principle
is derivable: ϕ t

f(s) ↔ [f(s) := t]ϕ.
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The If-Then rule can be defined in terms of If-Then-Else in the standard way:

if ϕ then R := if ϕ then R else skip

An ASM is called simple, if it is defined by a single rule R, which has the following
form:

if ϕ1 then f(s1) := t1
if ϕ2 then f(s2) := t2

...
if ϕn then f(sn) := tn

Simple ASMs have the obvious properties formulated in the following lemma.
Property 51 is a variant of the basic axiom of [Poetzsch-Heffter 1994]. It can
easily be extended to disjoint If-Then rules with simultaneous function updates.

Lemma19. Let R be the rule of a simple ASM. Then,

48. Con(R) ↔ ∧∧
i<j

(ϕi ∧ ϕj ∧ si = sj → ti = tj)

49. upd(R, f, x, y) ↔
n∨∨

i=1

(ϕi ∧ x = si ∧ y = ti)

50. inv(R, f, x) ↔
n∧∧

i=1

(ϕi → x �= si)

51.
n∨∨

i=1

ϕi ∧
∧∧
i<j

¬(ϕi ∧ ϕj) ∧
n∧∧

i=1

(ϕi → ψ ti

f(si)
) → [R]ψ, if ψ is first-order.

Iteration can be reduced to recursion. We can define the While rule recursively,
as follows:

while ϕ do R = if ϕ then (R ;while ϕ do R)

The expression while ϕ do R has to be read as a rule call ρ(x), where x are the
free variables of ϕ and R. So the above equation stands for the following rule
definition:

ρ(x) = if ϕ then (R ; ρ(x))

Lemma20. The following properties of the While rule are derivable:

52. Con(while ϕ do R) ↔ (ϕ→ Con(R) ∧ [R]Con(while ϕ do R))
53. [while ϕ do R]ψ ↔ (ϕ ∧ [R][while ϕ do R]ψ) ∨ (¬ϕ ∧ ψ)

Several properties of ASMs can be expressed in the basic logic. Let M be the
distinguished rule name of the ASM and ϕinit a formula characterizing initial
states of M . Then we can express:

– ψ is an invariant of M by (ϕinit → ψ) ∧ (ψ → [M ]ψ).

– ψ ensures the consistency of M by (ϕinit → ψ) ∧ (ψ → Con(M) ∧ [M ]ψ).
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As another example, the statement in [Stärk et al. 2001] for the correctness of
the compiler from Java to the JVM can be formulated as follows:

(ϕinit → ϕeqv) ∧ (ϕeqv → [J ](ϕeqv ∨ [V ]ϕeqv ∨ [V ][V ]ϕeqv ∨ [V ][V ][V ]ϕeqv))

Here, J is an ASM that specifies the semantics of a Java source level program
according to the Java Language Specification; V is an ASM that specifies the
Java Virtual Machine. The two ASMs have disjoint dynamic function names
and use the same static functions. The formula ϕeqv expresses that two dynamic
states of the two ASMs are equivalent for a given Java program and its compiled
bytecode program. The above formula says, that if two states are equivalent,
then for each step of J the ASM V has to make zero, one, two or three steps to
reach an equivalent state again. The proof in [Stärk et al. 2001] which comprises
83 cases could be carried out in the basic system with appropriate structural
induction principles for lists and abstract syntax trees (which are encoded using
static functions).

5 Why Deterministic Transition Rules?

There are different possibilities to add non-determinism to ASMs. We first show
that the obvious Choose rule leads to a much more complex system and therefore
we do not recommend it. The Choose rule has the following syntax:

choose x with ϕ do R

The intended meaning is that we choose an element x satisfying the property ϕ
and then fire the rule R with the chosen x. This semantics can be expressed by
the following two rules:

[[R]]Aζ a
x
� U

[[choose x with ϕ do R]]Aζ � U
if a ∈ |A| and [[ϕ]]Aζ a

x
= true

[[choose x with ϕ do R]]Aζ � ∅ if [[¬∃xϕ]]Aζ = true

The second rule is for the case when there is no element x satisfying the prop-
erty ϕ. In this case, the semantics of the Choose rule is the empty set of updates.

The problem is now that the relation � is no longer deterministic. For a
given transition rule R there can be several different update sets U such that
[[R]]Aζ � U is derivable. In the definition of a run of an ASM [Definition 6] on
has to choose an update set in each step to obtain the next state of the run. As
a consequence, there can be several different runs for a given initial state of a
machine.
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Unfortunately, the formalization of consistency cannot be applied directly
to non-deterministic ASMs. The formula Con(R) (as defined in [Section 3]) ex-
presses that the union of all possible update sets of R in a given state is consis-
tent. This is clearly not what is meant by consistency. Therefore one has to add
Con(R) as atomic formula to the logic.

The first question is then, what is the semantics of Con(R) for possibly non-
deterministic rules? One possibility is to define

[[Con(R)]]Aζ = true :⇐⇒ for each U , if [[R]]Aζ � U , then U is consistent.

Hence, R is consistent, if each update set for R is consistent. (If there is no U
with [[R]]Aζ � U , then R is considered as consistent, too.) But then, the following
implication is no longer true:

Con(R S) → Con(R)

For example, if S is not defined in a state, then the parallel composition R S

is also not defined and therefore, by definition, consistent. The rule R, however,
could be inconsistent. The property 20 in [Lemma 11] could then be written as
follows:

Con(R S) ↔ (def(R S) → Con(R) ∧ Con(S) ∧ joinable(R,S))

Another possibility is to define the consistency of rules as weak consistency:

[[Con(R)]]Aζ = true :⇐⇒ there exists a consistent U such that [[R]]Aζ � U .

For this weak notion of consistency, however, we could not use the relation
joinable(R,S) in property 20 in [Lemma 11]. It is not clear what we should use
instead:

Con(R S) ↔ Con(R) ∧ Con(S) ∧ ?

A third possibility is to combine definedness and strong consistency as follows:

[[Con(R)]]Aζ = true :⇐⇒ (a) there exists a U such that [[R]]Aζ � U , and
(b) for each U , if [[R]]Aζ � U , then U is consistent.

But what about property 24 in [Lemma 11]? Is the following implication still
true under the new interpretation of consistency?

Con(R ; S) → [R]Con(S)

Assume that [[R]]Aζ � U and U is consistent. How do we know that the rule S is

defined in state U(A)? How do we know that there exists a V with [[S]]U(A)
ζ � V ?
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One problem remains in all three cases, namely how to characterize the up-
date predicate for sequential compositions (Axiom U7 in [Table 5]). What should
be on the right-hand side of the following equivalence?

upd(R ; S, f, x, y) ↔ ?

Consider the case, where [[R]]Aζ � U and U is consistent, 〈f, a, b〉 ∈ U and the
rule S does not update the function f at the argument a in the state U(A) after
firing the rule R with the update set U in A. This case cannot be expressed by
the formula

upd(R, f, a, b) ∧ [R](def(S) ∧ inv(S, f, a)),

since the rule R could have several different consistent update sets and the rule S
could update the function f at the argument a after firing one of them, although
it does not after firing the given update set U of R.

Because of all the problems, it seems impossible to find natural and simple ax-
ioms for the Choose rule together with sequential composition and recursive rule
definitions. Therefore we follow the well-known approach that non-determinism
is modeled from outside such that, in the view of the transition rules, everything
is deterministic. For example, we take a static function choose from N into the
set {0, 1} and use it in the following way:

state := state + 1
if choose(state) = 1 then R else S

Hence, the possible choices are made in advance and stored in the static function
choose . Once the choices have been made, the run of the ASM is completely
deterministic and we can apply the axioms and rules of our logic.

6 Completeness for hierarchical ASMs

An ASM is called hierarchical, if the call graph of the rule definitions does
not contain cycles, in other words, if the ASM does not contain recursive rule
definitions. An ASM is hierarchical iff it is possible to assign levels to the rule
names such that in a rule definition ρ(x) = R the levels of rule names in R are
less than the level of ρ.

In an earlier version of the article the completeness of the logic for hierarchical
ASMs was obtained via an extension of the Henkin model construction. Later,
Gerard R. Renardel de Lavalette observed that, in the case of hierarchical ASMs,
the logic for ASMs is a definitional extension of first-order logic (FOL). This
means that there exists a translation of formulas ϕ of the logic for a hierarchical
ASM M into first-order formulas ϕ∗ with the following properties:

1. The equivalence ϕ↔ ϕ∗ is provable in L(M).
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2. If ϕ is provable in L(M), then ϕ∗ is provable in FOL.

Hence, for hierarchical ASMs, it is possible to eliminate the modal operator [R]
as well as the atomic formulas def(R) and upd(R, f, s, t). Due to parallel updates,
however, the translation of modal formulas into FOL is more complicated than
the comparable embedding of the logic of modification and creation [see Renardel
de Lavalette 2001, Theorem 7].

We first observe that the transition rules of hierarchical ASMs are always
defined. If R is a transition rule which uses rules from a hierarchical machineM ,
then the formula def(R) is derivable in L(M). Therefore we can identify the
formula def(R) with the constant � (true).

Moreover, we can assume that atomic formulas are restricted to simple for-
mulas x = y, f(x) = y, upd(R, f, x, y). To bring general atomic formulas into
this form, one can apply the following principles of L(M):

s = t ↔ ∃x (s = x ∧ t = x)
upd(R, f, s, t) ↔ ∃x, y (s = x ∧ t = y ∧ upd(R, f, x, y))
f(s) = y ↔ ∃x (s = x ∧ f(x) = y)

The translation of modal formulas into FOL distributes over negation, boolean
connectives and quantifiers. For eliminating upd(R, f, x, y) we use the axioms
U1–U9 in [Table 5]. For eliminating the modal operator [R] in [R]ϕ we first
translate ϕ into a first-order formula and use then the following equivalences
of L(M):

[R]x = y ↔ (Con(R) → x = y)
[R]f(x) = y ↔ (Con(R) → upd(R, f, x, y) ∨ (inv(R, f, x) ∧ f(x) = y))
[R]¬ϕ ↔ (Con(R) → ¬[R]ϕ)
[R](ϕ ∧ ψ) ↔ ([R]ϕ ∧ [R]ψ)
[R](ϕ ∨ ψ) ↔ ([R]ϕ ∨ [R]ψ)
[R](ϕ→ ψ) ↔ ([R]ϕ→ [R]ψ)
[R]∀xϕ ↔ ∀x [R]ϕ
[R]∃xϕ ↔ ∃x [R]ϕ

In order to see that the translation is well-defined we define a rank for formulas
and transition rules as follows:

|s = t| := 0
|¬ϕ| := |ϕ|+ 1
|ϕ ∧ ψ| := |ϕ ∨ ψ| := |ϕ→ ψ| := max(|ϕ|, |ψ|) + 1
|∀xϕ| := |∃xϕ| := |ϕ|+ 1
|upd(R, f, x, x)| := |ψ|+ 1, if upd(R, f, x, x) ↔ ψ is an instance of U1–U9
|[R]ϕ| := |R|+ |ϕ|+ 1
|R| := max(|Con(R)|, |upd(R, f, x, y)|, |inv(R, f, x)|) + 1
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The rank is also used to show that the translation into FOL has the above
properties 1 and 2. The completeness and compactness theorems then follow
from the corresponding results for FOL.

Theorem 21 (Completeness). Let M be a hierarchical ASM and Ψ be a set
of sentences. If Ψ |=M ϕ, then Ψ �M ϕ.

Theorem 22 (Compactness). If each finite subset of a set of formulas Ψ is
satisfiable, then Ψ is satisfiable.

Remark. For ASMs with recursive rule definitions the logic is incomplete. Con-
sider an ASM over the vocabulary of arithmetic with the following recursive rule
definition (there are no dynamic function names):

r(x, y) = if x = y then skip else r(x, y + 1)

Let ϕN be the conjunction of the following 7 formulas:

∀x (x+ 1 �= 0) ∀x, y (x + 1 = y + 1 → x = y)
∀x (x+ 0 = x) ∀x, y (x + (y + 1) = (x+ y) + 1)
∀x (x ∗ 0 = x) ∀x, y (x ∗ (y + 1) = (x ∗ y) + x)
∀xdef(r(x, 0))

Note, that [[r(x, t)]]Aζ � U is derivable in [Table 2] iff U is the empty set and
ζ(x) = [[t+ 1+ . . .+ 1]]Aζ . Hence, [[def(x, 0)]]

A
ζ = true iff ζ(x) is reachable from 0

by a finite number of successor steps. Therefore a structure A is a model of ϕN iff
A is isomorphic to the structure of natural numbers. An arithmetical sentence ψ
is true in the structure of natural numbers iff the formula ϕN → ψ is valid. Since
the set of true arithmetical sentences is not recursively enumerable, there cannot
be a finitary, sound and complete formal system for the logic.

Remark. The extensionality axiom 15, Axiom 16 for skip and Axiom 17 for the
sequential compositions are not used for the completeness [Theorem 21]. Since
the axioms are valid, they must be derivable for hierarchical ASMs (as a con-
sequence of the completeness theorem). Derivations of the axioms can be con-
structed as follows. For Axiom 17, one shows by induction on |T1|+. . .+|Tn|+|ϕ|
that

[R ; S][T1] · · · [Tn]ϕ↔ [R][S][T1] · · · [Tn]ϕ

is derivable. To reduce the number of cases, one can make the assumption that
the atomic formulas in ϕ are x = y, f(x) = y, upd(R, f, x, y).

The extensionality axiom, R � S → ([R]ϕ ↔ [S]ϕ), is then shown by in-
duction on |ϕ|. In the case of a modal formula [T ]ψ one first shows (using the
induction hypothesis), that R � S → (R ; T ) � (S ; T ) and obtains (again by
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the induction hypothesis) that (R ; T ) � (S ; T ) → ([R ; T ]ψ ↔ [S ; T ]ψ). Using
Axiom 17 one obtains that R � S → ([R][T ]ψ ↔ [S][T ]ψ).

Axiom 16, [skip]ϕ↔ ϕ, is shown by induction on |ϕ|. In the case of a modal
formula [T ]ψ one derives that (skip ; T ) � T and obtains (using Axiom 17 and
the extensionality axiom) [skip][T ]ψ ↔ [skip ; T ]ψ ↔ [T ]ψ.

7 An Extension with Explicit Step Information

For proving properties of ASMs it is often convenient to be able to speak about
‘the function f in the nth state of the run’. For that purpose we extend the
vocabulary Σ for each dynamic function name f by a new function name with
one additional argument and write fn(t) instead of f(n, t). We assume that an
ASM is given and write An for the nth state of the run of the ASM started
in state A. (If the run is finite and n exceeds the length of the run, then An

is defined to be equal to the last state of the run.) The idea is that fn is the
function f in the nth state of the run.

We now work in two-sorted predicate logic. Each structure A is extended by a
copy of the structure of the natural numbers. The quantifiers ∀x ∈ N and ∃x ∈ N

range over the set of natural numbers. Terms of the sort of natural numbers are
denoted by ν. The grammar for formulas is extended by the following new atomic
formulas:

ϕ, ψ ::= . . . | defν(R) | updν(R, f, s, t) | [R]νϕ
The semantics of the new atomic formulas is defined as follows, where n = [[ν]]Aζ :

[[defν(R)]]Aζ := [[def(R)]]An

ζ [[updν(R, f, s, t)]]
A
ζ := [[upd(R, f, s, t)]]An

ζ

[[[R]νϕ]]Aζ := [[[R]ϕ]]An

ζ

For example, defν(R) is true in the present state A, if the rule R is defined in
the nth state of the run of the ASM starting in state A, where n is the value of
the term ν. The new function names are interpreted in the obvious way:

fA(n, a) := fAn(a), for each n ∈ N and a ∈ |A|.

For formulas ϕ, not containing the new symbols with subscripts, we define a
transformation ϕ(ν) as follows:

(s = t)(ν) := s(ν) = t(ν) ([R]ϕ)(ν) := [R]νϕ
(¬ϕ)(ν) := ¬ϕ(ν) def(R)(ν) := defν(R)
(ϕ ∧ ψ)(ν) := ϕ(ν) ∧ ψ(ν) upd(R, f, s, t)(ν) := updν(R, f, s, t)
(∀xϕ)(ν) := ∀xϕ(ν)

Hence, ϕ(ν) is obtained from ϕ by subscripting dynamic function names as well as
the modal operators and the predicates def and upd in ϕ with ν. The subscript
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is neither applied inside modal formulas [R]ϕ nor inside the atomic formulas
except in equations. Inside the terms of equations it is applied everywhere:

x(ν) := x f(t)(ν) :=
{
fν(t(ν)), if f is dynamic;
f(t(ν)), otherwise.

As expected, the value of a term t(ν) is the value of t in the nth state of the run
of the ASM and the formula ϕ(ν) is equivalent to the formula ϕ in the nth state,
where n is the value of the term ν.

Lemma23. If n = [[ν]]Aζ , then [[t(ν)]]Aζ = [[t]]An

ζ and [[ϕ(ν)]]Aζ = [[ϕ]]An

ζ .

We write Conν(R) for Con(R)(ν) and invν(R, f, x) for inv(R, f, x)(ν).
The basic logic of [Section 4] is extended by the following principles (M is the

main rule name of the ASM). First we add appropriate axioms for the structure
of natural numbers including the induction scheme 54. Axiom 55 asserts that
ϕ(0) is equivalent to ϕ, since the functions f0 are, by definition, the same as the
functions in the initial state. Axioms 56 and 57 characterize ϕ(ν+1) depending
on whether the main ASM is consistent or not in state ν. If M is not consistent
in state ν, then by definition the state ν + 1 is the same as state ν. The rule 58
allows to transfer axioms and theorems of the basic system into statements
about the νth state of a run. Hence, we do not need new axioms for defν(R)
and updν(R, f, x, y), since we can transfer the axioms D1–D9 and U1–U9 using
rule 58.

X. Axioms for the structure of natural numbers: For example, the Peano
Axioms including the induction scheme:

54. ϕ(0) ∧ ∀x ∈ N (ϕ(x) → ϕ(x + 1)) → ∀x ∈ Nϕ(x)

XI. Axioms and rules for formulas with step information:

55. ϕ(0) ↔ ϕ

56. Conν(M) → (ϕ(ν+1) ↔ [M ]νϕ)
57. ¬Conν(M) → (ϕ(ν+1) ↔ ϕ(ν))
58.

ϕ

ϕ(ν)

Why is Rule 58 sound?—Assume that ϕ is derivable. We want to show that ϕ(ν)

is valid. Let A be a state and n be the value of ν in A. Since ϕ is valid, it is true
in the nth state An of the run starting with A. By [Lemma 23], it follows that
ϕ(ν) is true in A.

The following rules are derivable from 55–58 using the induction scheme 54.
The rule on the left-hand side says that, if ϕ is an invariant ofM and if it is
true in the starting state, then it is true in all states of the run. The rule on
the right-hand side says that, if ϕ is an invariant which ensures the consistency
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of M and ϕ is true in the starting state, then M is consistent in all steps of the
run.

ϕ→ [M ]ϕ
ϕ→ ∀x ∈ Nϕ(x)

ϕ→ Con(M) ∧ [M ]ϕ
ϕ→ ∀x ∈ NConx(M)

The following characterizing formulas for fν are derivable as well:

59. ∀x (f0(x) = f(x))
60. Conν(M)→∀x, y(fν+1(x)=y↔updν(M, f, x, y)∨(invν(M, f, x)∧fν (x)=y))
61. ¬Conν(M) → ∀x (fν+1(x) = fν(x))

In the extended system, several properties of an ASM can be expressed in a
simple way (where ϕinit and ϕstop are formulas characterizing initial and halting
states of the ASM):

– The ASM is consistent: ϕinit → ∀x ∈ NConx(M).

– The ASM terminates: ϕinit → ∃x ∈ Nϕ
(x)
stop.

– The formula ψ is an invariant of the ASM: ϕinit → ∀x ∈ Nψ(x).

If the ASM does not use sequential compositions, then the statements are equiv-
alent to first-order formulas without modal operators.
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