
Uncertainty Propagation in Heterogeneous Algebras

for Approximate Quanti�ed Constraint Solving

Stefan Ratschan
(Research Institute for Symbolic Computation, Austria

Stefan.Ratschan@risc.uni-linz.ac.at)

Abstract: When trying to solve quanti�ed constraints (i.e., �rst-order formulas over
the real numbers) exactly, one faces the following problems: First, constants com-
ing from measurements are often only approximately given. Second, solving such con-
straints is in general undecidable and for special cases highly complex. Third, exact
solutions are often extremely complicated symbolic expressions. In this paper we study
how to do approximate computation instead | working on approximate inputs and pro-
ducing approximate output. For this we show how quanti�ed constraints can be viewed
as expressions in heterogeneous algebra and study how to do uncertainty propagation
there. Since set theory is a very fundamental approach for representing uncertainty, also
here we represent uncertainty by sets. Our considerations result in a general framework
for approximate computation that can be applied in various di�erent domains.

Key Words: Constraints, uncertainty, interval computation, computational logic

Category: I.2.4, I.2.3, F.4.1

1 Introduction

Let a quanti�ed constraint be a �rst-order formula over the real numbers. This
means that it contains quanti�ers (9, 8), connectives (^, _, :), predicate sym-
bols (e.g., =, <, �), function symbols (e.g., +, �, �, sin, exp), rational constants
and variables ranging over real numbers. When trying to solve such constraints
exactly, one hits upon the following problems: First, the constants occurring
in constraints often come from measurements, and are therefore only approxi-
mately given. Second, the problem is in general undecidable (reducible to solving
Diophantine equations) and for special cases (e.g., the decidable sub-theory of
real-closed �elds [dW93, Col75, Mis93, Hon92]) highly complex [DH88, Wei88,
Ren92]. Third, exact solutions are often extremely complicated symbolic expres-
sions that need further numeric processing to be useful.

In order to avoid these problems, in this paper we show how uncertain infor-
mation can be propagated from approximate input, through approximate compu-
tation, to approximate output. This allows us to deal with approximately given
input constants, to achieve eÆciency by computing approximate results only,
and to choose an approximation of the output that has a simple representation.

Set theory is one of the oldest methods for dealing with uncertainty: Given
a set A, the formulation \for any a in A" can be found in almost every scienti�c
book So we use set theory here, also. The basic idea is, that we can approximate
an exact object a by a set a containing a. The smaller the set a is, the smaller
the uncertainty about a is. When we want to compute the result of applying
some mapping F on a, we apply F to the set a instead, to get the set of all
possible results.

Journal of Universal Computer Science, vol. 6, no. 9 (2000), 861-880
submitted: 22/6/00, accepted: 5/9/00, appeared: 28/9/00 Springer Pub. Co.

For using this scheme in approximate quanti�ed constraint solving we asso-
ciate with each constraint a function F such that for a certain a, F (a) is the
exact solution set of the constraint. Then we approximate a by a set a to do
approximate computation.

We �nd this function F by showing that quanti�ed constraints correspond
to expressions in a heterogeneous algebra in which all the symbols occuring in
constraints, except variables, act as function symbols. So we reduce approximate
quanti�ed constraint solving to uncertainty propagation in this algebra. Since
heterogeneous algebras are very common in computer science (in the form of
abstract data types), we develop a general method for propagating uncertainty
represented by sets in heterogeneous algebras. To this end we introduce the no-
tion of heterogeneous power algebra and prove various properties showing the
usefulness of such power algebras for approximate computation in general. Fur-
thermore we identify the dependency problem as a crucial object of study for
implementing eÆcient approximation algorithms.

The contribution of this paper is a novel combination of ideas from vari-
ous �elds (uncertain reasoning in arti�cial intelligence, logic, universal algebra,
interval mathematics, many-valued logic and others) and their application to
quanti�ed constraint solving. Thus our work is inherently interdisciplinary and
gives a clari�cation of the interplay of these areas [Hoa96, HJ98]. See Section 8
for details on related work.

The structure of the paper is as follows: In Section 2, we discuss how quan-
ti�ed constraint solving gives rise to uncertainty propagation. In Section 3, we
show how quanti�ed constraints can be viewed as expressions in a heteroge-
neous algebra. In Section 4, we show how to propagate uncertainty over single
mappings. In Section 5, we extend this to uncertainty propagation over expres-
sions in heterogeneous algebra. In Section 6, we study intervals as a special
representation of the occurring sets. In Section 7, we apply the results to quan-
ti�ed constraint solving. In Section 8, we discuss related work, and in Section
9, we draw �nal conclusions. Throughout the paper, boldface denotes sets that
approximate single objects and B denotes the set containing the Boolean val-
ues T and F . Furthermore we allow multi-ary function composition such that
(f Æ (g1; : : : ; gn))(a) = f(g1(a); : : : ; g1(a)).

2 Approximate Quanti�ed Constraint Solving

In this section we discuss informally how quanti�ed constraint solving gives rise
to uncertainty propagation, and we �ll out the formal details in the following
sections. A quanti�ed constraint is a �rst-order formula over the reals. So it
contains quanti�ers (9, 8), connectives (^, _, :), predicate symbols (e.g., =, <,
�), function symbols (e.g., +, �, �, sin, exp), rational constants and variables
ranging over real numbers. We want to solve such constraints, where \solving"
means to �nd the truth value of a closed formula and to �nd a simple represen-
tation of the solution set of an open formula (we will not formalize the notion
of \simple" here | informally it means that such a representation should make
it is easy to see whether a given element is in the solution set or not).

Here we want to propagate uncertainty for various reasons: First, the con-
stants very often come from measurements, and are thus not exact. Second, the
exact problem is in general not decidable, or | for special sub-theories | only

862 Ratschan S.: Uncertainty Propagation in Heterogeneous Algebras ...

decidable with extremely high complexity [Tar51, Col75, CH91, DH88, Wei88,
Ren92]. Third, the outputs of known exact methods are often extremely compli-
cated symbolic expressions, that are not always helpful in practice.

Here the �rst problem produces input uncertainty. For solving the second
and third problem, we introduce additional uncertainty by replacing the objects
in constraints that introduce complexity by sets that contain them. The bigger
these sets are allowed to be, the more choices we have for representing them in a
simple way, and the easier we can do eÆcient computation that produces simple
output.

The objects that introduce complexity in constraints are represented by the
variables. Consider the example 8x [x2 � 0]. One could view the variable x
as a place-holder for real values. However, since x occurs quanti�ed, the truth
value of the whole constraint depends on in�nitely many di�erent values for x.
So we view the n variables in a constraint as functions did1 ; : : : ; d

id
n such that

didi (p1; : : : ; pn) = pi (the identity term functions), where pi represents the value
assigned to the i-th variable.

We approximate these objects by sets that contain them. In the following
sections we will show show to propagate the resulting uncertainty according to
the following plan:

1. Assign to each constraint � in n variables a mapping [[�]] that takes n func-
tions in R

n ! R, such that [[�]](did1 ; : : : ; d
id
n) is the same as the logical mean-

ing of �.
2. Extend this mapping to sets of functions.

Then we can apply this mapping to sets that contain the identity term func-
tions, to get approximate results. This allows incremental approximate compu-
tation, using the following scheme:

{ Let did
1
; : : : ;didn be sets containing the i-th identity term function, respec-

tively.
{ While the uncertainty of [[�]](did1 ; : : : ;didn) is too high, remove elements from
did1 ; : : : ;didn (except the identity term functions).

Since this scheme starts with an approximation of high uncertainty that it
improves incrementally, it is tunable in the sense, that a user can decide on
the trade-o� between eÆciency and precision, either by �xing one of the two
beforehand, or by interrupting during computation [BCK97].

3 Quanti�ed Constraints As Expressions in a Heterogeneous

Algebra

In this section we de�ne the mapping [[�]] by showing how quanti�ed constraints
can be viewed as expressions in a heterogeneous algebra. For this we �x an
ordered set of variablesV. The order on V allows us to speak of the i-th variable
in a subset of V. Now recall [SB81, EM85]:

De�nition 1. A heterogeneous algebra consists of countably many sets (A i)i2N
(the sorts), function symbols with signatures of the form A i1 � � � � � A in ! A j ,
and an interpretation IA that assigns according mappings to these symbols.

863Ratschan S.: Uncertainty Propagation in Heterogeneous Algebras ...

Since we only deal with heterogeneous algebras in this paper we now drop
the word \heterogeneous" and just speak of algebras. Given an algebra A , one
can build expressions from function symbols and variables in the usual way such
that the signatures �t. We say that an expression is free i� every variable occurs
at most once. We denote the meaning of an expression e by [[e]]A ;V

. This is a

mapping A i1 � � � � � A ijV j ! A j , de�ned as follows:

[[f(e1; : : : ; ek)]]A ;V
:= IA (f) Æ ([[e1]]A ;V

; : : : ; [[ek]]A ;V
);

and

[[v]]A ;V
(a1; : : : ; ajV j) := ai;

where v is the i-th variable in V . By using this variable-set argument instead of
explicitly writing down a variable assignment, as commonly used in logic [EFT84]
and universal algebra, we can use function application in the usual form. In the
following we sometimes use the abbreviation [[e]]A for [[e]]A ;V

, where V is the set

of variables in e.
Now we show how quanti�ed constraints can be viewed as expressions in such

an algebra such that the meaning associated to a constraint by this algebra is
equal to its logical meaning. We have the following sorts:

{ The n-dimensional solution sets, which we model by functions Rn ! B that
return T if an element is in the solution set and F if it is not in the solution
set.

{ The functions denoted by terms (n-dimensional term functions), which we
model by functions Rn ! R.

Let D
B
n denote the n-dimensional solution sets, and let D

R
n denote the n-

dimensional term functions. Now we view all the symbols occurring in con-
straints, except variables, as function symbols, and de�ne an interpretation ID
that assigns mappings to these function symbols.

Let us �rst look at examples: The mapping corresponding to conjunction
takes two solution sets and produces a solution set. A representation of its ap-
plication to certain inputs can be seen in �gure 1. In a similar way, the mapping
corresponding to addition takes two term functions and produces a term func-
tion. A representation of its application to certain inputs can be seen in �gure 2.
As another example, the mapping corresponding to existential quanti�cation
takes a solution set and produces a solution set. A representation of its applica-
tion to a certain input can be seen in �gure 3. Here one can already see that, for
simplicity reasons, we model quanti�cation in such a way that it does not change
the dimension of solution set, but only makes it independent of the quanti�ed
variable.

Let us formalize this. We assign the following signatures to the symbols:

Constants: D
R
n

Function symbols (e.g., +, �, sin): D
R
n � � � � � D

R
n ! D

R
n

Predicates (e.g., =, <, �): D
R
n � : : : D Rn ! D

B
n

Connective :: D
B
n ! D

B
n

864 Ratschan S.: Uncertainty Propagation in Heterogeneous Algebras ...

!
=;

F

T

F
T F

T
I
D
(^)

Figure 1: Mapping of Conjunction

!
=;I

D
(+)

Figure 2: Mapping of Addition

Connectives _ and ^: D
B
n � D

B
n ! D

B
n

Quanti�ers 8 and 9: D
B
n ! D

B
n

Again notice that we de�ned all these signatures on n-dimensional solution
sets and term functions, although some of the according variables might occur
bound in a constraint. In this case the resulting solution sets and term functions
will be independent of these variables. In the extreme case of a constraint with
no free variables, the result will be either a function that is true everywhere, or
false everywhere.

Let us denote by IR the usual assignment of functions to function symbols,
and predicates to predicate symbols, and by IB the usual assignment of Boolean
functions to logical connectives. Now we can de�ne the function ID that assigns
the desired mappings to individual symbols.

{ For constants c, p 2 R
n, ID (c)(p) = c

{ For k-ary function and predicate symbols f (e.g., +, sin, �), d1; : : : ; dk 2 D
R
n ,

ID (f)(d1; : : : ; dk) = IR (f) Æ (d1; : : : ; dk)

{ For k-ary connectives f (e.g., :, ^), d1; : : : ; dk 2 D
B
n ,

ID (f)(d1; : : : ; dk) = IB (f) Æ (d1; : : : ; dk)

{ For the quanti�er 8xi, d 2 D
B
n , and (p1; : : : ; pn) 2 R

n,
ID (8xi)(d)(p1; : : : ; pi; : : : ; pn) =
T if for all q 2 R, d(p1; : : : ; pi�1; q; pi+1; : : : ; pn) = T ,
F otherwise.

865Ratschan S.: Uncertainty Propagation in Heterogeneous Algebras ...

!
=

T
T

F
F

I
D
(9y)

y

x x

y

Figure 3: Mapping of Existential Quanti�cation

{ For the quanti�er 9xi, d 2 D
B
n , and (p1; : : : ; pn) 2 R

n,
ID (9xi)(d)(p1; : : : ; pi; : : : ; pn) =
T if there is a q 2 R s.t. d(p1; : : : ; pi�1; q; pi+1; : : : ; pn) = T ,
F otherwise.

This �nishes the de�nition of the algebra D . It is easy to prove that, for any
constraint � in n variables, [[�]]D (d

id
1 ; : : : ; d

id
n) is the same solution set (truth

value) as provided by the usual �rst-order semantics of constraints (see ap-
pendix).

4 Uncertainty Propagation Over Mappings

In the following we show how mappings can be extended to sets and study some
properties of the result that are needed to study correctness, termination and
eÆciency of incremental approximate computation. All the notions introduced
in this section are straightforward generalizations of corresponding notions in
interval mathematics [Kea96, Moo66, Neu90, Sta96]. In the following we use the
convention that the operations 2, � and � can be used on tuples of sets in the
obvious componentwise way, and similarly on mappings on sets, for example:

De�nition 2. For mappings f : }(A 1) � � � � }(A n) ! }(A 0) and g : }(A 1) �
� � � � }(A n) ! }(A 0), f � g i� for all a 2 }(A 1)� � � � � }(A n), f(a) � g(a). In
this case we say that f is tighter than g.

Now we assume that the arguments to a mapping are not exactly known, but
only known to be elements of a certain set. So, corresponding to the mapping, we
need an according mapping on sets that propagates this information correctly.

De�nition 3. Given mappings f : A 1 � � � � � A n ! A
0 and g : }(A 1) � � � � �

}(A n)! }(A 0), g is an enclosure of f i� for all a 2 }(A 1)� � � � �}(A n), for all
b 2 a, f(b) 2 g(a).

In other words, enclosures overestimate the range of a mapping on the argu-
ment sets (i.e., g(a) � ff(b)jb 2 ag).

Sometimes we require mappings to propagate precise data (i.e., sets with just
one element) without loss of information:

866 Ratschan S.: Uncertainty Propagation in Heterogeneous Algebras ...

De�nition 4. Given mappings f : A 1 � � � � � A n ! A
0 and g : }(A 1) � � � � �

}(A n)! }(A 0), g is point-preserving of f i� for all a 2 A 1 � � � � � A n, g(fag) =
ff(a)g.

Usually we want that more certainty in the input to a mapping results in
more certainty in the output:

De�nition 5. A mapping f : }(A 1)�� � ��}(A n)! }(A 0) is inclusion monotone
i� for all sets a;b 2 }(A 1)� � � � � }(A n) s.t. a � b, f(a) � f(b).

Lemma6. Let f : A 1 � � � � � A n ! A
0 and g : }(A 1)� � � � � }(A n)! }(A 0). If

g is inclusion-monotone and point-preserving of f , then it is an enclosure of f .

Proof. We only have to prove that g is an enclosure of f , which means that for
all a 2 }(A 1)� � � � � }(A n), for all b 2 a, f(b) 2 g(a).

Let a 2 }(A 1)� � � � �}(A n) and b 2 a arbitrary but �xed. We have to prove
that f(b) 2 g(a). Since g is point-preserving of f , we have: g(fbg) = ff(b)g.
Since g is inclusion-monotone and a � fbg, g(a) � g(fbg) = ff(b)g. Thus f(b)
is a member of g(a). ut

Of course the converse of lemma 6 is not the case. The best possible enclosure
of a mapping is de�ned as follows:

De�nition 7. For every mapping f : A 1 � � � � � A n ! A
0, and for all a1 2

}(A 1); : : : ; an 2 }(A n),

Ext(f)(a1; : : : ; an) := ff(b1; : : : ; bn)jb1 2 a1; : : : ; bn 2 ang

We call Ext(f) the tight extension of f .

It can be easily checked that this mapping is an enclosure and point-preserving
of f . Furthermore it is inclusion-monotone.

5 Power Algebras

In the last section we have shown how to extend arbitrary mapping to sets. But
applying this to the mapping [[�]]D is a very hard task in general. Fortunately we
can solve this problem by using our interpretation of constraints as expressions in
the algebra D . In this algebra the symbols occurring in constraints are interpreted
as simple mappings, and the complicated mapping [[�]]D is composed from these
simple mapping. Thus, instead of composing these mappings and then extending
the result to sets, we �rst extend the simple mappings to sets, and then compose
the result. For this we introduce, for any algebra A , according algebras over the
power sets of the sorts of A :

De�nition 8. Given an algebra A , a power algebra A
�

A
�

A
� of A consists of the sorts

(}(A i))i2N , and the same function symbols, where any set A i in the signature

of a function symbol is changed to }(A i).

We can now adapt the de�nitions of enclosure, point-preserving and inclusion-
monotone analogously to power algebras:

867Ratschan S.: Uncertainty Propagation in Heterogeneous Algebras ...

De�nition 9. Given an algebra A and a power algebra A
�

A
�

A
� of A , A �

A
�

A
� is point-

preserving/an enclosure of A i� for every expression e, [[e]]A �
A
�

A
� is point-preserving/

an enclosure of [[e]]A . It is inclusion-monotone i� for every expression e, [[e]]A �
A
�

A
�

is inclusion-monotone.

Now we show that these properties can be ensured by assigning appropriate
mappings to the function symbols of the power algebra A �

A
�

A
� (i.e., by proving that

properties on the left-hand side of �gure 4 propagate to the right-hand side). All
these theorems are generalizations of corresponding theorems that can be found
in any textbook on interval arithmetic (e.g., [Moo66, Neu90]). The following
lemma can be easily proven by induction over the structure of expressions.

I
A
�

A
�

A
�(f)

��

compose expressions // [[e]]
A
�

A
�

A
�

��
I
A

(f)

OO

compose expressions // [[e]]
A

OO

Figure 4: Power algebra properties

Lemma10. Given an algebra A , a power algebra A �
A
�

A
� of A is point-preserving/an

enclosure of A i� for all function symbols f , I
A
�

A
�

A
�(f) is point-preserving/an en-

closure of IA (f). It is inclusion-monotone i� all function symbols f , I
A
�

A
�

A
�(f) is

inclusion-monotone

For an algebra A , we call the power algebra that assigns Ext(f) to every
function symbol f , tight power algebra and denote it by AAA Ext. But, unfortunately,
the tight power algebra looses information, because not for every expression e,
[[e]]AAA Ext = Ext([[e]]A). This can be illustrated using the following example: Take
the expression x ^ :x over the Booleans, where x can be either true or false.
Then the extensions of the mapping denoted by x ^ :x contains just false, but
computation in the tight power algebra gives a set containing both true and false
(fT; Fg ^ :fT; Fg = fT; Fg ^ fT; Fg = fT; Fg). So, if we specialize the power
algebra A �

A
�

A
� in diagram 4 to AAA Ext, then the property of being the tight extension

does not propagate from the left-hand to the right-hand side.
The reason for this is, that power algebras do not take into account the fact,

that variables in expressions can be the same (i.e., they depend on each other).
Just like in interval mathematics, we call this problem dependency problem.
Fortunately this problem occurs only in expressions that are not free.

Lemma11. Let f : A 1 � � � � � A k ! A
0, and let e1; : : : ; ek be expressions such

868 Ratschan S.: Uncertainty Propagation in Heterogeneous Algebras ...

that they do not have any variable in common. Then, for a properly typed a,

Ext(f)(Ext([[e1]]A ;V
)(a); : : : ;Ext([[ek]]A ;V

)(a)) =

Ext(f Æ ([[e1]]A ;V
; : : : ; [[ek]]A ;V

))(a)

Proof. Since e1; : : : ; ek do not have any variable in common, each ei depends on
a di�erent set of variables. So the possible argument tuples to f are exactly the
same, independent of whether we evaluate the e1; : : : ; ek on sets separately, or
in parallel:

f(b1; : : : ; bk)jb1 2 Ext([[e1]]A ;V
)(a); : : : ; bk 2 Ext([[ek]]A ;V

)(a)g =

f([[e1]]A ;V
(a); : : : ; [[ek]]A ;V

(a))ja 2 ag

And thus:

Ext(f)(Ext([[e1]]A ;V
)(a); : : : ;Ext([[ek]]A ;V

)(a)) =

ff(b1; : : : ; bk)jb1 2 Ext([[e1]]A ;V
)(a); : : : ; bk 2 Ext([[ek]]A ;V

)(a)g =

ff([[e1]]A ;V
(a); : : : ; [[ek]]A ;V

(a))ja 2 ag =

Ext(f Æ ([[e1]]A ;V
; : : : ; [[ek]]A ;V

))(a)

ut

By induction over the structure of expressions we get:

Theorem12. For free expressions e,

[[e]]AAA Ext
= Ext([[e]]A):

De�nition 13. Two expressions e1 and e2 are equivalent i� [[e1]]A = [[e2]]A .

We know that, in general, computation in AAA Ext can lose information for
non-free expressions. But it can happen that there is an equivalent expression
that yields a tighter evaluation, or even an equivalent expression that has no
dependency problem at all:

De�nition 14. An expression e is information preserving i�

[[e]]AAA Ext = Ext([[e]]A):

Of course, given an expression e, we are interested in �nding an equivalent
but information-preserving expression. If there is no such information-preserving
expression, then we would at least like to �nd expressions where the dependency
problem is as small as possible, or at least expressions where it is as small as
possible for a certain certain class of input sets.

In quanti�ed constraint solving the dependency problem has only been ad-
dressed for sub-theories up to now: The case of the real numbers with function
symbols such as +, �, � is an important question in the area of interval mathe-
matics (see e.g., [Kea96, Moo66, Sta96], or [Cap79] for symbolic transformations
of expressions to reduce the dependency problem, or [ACS94, Han75] for spe-
cial representations of intervals to deal with the problem). For the case of the
Boolean values with negation, conjunction and disjunction (this corresponds to
a many-valued logic [Bel77]) we have developed a new algorithm for computing
information-preserving expressions. This will be reported elsewhere.

869Ratschan S.: Uncertainty Propagation in Heterogeneous Algebras ...

6 Representing Power Algebras by Intervals

Of course the representation of arbitrary power sets of the sorts of a domain A

is in general an even harder problem than representing single elements. Thus we
choose special sets that are easily representable and round [Alb80, KM80, KM81]
other sets. We use rounding operators Ri : }(A i)! A

0
iA
0
iA
0
i, for which:

{ for all a 2 }(A i), a � Ri(a) (rounding increases uncertainty)
{ for all a 2 }(A i), Ri(Ri(a)) = Ri(a) (do not round elements that are already
rounded)

{ for all a;b 2 }(A i), a � b implies Ri(a) � Ri(b) (rounding is inclusion
monotone)

Given a power algebra A �
A
�

A
� and rounding operators Ri we can then construct

a new power algebra A
0

A
0

A
0 in which for all function symbols f with signature

}(A i1) � � � � � }(A in) ! }(A j), for all a 2 }(A i1) � � � � � }(A in), IA 0
A
0

A
0(f)(a) =

Rj(IA �
A
�

A
�(f)(a)). In this case we say that A 0

A
0

A
0 is the approximation of A �

A
�

A
� implied

by the Ri. Then we can restrict ourselves to rounded sets for computation.
If we have a (partial) order � on the A i then we can choose the set of

intervals [a; a] := fx j a � x � ag with endpoints in A i [f�1;1g as such a
representation. This is a quite simple, and thus eÆcient notation for denoting
sets [NN97]. So we also use them for building power algebras. Here we require
that in A i the biggest lower bound and smallest upper bound is de�ned for any
set (in this case the A i are complete lattices). Now we can do rounding by taking
the smallest superset that is an interval. For any set a we will denote this by
Encl(a). It can be easily checked that Encl is a rounding operator. Now we can
de�ne the tightest possible extension up to rounding by Encl.

De�nition 15. For every mapping f : A 1 � � � � � A n ! A
0, for all a1 2

}(A 1); : : : ; an 2 }(A n),

ExtI(f)(a1; : : : ; an) := Encl(Ext(f)(a1; : : : ; an))

We call ExtI(f) the tight interval extension of f

For certain mappings f , ExtI(f) and Ext(f) coincide, for example over the
reals if f is continuous (see [Kos98] for a discussion of a similar question from
the algebraic point of view). Otherwise ExtI(f) overestimates Ext(f), but is
still point-preserving, and an enclosure of f , and also inclusion-monotone.

For any algebra A we can use the approximation of AAA Ext implied by Encl,
which we denote by AAA ExtI. By lemma 10, AAA ExtI is again point-preserving, and
an enclosure of A , and inclusion-monotone. But the analogous version of the-
orem 12, that for free expressions e, [[e]]

A
ExtI = ExtI([[e]]A) does not hold.

This can be seen on the following example: Let f be such that f(x) = �1 if
x < 0, and f(x) = 1 otherwise. Let g be such that g(x) = 1 if x = 0, and
g(x) = 0 otherwise. Then Encl(g(f([�1; 1]))) = Encl(g(f�1; 1g)) = [0; 0], but
Encl(g(Encl(f([�1; 1])))) = [0; 1].

But in the case where, for all mappings f , ExtI(f) and Ext(f) coincide,
no information is lost by switching to intervals, and for free expressions e, even
[[e]]

A
ExtI = Ext([[e]]A).

870 Ratschan S.: Uncertainty Propagation in Heterogeneous Algebras ...

In domains with in�nite sorts we often do not want to allow arbitrary el-
ements of such a sort to form interval endpoints but only a �nite subset. For
example over R one often just allows oating point values F . In this case instead
of rounding to the smallest interval superset, one does rounding to the smallest
interval superset with endpoints in the chosen subset of the sort (e.g., oating
point endpoints).

7 Application to Quanti�ed Constraint Solving

We use the algebra D , as described in section 3, as a starting point and approxi-
mate it by the tight power algebra DDD Ext. Here it is easy to deal with approximate
constants. As shown in section 3, in D they are 0-ary function symbols with sig-

nature D
R
n that are interpreted as constant functions. So we can simply assign

the according set of constant functions to this function symbol in the power
algebra.

Provided that all constants are exact, by lemma 10, DDD Ext is point-preserving,
so [[�]]DDD Ext(fd

id
1 g; : : : ; fd

id
n g) yields the (exact) solution set of �. Furthermore

DDD Ext is an enclosure of D , so [[�]]DDD Ext(d
id
1 ; : : : ;didn), where did1 ; : : : ;didn are ap-

proximations of the identity term functions, yields an approximation of the ex-
act solution set of �. Moreover [[�]]

DDD Ext is inclusion-monotone, so we can im-

prove the approximation [[�]]DDD Ext(d
id
1 ; : : : ;didn) by improving the approximations

did
1
; : : : ;did

n
.

These properties allow us to apply the incremental approximation scheme
from the end of section 2. Since DDD Ext is an enclosure of D , the method yields a
correct result, if it terminates. Since DDD Ext is inclusion-monotone, it gets nearer
to the correct result in each turn of the loop. However, the method still does not
necessarily terminate. The problem is that, even if the size of the argument sets
tends to the one-elementary set and all constants are exact, the size of the result
set does not necessarily tend to a one-elementary set. The reason for this lies in
the quanti�ers, and does not occur for constraint without quanti�ers. In order
to make the method always terminate on constraints with quanti�ers, also, one
needs to replace the classical quanti�ers by di�erent, approximate quanti�ers.

For lack of space, we cannot give a detailed description of the semantics of
approximate quanti�ers here (see [Rat00c]), but only an informal one: The �rst
step for their introduction is, to allow quanti�ers with a positive real annotation
q, with the intuitive meaning that a constraint 9qx �(x) is true i� the volume
of the solution set of � is greater than q. Also these quanti�ers cannot assure
the termination of the method. But this changes if we allow quanti�ers to be
annotated with an interval [q; q], where q < q, with the intuitive meaning that the
true annotation can be somewhere within this interval. This allows an algorithm
to choose the most suitable value between q and q and we don't care which one.
This means that if the quanti�ed solution set is greater than q the result is T ,
if the quanti�ed solution set is smaller or equal q the result is F , and otherwise
the result is allowed to be any of T or F (see �gure 5). A formal de�nition of the
semantics and properties of approximate quanti�ers requires considerably more
e�ort [Rat00c].

The question remains, how to represent subsets of D B1 ; D
B
2 ; : : : and subsets

of D R1 ; D
R
2 ; : : : on computers (i.e., how to represent the power algebra DDD Ext). Of

871Ratschan S.: Uncertainty Propagation in Heterogeneous Algebras ...

T

F

truth value of 9x �

size of solution set of �q q

Figure 5: Approximate Quanti�ers

course there are many possibilities for this. Here we describe one that has been
a successfully starting point for our implementation [Rat00a].

As proposed in section 6, we use interval representation. We take the usual
order on the real numbers and the order F < T on the Booleans and extend

it element-wise to all elements of the sorts D B1 ; D
B
2 ; : : : and D

R
1 ; D

R
2 ; : : : . This

enables us to compute in DDD
ExtI by using interval representation [p; p] for subsets

of the sorts, where the bounds p and p are functions Rn ! R and R
n ! B .

We need a representation of the bounds of these intervals, for which [[�]]DDD ExtI

is easy to compute. It can be easily shown that, if the inputs to computations in
DDD ExtI are intervals of functions in which [p(a); p(a)] is constant on boxes (i.e.,

Cartesian products of intervals) then all computation results also have this form.
So we can represent all functions by sets of pairs that consist of a real box plus
a Boolean or real interval.

See �gure 6 for an example of uncertainty propagation using this represen-
tation. For computing the value of the constraint 8x [xx � 0] we start with an
approximation of the identity term function of x (upper left corner, the intervals
are the second element of each pair contained in the above set of pairs). We
multiply two copies of this term function in DDD ExtI by applying ExtI(�) to them
and arrive at an approximation of the term function of xx (upper right corner).
Here one can see the e�ect of the dependency problem: Multiplication does not
detect that its arguments are identical, and thus the approximation contains
functions with negative values. Now we apply � to this term function (lower left
corner) and detect that for the boxes [[�1;�1]] and [[1;1]] the solution set is
surely true (i.e., the interval [T; T]), and in [�1; 1] we do not have information
(i.e., the interval [F; T]). Now we apply universal quanti�cation to this approxi-
mate solution set: The result (lower right corner) depends on the value of x on
the whole real line, and we cannot infer any information because of the interval
[F; T] assigned to the box [[�1; 1]] of the argument. The situation changes if we
make the approximation of the identity term function of x smaller by bisecting
the box �1; 1 into two pieces with values [�1; 0] and [0; 1], respectively: Then
multiplication creates the value [0; 1] for both of them, and we can infer that the
the approximate solution set of x [xx � 0] contains all real numbers and thus
the whole constraint is true.

More complicated examples show, that the major computational complexity

872 Ratschan S.: Uncertainty Propagation in Heterogeneous Algebras ...

[T; T] [F; T] [T; T] [F; T]

[�1; 1]

[1;1]

[�1; 1]

[1;1]

[1;1]

[�1;�1]

Figure 6: Propagation Example

lies in propagating approximate solution sets over quanti�ers | these represent
the only mappings where the result does not only depend on one value of each
argument, but on in�nitely many values.

8 Related Work

Set theory is one of the oldest methods for dealing with uncertainty, as can
be seen from the ubiquitous formulation \for any a in A". Cantor constructed
the real numbers by sequences of nested intervals [Can70]. Other approaches to
modeling uncertainty in mathematics are, for example, functions from the reals
to sets of reals [AF90]. In contrast to our approach, classical mathematics is
more interested in in�nitary notions like limit and continuity, and less in actual
computation with approximate values.

Especially for dealing with uncertainty, set theory has been extended to
fuzzy set theory [Zad65, Zim91]. The area of interval mathematics (see e.g.,
[Kea96, Moo66, Neu90, Sta96]) uses real intervals for dealing with uncertainty.
Examples of other domains, where sets have been used for representing uncer-
tainty, are the complex numbers [Hen71, KU80, Nic80, RL71], �nite domains
(constraint programming [Bar, MS98], many-valued logic [Urq86, Bel77]) and
functions [BH98, CR91, KM84].

A large part of our approach is a generalization of interval mathematics, and
a lot of theorems and proofs are straightforward generalizations of corresponding
theorems there. Several other authors also provided generalizations of interval
arithmetic. Apostolatos and Karabatzos [AK80] generalized various basic de�-
nitions and theorems from interval arithmetic to arbitrary sets in a similar way
as in Section 4, and applied their theory to notions such as �xed-point iteration.
Other authors provided general algebraic interval structures [Kla76, Klu81], or
developed and applied general theories of rounding in connection with interval
arithmetic [Alb80, KM80, KM81]. The observation that interval arithmetic is
related to 3-valued logic, also appears quite often in the literature (see for ex-
ample [Jah80]). Similar many-valued logics arise in arti�cial intelligence [Bel77].

873Ratschan S.: Uncertainty Propagation in Heterogeneous Algebras ...

In our terminology this is just a construction of an power algebra from the
Booleans.

In computer science similar approaches have been used for modeling nonde-
terminism in abstract data types [WM97, Hes88, Hus93], where usually multi-
algebras (i.e., algebras over functions A1 � � � � � An ! }(A0)) are used. There
one usually starts from a nondeterministic speci�cation and then tries to arrive
at a (often deterministic) implementation. In contrast to that, in our approach
we start from an deterministic (exact) speci�cation and then approximate it via
a nondeterministic (approximate) implementation. Furthermore the theory of
power domains has been developed for modeling sets and non-determinism in
functional languages [Plo76, Smy78].

The traditional way of dealing with uncertainty is probability theory, where
probability distributions are used for this purpose. For example [Ber96] and
[KFG+99] study the connection of this approach to the set based approach.

The starting point for our work was the work by Hong and Neubacher
[Hon95, HN96, Neu97] on approximate quanti�ed constraint solving based on
interval arithmetic. Their work raised a lot of interesting problems, for exam-
ple: How to transform the input formulas in order to optimize the performance?
Which data-structures to use? How to ensure convergence? Which search strate-
gies to use? These questions were hard to study because of the intricacy of their
algorithms (over 10 pages of pseudo-code). Their work can be viewed as a spe-
cial instantiation of our framework. Our contribution provides a clear theoretical
basis, and structures their algorithms by abstracting away details that are un-
necessary for studying the preceding questions. This already helped in answering
some of them [Rat00c, Rat00b, Rat98] and allowed us to design new and more
eÆcient algorithms based on the gained insight. So our framework seems to be
useful for further considerations there, but also in other areas which deal with
uncertainty (e.g., interval mathematics, many-valued logic).

9 Conclusion

We have shown how approximate quanti�ed constraint solving gives rise to un-
certainty propagation in a heterogeneous algebra. Since heterogeneous algebras
are ubiquitous in computing, we have developed a general framework for prop-
agating uncertainty in them by introducing the notion of heterogeneous power
algebra. We have studied properties of this notion interesting for approximate
computation and have identi�ed the dependency problem as crucial.

The generality of the notion of heterogeneous algebra makes our framework
for approximate computation applicable in various other areas | for example,
interval arithmetic and certain many-valued logics [Bel77, NRSS97] are an in-
stance of the scheme. Also the application to quanti�ed constraint solving can
be used over di�erent domains than the real numbers.

The application of the resulting method to quanti�ed constraint solving yields
an approximation method with various favorable properties: First, it allows us to
process input with inexact constants. Second, we can deal with an undecidable
problem that has extremely high complexity for subproblems. Third, we can
choose approximations that result in simple numerical output. Furthermore the
algorithm is tunable in the sense, that the user can decide upon the trade-o�
between precision and eÆciency.

874 Ratschan S.: Uncertainty Propagation in Heterogeneous Algebras ...

Based on the work in this paper we have implemented a method for approxi-
mate quanti�ed constraint solving [Rat00a], that builds on earlier work by Hong,
Neubacher, Stahl and others [HN96, HS94, HNS94]. For this we use special data-
structures that allow eÆcient execution of the involved operations [Rat00b]. The
formal framework developed in this paper makes it now possible to further im-
prove the implementation, by allowing the study of questions such as:

{ Which search strategies and heuristics should be used, for example for de-
ciding when and how to improve the approximation of which input set?

{ Which alternative representations could be used for representing sets of so-
lution sets? For example one could try to represent pieces of solution sets by
real polytopes instead of real boxes.

{ How to preprocess the input constraints to improve eÆciency? This includes
transformations for minimizing the dependency problem and propagation
time. One promising approach might be to apply symbolic simpli�cations in
the style of [DS97, Wei88].

{ How to do computation if the constraints are built incrementally (e.g., com-
ing from a Constraint Logic Programming [JL87] system). Our method seems
to be very well suited for this.

A Equivalence of Meaning of Constraints

Here we prove the equivalence of the meaning of constraints as expressions in
the algebra D and as logical formulas. For this let us denote the term function in

D
R
jV j and solution set in D

B
jV j given by the logical meaning of a term or formula

� respectively, by sV (�), where V is a superset of the set of free variables of
�. Sometimes we drop V and write s(�) for sV (�) where V is the set of all
variables occurring in �. We assume that the reader is familiar with the exact
formal de�nition of sV (�).

Theorem16. For every constraint � in variables V , for d = (did1 ; : : : ; d
id
jV j),

[[�]]D ;V
(d) = sV (�)

Proof. We have to prove that for all (p1; : : : ; pjV j) in R
jV j,

[[�]]D ;V
(d)(p1; : : : ; pjV j) = sV (�)(p1; : : : ; pjV j):

We proceed by induction on the structure of formulas.

Base Cases: { For any formula xi,

[[xi]]D ;V
(d)(p1; : : : ; pjV j) = sV (xi)(p1; : : : ; pjV j)

By de�nition of identity term function, [[xi]]D ;V
(d)(p1; : : : ; pjV j) = pi,

which is equal to the right-hand side of the preceding equation.
{ For any constant c,

[[c]]D ;V
(d)(p1; : : : ; pjV j) = sV (c)(p1; : : : ; pjV j)

Both sides of this equation are equal to the constant denoted by c.

875Ratschan S.: Uncertainty Propagation in Heterogeneous Algebras ...

Induction Steps: { For any formula of the form f(�1; : : : ; �k), where f is
a k-ary logical connective:

[[f(�1; : : : ; �k)]]D ;V
(d)(p1; : : : ; pjV j) = sV (f(�1; : : : ; �k))(p1; : : : ; pjV j)

This can be proved as follows:
[[f(�1; : : : ; �k)]]D ;V

(d) = def. of [[]]D
(ID (f) Æ ([[�1]]D ;V

; : : : ; [[�k]]D ;V
))(d) = def. of Æ

ID (f)([[�1]]D ;V
(d); : : : ; [[�k]]D ;V

(d)) = def. of ID
IB (f) Æ ([[�1]]D ;V

(d); : : : ; [[�k]]D ;V
(d)) = induction hypothesis

IB (f)(sV (�1); : : : ; sV (�k)) = def. of s
sV (f(�1; : : : ; �k))

{ For any formula of the form f(�1; : : : ; �k), where f is a k-ary predicate
or function symbol:

[[f(�1; : : : ; �k)]]D ;V
(d)(p1; : : : ; pjV j) = sV (f(�1; : : : ; �k))(p1; : : : ; pjV j)

This can be proved as follows:
[[f(�1; : : : ; �k)]]D ;V

(d) = def. of [[]]D
(ID (f) Æ ([[�1]]D ;V

; : : : ; [[�k]]D ;V
))(d) = def. of Æ

ID (f)([[�1]]D ;V
(d); : : : ; [[�k]]D ;V

(d)) = def. of ID
IR (f) Æ ([[�1]]D ;V

(d); : : : ; [[�k]]D ;V
(d)) = induction hypothesis

IR (f)(sV (�1); : : : ; sV (�k)) = def. of s
sV (f(�1; : : : ; �k))

{ For any formula of the form (8xi)�,

[[(8xi)�]]D ;V
(d)(p1; : : : ; pjV j) = sV ((8xi)�)(p1; : : : ; pjV j)

This can be proved as follows:
[[(8xi)�]]D ;V

(d)(p1; : : : ; pjV j) = def. of [[]]D
ID (8xi)([[�]]D ;V

(d))(p1; : : : ; pjV j) = def. of ID
(for all q 2 R,[[�]]D ;V

(d)(p1; : : : ; q; : : : ; pjV j) = T) = induction hyp.

(for all q 2 R, sV (�)(p1; : : : ; q; : : : ; pjV j) = T) = def. of s
sV ((8x)�)(p1; : : : ; pjV j)

{ For any formula of the form (9xi)�,

[[(9xi)�]]D ;V
(d)(p1; : : : ; pjV j) = sV ((9xi)�)(p1; : : : ; pjV j)

Proof similar to previous case.
ut

Acknowledgments

Most of this research was done as a part of the author's Ph.D. work. The author
thanks his Ph.D. advisor, Hoon Hong, for all the guidance that is reected in
both the structure and content of this paper. The author also is grateful for the
detailed and constructive criticism made by a referee. This work was supported
by the Austrian Science Fund FWF in the frame of the project SFB F1303.

876 Ratschan S.: Uncertainty Propagation in Heterogeneous Algebras ...

References

[ACS94] M. V. A. Andrade, J. L. D. Comba, and J. Stol�. AÆne arithmetic. In
Abstracts of the International Conf. on Interval and Computer-Algebraic
Methods in Science and Engineering (INTERVAL/94), pages 36{40, 1994.

[AF90] Jean-Pierre Aubin and Helene Frankowska. Set-valued Analysis. Birkh�auser,
Boston, 1990.

[AK80] N. Apostolatos and G. Karabatzos. Set functions and applications. In Karl
L. E. Nickel, editor, Interval Mathematics, pages 1{24. Academic Press,
1980.

[Alb80] R. Albrecht. Roundings and approximations in ordered sets. In G. Alefeld
and R.D. Grigorie�, editors, Fundamentals of Numberical Computation
(Computer-Oriented Numerical Analysis), volume 2 of Computing Supple-
mentum, pages 17{31. Springer, 1980.

[Bar] Roman Bartak. Guide to constraint programming. http://kti.ms.mff.
cuni.cz/~bartak/constraints/index.html.

[BCK97] Maria Beltran, Gilbert Castillo, and Vladik Kreinovich. Algorithms that
still produce a solution (maybe not optimal) even when interrupted: Shary's
idea justi�ed. Reliable Computing, 3(3):39{53, 1997.

[Bel77] N.D. Belnap, Jr. A useful four-valued logic. In J. Michael Dunn and
G. Epstein, editors, Modern Uses of Multiple- Valued Logic, pages 8{37.
Reidel, 1977.

[Ber96] D. Berleant. Automatically veri�ed arithmetic on probability distributions
and intervals. In R. Baker Kearfott and Vladik Kreinovich, editors, Appli-
cations of Interval Computations. Kluwer, 1996.

[BH98] Martin Berz and Georg Ho�st�atter. Computation and application of taylor
polynomials with interval remainder bounds. Reliable Computing, 4:83{97,
1998.

[Can70] Georg Cantor. �Uber einen die geometrischen Reihen betre�enden Lehrsatz.
Crelles Journal f. Mathematik, 72:130{138, 1870.

[Cap79] G. Caplat. Symbolic preprocessing in interval function computing. In Sym-
bolic and algebraic computation, EUROSAM '79, LNCS 72, pages 369{382,
Marseille, 1979.

[CH91] George E. Collins and Hoon Hong. Partial cylindrical algebraic decompo-
sition for quanti�er elimination. Journal of Symbolic Computation, 12:299{
328, 1991. Also in [CJ98].

[CJ98] B. F. Caviness and J. R. Johnson, editors. Quanti�er Elimination and
Cylindrical Algebraic Decomposition. Texts and Monographs in Symbolic
Computation. Springer, 1998.

[Col75] George E. Collins. Quanti�er elimination for the elementary theory of real
closed �elds by cylindrical algebraic decomposition. In Second GI Conf. Au-
tomata Theory and Formal Languages, volume 33 of Lecture Notes in Com-
puter Science, pages 134{183. Springer- Verlag, Berlin, 1975. Also in [CJ98].

[CR91] George F. Corliss and Louis B. Rall. Computing the range of derivatives.
In Edgar W. Kaucher, Svetoslav M. Markov, and G�unter Mayer, editors,
Computer Arithmetic, Scienti�c Computation, and Mathematical Modelling,
volume 12 of IMACS Annals on Computing and Applied Mathematics, pages
195{212. J. C. Baltzer, Basel, 1991.

[DH88] J. H. Davenport and J. Heintz. Real quanti�er elimination is doubly expo-
nential. Journal of Symbolic Computation, 5:29{35, 1988.

[DS97] Andreas Dolzmann and Thomas Sturm. Simpli�cation of quanti�er-free
formulae over ordered �elds. Journal of Symbolic Computation, 24(2):209{
231, 1997.

[dW93] Van der Waerden. Algebra I. Springer Verlag, 9th edition, 1993.

877Ratschan S.: Uncertainty Propagation in Heterogeneous Algebras ...

[EFT84] H.-D. Ebbinghaus, J. Flum, and W. Thomas. Mathematical Logic. Springer
Verlag, 1984.

[EM85] Hartmut Ehrig and Bernd Mahr. Algebraic Speci�cation. Springer Verlag,
1985.

[Han75] E. R. Hansen. A generalized interval arithmetic. In K. Nickel, editor, In-
terval Mathematics, volume 29 of Lecture Notes in Computer Science, pages
7{18, 1975.

[Hen71] Peter Henrici. Circular arithmetic and the determination of polynomial ze-
ros. In Conf. Appl. numerical Analysis, volume 228 of Lecture Notes Math.,
pages 86{92. Springer, 1971.

[Hes88] Wim H. Hesselink. A mathematical approach to nondeterminism in
data types. ACM Transactions on Programming Languages and Systems,
10(1):87{117, 1988.

[HJ98] C.A.R. Hoare and He Jifeng. Unifying Theories of Programming. Series in
Computer Science. Prentice Hall, 1998.

[HN96] Hoon Hong and Andreas Neubacher. Approximate quanti�er elimination.
In Proceedings of IMACS-ACA'96, 1996.

[HNS94] Hoon Hong, Andreas Neubacher, and Volker Stahl. The STURM library
manual { a C++ library for symbolic computation. Technical Report 94-
30, RISC Linz, 1994.

[Hoa96] C.A.R. Hoare. Unifying theories: A personal statement. ACM Computing
Surveys, 28A(4), December 1996.

[Hon92] H. Hong. Heuristic search strategies for cylindrical algebraic decomposi-
tion. In Jacques Calmet et al., editors, Proceedings of Arti�cial Intelligence
and Symbolic Mathematical Computing, Springer Lecture Notes in Computer
Science 737, pages 152{165, 1992.

[Hon95] Hoon Hong. Symbolic-numeric methods for quanti�ed constraint solving.
In International Symposium on Scienti�c Computing, Computer Arithmetic
and Validated Numerics SCAN-95, 1995. Invited Talk.

[HS94] Hoon Hong and Volker Stahl. Safe starting regions by �xed points and
tightening. Computing, 53:323{335, 1994.

[Hus93] H. Hussmann. Nondeterminism in Algebraic Speci�cations and Algebraic
Programs. Birkh�auser, 1993.

[Jah80] Karl-Udo Jahn. The importance of 3-valued notions for interval mathe-
matics. In Karl L. E. Nickel, editor, Interval Mathematics, pages 75{98.
Academic Press, 1980.

[JL87] Joxan Ja�ar and Jean-Louis Lassez. Constraint logic programming. In Pro-
ceedings of the 14th ACM Symposium on Principles of Programming Lan-
guages, Munich, Germany, pages 111{119. ACM, January 1987.

[Kea96] R. Baker Kearfott. Interval computations: Introduction, uses, and resources.
Euromath Bulletin, 2(1):95{112, 1996.

[KFG+99] Vladik Kreinovich, Scott Ferson, Lev Ginzburg, Harry Schulte, Matthew R.
Barry, and Hung T. Nguyen. From interval methods of representing uncer-
tainty to a general description of uncertainty. In Proceeedings of the In-
ternational Conference on Information Technology, Bhubaneshwar, India,
1999.

[Kla76] Dieter Klaua. Intervallstrukturen geordneter K�orper. (German). Math.
Nachr., 75:319{326, 1976.

[Klu81] U. Klug. Verallgemeinerte Intervallr�aume (German). Math. Nachr.,
102:347{359, 1981.

[KM80] U. W. Kulisch and W.L. Miranker. Arithmetic operations in interval spaces.
In G. Alefeld and R.D. Grigorie�, editors, Fundamentals of Numberical
Computation (Computer-Oriented Numerical Analysis), volume 2 of Com-
puting Supplementum, pages 51{67. Springer, 1980.

878 Ratschan S.: Uncertainty Propagation in Heterogeneous Algebras ...

[KM81] Ulrich W. Kulisch and Willard L Miranker. Computer Arithmetic in Theory
and Practice. Academic Press, 1981.

[KM84] Edgar W. Kaucher and Willard L. Miranker. Self-Validating Numerics for
Function Space Problems. Academic Press, 1984.

[Kos98] Olga Kosheleva. When is the product of intervals also an interval. Reliable
Computing, 4:179{190, 1998.

[KU80] R. Klatte and Ch. Ullrich. Complex sector arithmetic. Computing, 24:139{
148, 1980.

[Mis93] B. Mishra. Algorithmic Algebra. Springer Verlag, 1993.
[Moo66] R. E. Moore. Interval Analysis. Prentice Hall, Englewood Cli�s, NJ, 1966.
[MS98] Kim Marriott and Peter J. Stuckey. Programming with Constraints: an In-

troduction. MIT Press, 1998.
[Neu90] Arnold Neumaier. Interval Methods for Systems of Equations. Cambridge

Univ. Press, Cambridge, 1990.
[Neu97] Andreas Neubacher. Parametric Robust Stability by Quanti�er Elimination.

PhD thesis, Research Institute for Symbolic Computation - Universit�at Linz,
October 1997.

[Nic80] K. Nickel. Arithmetic of complex sets. Computing, 24:97{105, 1980.
[NN97] Monica Nogueira and Amarendra Nandigam. Why interval? Because if we

allow other sets, tractable problems become intractable. Technical Report
UTEP-CS-97-7, University of Texas at El Paso, El Paso, 1997.

[NRSS97] Alioune Ngom, Corina Reischer, Dan A. Simovici, and Ivan Stojmenovi�c.
Set-valued logic algebra: A carrier computing foundation. Multiple Valued
Logic, 2(3):183{216, 1997.

[Plo76] G. Plotkin. A power domain construction. SIAM Journal on Computing,
5(3):452{487, 1976.

[Rat98] Stefan Ratschan. Approximate Constraint Logic Programming. PhD thesis,
RISC-Linz, 1998.

[Rat00a] Stefan Ratschan. Approximate quanti�ed constraint solving (AQCS).
http://www.risc.uni-linz.ac.at/research/software/AQCS, 2000. Soft-
ware package.

[Rat00b] Stefan Ratschan. Approximate quanti�ed constraint solving by cylindrical
box decomposition. In 6th IMACS Conference on Applications of Computer
Algebra: Interval and Computer-Algebraic Methods in Science and Engineer-
ing, St. Petersburg, 2000.

[Rat00c] Stefan Ratschan. Convergence of quanti�ed constraint solving by approxi-
mate quanti�ers. Technical Report 00-23, Research Institute for Symbolic
Computation (RISC) - Linz, 2000. Submitted for Publication.

[Ren92] James Renegar. On the computational complexity and geometry of the �rst-
order theory of the reals. Journal of Symbolic Computation, 13(3):255{352,
March 1992. Part I-III.

[RL71] J. Rokne and P. Lancaster. Complex interval arithmetic. Comm. ACM,
14:111{112, 1971.

[SB81] H.P. Sankappanavar Stanley Burris. A course in universal algebra. Springer
Verlag, 1981.

[Smy78] M. B. Smyth. Power domains. Journal of Computer and System Sciences,
16, 1978.

[Sta96] Volker Stahl. Interval Methods for Bounding the Range of Polynomials and
Solving Systems of Nonlinear Equations. PhD thesis, Research Institute for
Symbolic Computation, Johannes Kepler University, A-4040 Linz, Austria,
1996.

[Tar51] Alfred Tarski. A Decision Method for Elementary Algebra and Geometry.
Univ. of California Press, Berkeley, 1951. Also in [CJ98].

879Ratschan S.: Uncertainty Propagation in Heterogeneous Algebras ...

[Urq86] Alasdair Urquhart. Many-valued logic. In D. Gabbay and F. Guenther,
editors, Handbook of Philosophical Logic, Vol. III: Alternatives in Classical
Logic, chapter III.2, pages 71{116. D. Reidel Publishing Company, 1986.

[Wei88] Volker Weispfenning. The complexity of linear problems in �elds. Journal
of Symbolic Computation, 5(1{2):3{27, 1988.

[WM97] Micha l Walicki and Sigurd Meldal. Algebraic approaches to nondetermin-
ism: An overview. ACM Computing Surveys, 29(1), 1997.

[Zad65] Lot� A. Zadeh. Fuzzy sets. Information and Control, 8:338{353, 1965.
[Zim91] H.-J. Zimmermann. Fuzzy Set Theory - and Its Applications. Kluwer, 1991.

880 Ratschan S.: Uncertainty Propagation in Heterogeneous Algebras ...

