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Abstract: A dynamical systems based model of computation is studied. We demon-
strate the computational capability of a class of dynamical systems called switching
map systems. There exists a switching map system with two types of baker's map to
emulate any Turing machines. The baker's maps are corresponding to the elementary
operations of Turing machines such as left/right head-moving and read/write symbols.
A connection between the generalized shifts by C. Moore [Moore 91] and the input-
output mappings by L. Blum et al. [Blum, Cucker, Shub and Smale 98] is shown with
our model. We present four concrete examples of switching map systems corresponding
to the Chomsky hierarchy. Taking non-hyperbolic mappings as elementary operations,
it is expected that the switching map systems shows a new model of computation with
nonlinearity as an oracle.
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1 Introduction

Dynamical systems have recently been actively studied in the view of a comput-
ing process in physical systems (see e.g., [Crutch�eld and Young 90] [Moore 91]
[Siegelmann 99]). In [Moore 91], it is shown that any Turing machine is equiva-
lent to a class of two-dimensional piecewise-linear map (Generalized shifts, GSs)
and they can be embedded in smooth ows in R3. Here we introduce another
class of dynamical systems called switching map systems to demonstrate its
computational capability.

We show that there exists a switching map system with two types of baker's
map to emulate any Turing machines. The baker's maps are corresponding to the
elementary operations of Turing machines such as left/right head-moving and
read/write symbols. An advantage of this system is that it is a `programmable'
GSs. Thus we can easily construct various concrete examples with it. Since
this system is also a class of input-output mappings de�ned in the BSS model
[Blum, Cucker, Shub and Smale 98], a connection between GSs and input-output
map is also shown.

We also put forward the importance of `natural' e�ective procedures" in
computation. Taking non-hyperbolic mappings (for example the H�enon map),
as elementary operations, we argue that the switching map system shows a new
model of computation with the nonlinearity as an oracle. 1

1 Here we call it oracle here in the sense that it can potentially use in�nite bits at one
time step. See [Sato].
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In section 2, we introduce switching map systems and study the correspon-
dence between dynamical systems and Turing machines. In section 3, we show
examples of switching map systems which can be recognizers for formal lan-
guages of the Chomsky hierarchy. In section 4, we propose a framework of the
nonlinear computation by using H�enon maps as elementary operations of com-
putation there. We also give an example of nonlinear computation. In section 5,
we summarize the results and the overview. In particular, probabilistic compu-
tation and non-deterministic computation are discussed. Continuous ow that
sustains switching map system is also presented.

2 Turing machines and switching map systems

Here we consider the correspondence between the switching map systems and
Turing machines. We introduce a symbolic dynamics to interpret dynamical
systems as Turing machines.

2.1 The switching map systems

Let f1; f2; : : : ; fM be M mappings on X � Rn. A set of internal states S =
f0; : : : ; N � 1g and N branching functions labeled by the states g0; g1; : : : ; gN�1
are given in advance, where gn : X ! S are mappings from a value of x to a
label of the next states. We denote a switching map system with f1; f2; : : : ; fM
as F (f1; f2; : : : ; fM ):

F : S �X ! S �X : (n; x) 7! (n0; x0) = (gn(x); hn(x)) (n 2 S);

where hn 2 ff1; f2; : : : ; fMg. F maps each state/space pair (n; x) to the unique
next state/space pair (n0; x0) deterministically. Here in practice, mappings are
switched and applied to an initial con�guration (0; x0) 2 S �X successively as
follows:

(0; x0) 7! (n1; x1)=(g0(x0); h0(x0))

7! (n2; x2)=(gn1(x1); hn1(x1))

...

7! (nt+1; xt+1)=(gnt
(xt); hnt

(xt))

Here gnt
is applied to xt and gnt

(xt) is used as function label nt+1, in the
same way, hnt

is applied to xt, and hnt
(xt) is substituted as initial value xt+1 for

hnt+1
, where n1; n2; : : : is the state of the system at time t = 1; 2; : : : respectively.

This process is iteratively applied to determine the successive functional form.
We can regard a switching map system F (f1; f2; : : : ; fM ) with suitable branch-

ing function g's as a program, and its trajectories as a process of computation.
Structures of its attractors are corresponding to the output results. Since we
can use periodic orbits or attractors as output results, a halting state is not
always required. With this framework, we can de�ne a process of computation
as a dynamics and interpret properties of dynamical systems such as measures,
dimensions and topological structures from a computational theoretical point of
view. Additionally, a switching map system is represented by a skew product of
dynamical systems [Cornfeld, Fomin, Sinai 82] and it is also introduced in a view
from information processing on high-dimensional dynamical systems [Tsuda 91].
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2.2 The horseshoe map and symbolic dynamics

A dynamical system is called chaotic if the set of the orbit in the phase space em-
beds Smale's topological horse shoe [Smale 67]. The horse shoe map is described
in terms of an invertible planar map which can be thought of as a Poincar�e map
arising from a three dimensional autonomous di�erential equation or a forced
oscillator (Figure 1). The set of non-wandering points of horse shoe map � forms
a square Cantor set, in which each point corresponds to a sequence in f0; 1gN.
Which half (left or right) of the square the point is belonging to gives a rule of
the gray code (Figure 2). The action of the map induces a shift on a bi-in�nite
sequence of two symbols where ai denotes a bit-ipping:

H0 : �! � : : : : a�2a�1:a0a1a2 : : : 7! : : : a�2a�1a0:a1a2 : : :

H1 : �! � : : : : a�2a�1:a0a1a2 : : : 7! : : : a�2a�1a0:a1a2 : : :

H�1

0 : �! � : : : : a�2a�1:a0a1a2 : : : 7! : : : a�2:a�1a0a1a2 : : :

Regarding the decimal point as the position of the head of Turing machines,
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Figure 1: The Smale's horseshoe map
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Figure 2: Coding non-wandering points on the invariant set �
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these actions correspond to the elementary operations of Turing machines, such
as (1) left-shifting (H0 = H1H

�1

0 H1), (2) right-shifting (H�1

0 ), (3) bit ipping
and left-shifting (H1), and (4) bit-ipping and right-shifting (H

�1

0 H1H
�1

0 ). Thus

we can use suitable combinations of H�1

0 and H1 to emulate arbitrary compu-
tation processes. When a halting state is required, we can use identical maps I
as the halting operations.

In two dimensional discrete dynamical systems on a unit space [0; 1]�[0; 1], we
can substitute the baker's map for the horseshoe map. It is a measure preserving
map which conjugates to the shift on two symbols. In this case, the left and
right halves of a point's sequence are simply the binary expansions of its x and
y coordinates respectively. Here we use a standard metric on the unit space.
In practice, Turing machines with N internal states can be emulated by the
following set of baker's mappings:

B0(x; y) =

�
(2x; y

2
) x 2 [0; 1

2
)

(2x� 1; y+1
2
) x 2 [ 1

2
; 1)

(1)

B1(x; y) =

�
(2x; y+1

2
) x 2 [0; 1

2
)

(2x� 1; y
2
) x 2 [ 1

2
; 1)

(2)

B�1

0 (x; y) =

�
(x
2
; 2y) y 2 [0; 1

2
)

(x+1
2
; 2y � 1) y 2 [ 1

2
; 1)

(3)

Theorem1. For any Turing machine M , there exists a switching map systems
F (B�1

0 ; B1; I) conjugate to M via a map �.

Proof. This is done by constructing a map � from a Turing machine M with
two symbols to a switching map system F (B�1

0 ; B1; I).
Turing machines M with N + 1 internal state are de�ned by a �nite set

of (q; sr; sw; ; q
0), where q; q0 2 f0; : : : ; Ng represent the present/next internal

state, 0/N correspond to machine's initial/halting state, sr; sw 2 f0; 1g corre-
spond to symbols which a machine reads/writes, and  2 fL;Rg correspond to
left/right head-moving.

Let symbols on tape be (a�i):a0(ai) (i 2 N; ai 2 f0; 1g). We represent them
by x = 0:a0(ai) = �1

i=0ai2
�i 2 R, and y = 0:(a�i) = �1

i=1a�i2
�i 2 R. A

branching function gn is denoted as follows;

gn(x) =

�
n0 x 2 [0; 1

2
) (a0 = 0)

n1 x 2 [ 1
2
; 1) (a0 = 1)

(n; n0; n1 2 f0 : : :Ng): (4)

� is so constructed that it can map from any state transitions of Turing machine
M to corresponding switching maps as follows;

(n; 0; 0; R;m) : (n; (x; y)) 7! (m;B1B
�1

0 B1(x; y))

(n; 0; 1; R;m) : (n; (x; y)) 7! (m;B1(x; y))

(n; 1; 0; R;m) : (n; (x; y)) 7! (m;B1(x; y))

(n; 1; 1; R;m) : (n; (x; y)) 7! (m;B1B
�1

0 B1(x; y))

(n; 0; 0; L;m) : (n; (x; y)) 7! (m;B�1

0
(x; y))

(n; 0; 1; L;m) : (n; (x; y)) 7! (m;B�1

0 B�1

0 B1(x; y))

(n; 1; 0; L;m) : (n; (x; y)) 7! (m;B�1

0 B�1

0 B1(x; y))

(n; 1; 1; L;m) : (n; (x; y)) 7! (m;B�1

0
(x; y))
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A corresponding initial state is given by (0; B�1

0
(x; y)) or (0; B1(x; y)), and

the halting state is by (N; I(x; y)). Then we have a conjugate relationship via a
map � which satis�es F (B�1

0 ; B1; I) = ��1M�. 2

F
� �! �

��1 # " �
f0; 1gN �! f0; 1gN

M

In the next section, we give examples of computation in case that the baker's
maps are used as elementary operations. If their space is de�ned on R, it can be
a model of real number computation (See e.g. [Blum, Shub and Smale 90] and
[Pour-El and Richards 89]). If the space is restricted to the set of the dyadic
rationals with �nite binary expansions, it is regarded as a model of classical
computation.

3 Examples

We show examples of switching map systems which can be recognizers for for-
mal languages of the Chomsky hierarchy. In order to compare them to classical
automata, we use B�1

0 , B1, and I as mappings on Q. Symbols on tape are also
embedded onto the dyadic rationals with �nite binary expansions in [0; 1]� [0; 1].
For detailed computational processes, see the examples in the appendix.

3.1 Parity check

Parity check is a problem to decide a parity of the number of `1' in input binary
sequences. The accepted language belongs to the class of regular language (RL)
and is accepted by a �nite state automaton (FSA) (Figure 3). For input sequences
x = :(0+1)�00�, this dynamical system converges to (0,0) if the number of `1' in
binary expansion of input x is an even number, and converges to (0,1) otherwise.
Since FSA is equivalent to the one-way head-moving Turing Machines, the class
of F (B0; B1) should be equivalent to the class of regular grammar. F (B0; B1)
is a class of hyperbolic dynamical systems, so that it is easy to show that they
have a precise Markov partition, their Lyapunov exponents as � log 2, and their
topological entropies as log 2.

3.2 Parenthesis check

Parenthesis check is a problem to decide a consistency of the number of left and
right parenthesis in input binary sequences by regarding `0' as `(' and 1 as `)'.
The accepted language, called Dyck language, belongs to the class of context
free language (CFL) and is accepted by a push-down automata (PDA) (Figure
4). PDA can be constructed with F (B�1

0 ; B1). We set input sequences and an
endmarker on the right side of the initial tape and use the left side as a stack. For
input sequences x = :(0+1)�00� and y = :100�, this dynamical system converges
to (0; 0) if the sequence of `0' and `1' in input x are inconsistent in the above
sense, and to (0; 1) otherwise.
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Figure 4: Dyck language recognizer: See the notation in Figure 3.
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3.3 Primality check

Primality check is a problem to decide a primality of the number of `1' in input
binary sequences. The accepted language belongs to the class of context sensitive
language (CSL) and is accepted by a linear bounded automata (LBA) (Figure
6). LBA can be constructed with F (B�1

0 ; B1). We set a left endmarker on the
left side input sequences and a right endmarker on the right side of the initial
tape.

For input sequences x = :02n11(0+1)� and y = :11(0+1)�, this dynamical
system converges to (0; 0) if n is a prime number, and converges to a 4p + 2-
periodic orbit otherwise (Figure 5). Here p is a minimal prime factor of n. We
use here the Eratosthenes' sieve as the primarily check algorithm. If the minimal
prime factor p is detected, it is trapped to a 4p+ 2-periodic orbit.
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Figure 5: Computational process of primality checker: The left �gure shows the time
series of x in case that the input sequence is 7 (11:01411). The dynamics converges
to a �xed point (0,0). The right �gure shows the time series of x in case that the
input sequence is 9 (11:01811) The dynamics converges to an unstable periodic orbit
with period 14. Since the prime numbers p exist in�nitely, this dynamical system has
countably in�nite unstable orbits with period 4p+ 2.

3.4 Universal Turing machine

A universal Turing machine (UTM) is constructed with F (B�1

0 ; B1). Figure 7
shows a UTM found by M. Minsky [Minsky 67]. The accepted language belongs
to the class of universal language (UL) (or recursively enumerable set) generated
by an unrestricted grammar. This dynamical system can `emulate' arbitrary two-
dimensional discrete dynamical systems consist of computable functions2.

Each dynamical systems described by switching map systems are embedded
as an initial value. Any non-trivial question about this dynamical system, such
as sensitive dependency, measures of the basins of attraction, and dimensions of
attractors, are undecidable due to Rice's theorem [Moore 91].

2 Obviously its dynamical structure is di�erent far from the emulated one's, but we
can `trace' the orbits of the emulated dynamical systems with an adequate sampling
for the time series.
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Figure 6: Primality checker: See the notation in Figure 3.
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Figure 7: Minsky's universal Turing machine: See the notation in Figure 3.
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4 Nonlinear computation

In the above we have adopted the baker's map for emulating Turing machines.
However we can take the other types of nonlinear mappings as `natural' ele-
mentary operation from the dynamical systems point of view. We suggest that
they can be also basic components of e�ective procedures. Taking non-hyperbolic
mappings with second-order nonlinearity instead of the baker's maps, the present
model can show a new model of computation with the nonlinearity as an oracle.

4.1 H�enon map as nonlinear operations

The H�enon map T0 is given by T0(x; y) = (a � x2 + by; x) where jbj � 1 and
a is given as control parameters. It conjugates to Smale's horseshoe and its
invariant set is hyperbolic if it has a strong nonlinearity. In practice, the range
a > (5 + 2

p
5)(1 + jbj)2=4 corresponds to the hyperbolic case.

We here introduce adjoint H�enon map T1 corresponding to H1 in Figure 1
and let the invariant set of T0 and T1 be �0 and �1, respectively. Turing machines
can be emulated as the symbolic dynamics on the domain including �0\�1 using
the H�enon mappings with a large value of a.3

T0(x; y) = (a� x2 + by; x) (5)

T1(x; y) = (a� x2 + by;�x) (6)

T�10 (x; y) = (y; (x� a+ y2)=b) (7)
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-4 -2 0 2 4
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a = 12:0, b = �1:0.

-4

-2

0

2

4

-4 -2 0 2 4

y

x

a = 3:0, b = �1:0.

Figure 8: H�enon map and its inverse map

3 The invariant set associated with a H�enon map and that with a adjoint H�enon map
can certainly have overlaps. But we have not examined whether the overlaps can
embed any sequences so that we do not have to constrain the computational ability of
this switching map systems with H�enon maps. This problem will be argued elsewhere.
Most probable, we have to bound the computation time in accordance with the value
of nonlinearity a. The lower the value, the more the time which certi�cates correct
computation is bounded. Apparently, an in�nite large value of a case coincides with
the switching map systems with the Smale's horseshoe. On the other hand, when we
lower the parameter to have homoclinic tangency, the computation processes de�ned
by Turing machines instantly breaks up.
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Lowering the control parameter a to the point where the �rst homoclinic tan-
gency occurs, we observe that the map transits from hyperbolic to non-hyperbolic
(Figure 8). This transition can easily break the conjugate relationship between
the switching map systems and Turing machines. However, as we show in a sim-
ple example in the next section, it rather opens a new model of computation.
That is, it is thought that this property shows a potential transition from an
ordinary Turing machine to a `nonlinear' one. We call nonlinear mappings like
H�enon maps as nonlinear operations, algorithms with them as nonlinear al-
gorithms, and computation processes with them as nonlinear computation.

4.2 An example of nonlinear computation: Density estimation

We present here a simple but non-trivial example of nonlinear computation.
In the previous section, we proposed an example of a parity checker. Here we
consider a related but far di�cult computational task. That is, a program which
computes a density of 1s of the given input value x, which we name a "density
estimator". Instead of merely answering even or odd parity, the density estimator
stores the absolute number of 1s, divides it by the total bit length, and outputs
the density of 1s at each time steps. This behavior is di�cult to be manipulated
with any �nite state machines with �nite memory. We here show that it is
however simply manipulated by "nonlinear" switching map systems as below.

De�ning p as the density of the � bit length, we organize the density estimator
by switching map systems with the following two second order nonlinear map-
pings A0, A1. Here the branching action depends on the input binary sequences
(see Figure 9, 10). Setting the initial value of F (A0; A1) to x0 = 1:0; y0 = 0:0,
it estimates the density p as the values of y at each time steps. Figure 11 shows
the time series of p obtained by the program when it is given a binary sequences
generated by a baker's map with a �nite precise initial value. The branching
function g is adopted to the baker's map from equation (4) (see Figure 9, 10).

A0(x; y) = (
x

1 + x
; (1� x)y) (8)

A1(x; y) = (
x

1 + x
; (1� x)y + x) (9)
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Figure 9: Elementary operations of density estimator
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Figure 11: Computational process of density estimator: The left �gure shows the time
series of x of a baker's map. The right �gure shows the time series of y of the density
estimator. The density p is estimated at each time steps. p stays around 0:5 for a while
because the dynamics of baker's map is completely chaotic. The dynamics of density
estimator �nally converges to y = 0:0 following with the convergence of the dynamics
of baker's map due to the �nite precision.

5 Concluding remarks and future works

We have investigated a dynamical systems called switching map systems as a new
model of computation. We have shown that the switching map system with two
types of baker's map (or Smale's horseshoe map) is computationally universal.
If their space is de�ned on R, it can be a model of real number computation
and if the space is restricted to the set of the dyadic rationals with �nite binary
expansions, it is regarded as a model of classical computation.

A connection between the generalized shifts [Moore 91] and the input-output
mappings in the BSS model [Blum, Cucker, Shub and Smale 98] has been shown
with our model of computation. Our model is a class of the input-output map-
pings, but at the same time it is a class of GSs if it is `compiled' to a single
two-dimensional piecewise-linear mapping. Note that the BSS model allows for
a linearly growing number of variables, while the switching map systems have a
�xed number of variables.

We have presented four examples of switching map systems F (B�1

0 ; B1) on
Q corresponding to the Chomsky hierarchy. In some examples, they have no
halting states and the periodic behavior is taken as the �nal output results.
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Taking the other nonlinear mappings as elementary operations instead of the
baker's maps, it is expected that the dynamical system can show a new model
of computation with the nonlinearity as an oracle. We have de�ned nonlinear
computation, and presented a density estimator as a simple example of nonlinear
computation.

It is thought that the non-hyperbolicity of dynamical systems would possibly
gain its computational power. The notion of computational complexity class may
be useful for the studies of non-hyperbolic dynamical systems in terms of the
pruning front theory [Cvitanovic, Gnaratne and Proccacia 88]. The pseudo-orbit
tracing property can be also analyzed with computational theoretic approaches.
We can possibly de�ne a new class of the computational complexity based on
dynamical systems and analyze the chaos and colored-noises in computational
theoretical point of view. To study the computational power of the switching
map systems with non-hyperbolic mapping is left to a future work.

In below, we list up some of the future directions of the switching map sys-
tems.

Probabilistic computation: The problem of deterministic chaotic maps
has a complete solution at the statistical level, where the intrinsic probabilistic
aspect of the dynamics is fully understood (see e.g. [Antoniou and Tasaki 93]).
Thus we can investigate the probabilistic Turing machines with our deterministic
switching map systems with chaotic maps.

Nondeterminism: From a point of view of dynamical systems, it is nat-
ural that the initial value in phase space should be given as �-ball including
measurement error rather than given as a point. In this case, the system shows
non-deterministic behavior and the orbits of the system bifurcates ununiformly
caused from the partitioning action of branching function g (Figure 12). It is
thought that this dynamics is a kind of non-deterministic computation processes
and would be interesting to study the computational class of non-deterministic
switching map systems.

Figure 12: Schematic view of the dynamics of non-deterministic switching map systems:
The orbits of the system bifurcates ununiformly with the partitioning action of the
branching function.
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Computation ow: A GS is topologically embedded into a smooth ow
in R3 with suspension on the extended phase space [Moore 91]. In the same
way, the switching map systems can be embedded into the network of ordinary
di�erential equations as \Computation ow." (See Figure 13, 14). Studies on
the construction of hyperchaos [R�osler 79] and the hybrid systems [Moore 98]
[Asartin, Maler and Pnueli 95] would be related to these scheme.
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Figure 13: Schematic view of the construction of the 2-dimensional computation ow
on the extended phase space.
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Figure 14: Schematic view of the construction of the 3-dimensional computation ow
on the extended phase space.
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Appendix: Examples of the computational process

We give examples of the computational processes of the recognizers in section
3. In below, the labels of the internal states (left), the symbol sequences on the
tape (center) and the points in the phase space (right) are shown. The initial
decimal point of x is denoted by � and we can trace the left/right-shifts actions.
These data are generated with the program made by Kentaro Goto (Hokkaido
Univ.).

A.1 Parity Checker

(1) The input is x =.011101_0. The number of `1' in x is an even number and
the dynamics converges to (0.0, 0.0).

0: 00000000000000000000.01110100000000000000 (0.453125, 0.000000)
0: 00000000000000000000.11101000000000000000 (0.906250, 0.000000)
1: 00000000000000000001.11010000000000000000 (0.812500, 0.500000)
3: 00000000000000000010.10100000000000000000 (0.625000, 0.250000)
1: 00000000000000000101.01000000000000000000 (0.250000, 0.625000)
2: 00000000000000001011.10000000000000000000 (0.500000, 0.812500)
3: 00000000000000010110.00000000000000000000 (0.000000, 0.406250)
0: 00000000000000101100.00000000000000000000 (0.000000, 0.203125)
0: 00000000000001011000.00000000000000000000 (0.000000, 0.101562)
0: 00000000000010110000.00000000000000000000 (0.000000, 0.050781)
0: 00000000000101100000.00000000000000000000 (0.000000, 0.025391)
0: 00000000001011000000.00000000000000000000 (0.000000, 0.012695)
0: 00000000010110000000.00000000000000000000 (0.000000, 0.006348)
0: 00000000101100000000.00000000000000000000 (0.000000, 0.003174)

...
! (0:0; 0:0)

(2) The input is x =.001101_0. The number of `1' in x is an odd number and the
dynamics converges to (0.0, 1.0).

0: 00000000000000000000.00110100000000000000 (0.203125, 0.000000)
0: 00000000000000000000.01101000000000000000 (0.406250, 0.000000)
0: 00000000000000000000.11010000000000000000 (0.812500, 0.000000)
1: 00000000000000000001.10100000000000000000 (0.625000, 0.500000)
3: 00000000000000000010.01000000000000000000 (0.250000, 0.250000)
0: 00000000000000000100.10000000000000000000 (0.500000, 0.125000)
1: 00000000000000001001.00000000000000000000 (0.000000, 0.562500)
2: 00000000000000010011.00000000000000000000 (0.000000, 0.781250)
2: 00000000000000100111.00000000000000000000 (0.000000, 0.890625)
2: 00000000000001001111.00000000000000000000 (0.000000, 0.945312)
2: 00000000000010011111.00000000000000000000 (0.000000, 0.972656)
2: 00000000000100111111.00000000000000000000 (0.000000, 0.986328)
2: 00000000001001111111.00000000000000000000 (0.000000, 0.993164)
2: 00000000010011111111.00000000000000000000 (0.000000, 0.996582)

...
! (0:0; 1:0)
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A.2 Parenthesis Checker

(1) The input is x =.010111_0 and y =.1_0, that is ()()))(((: : : . `(' and `)' in x
is inconsistent and the dynamics converges to (0.0, 0.0).

00: 00000000000000000001.01011100000000000000 (0.359375, 0.500000)
00: 00000000000000000011.10111000000000000000 (0.718750, 0.750000)
01: 00000000000000000110.01110000000000000000 (0.437500, 0.375000)
02: 00000000000000000011.00111000000000000000 (0.218750, 0.750000)
03: 00000000000000000001.10011100000000000000 (0.609375, 0.500000)
05: 00000000000000000000.11001110000000000000 (0.804688, 0.000000)
06: 00000000000000000000.01100111000000000000 (0.402344, 0.000000)
07: 00000000000000000001.11001110000000000000 (0.804688, 0.500000)
08: 00000000000000000000.11100111000000000000 (0.902344, 0.000000)
09: 00000000000000000000.11001110000000000000 (0.804688, 0.000000)
10: 00000000000000000000.10011100000000000000 (0.609375, 0.000000)
11: 00000000000000000000.00111000000000000000 (0.218750, 0.000000)
00: 00000000000000000001.01110000000000000000 (0.437500, 0.500000)
00: 00000000000000000011.11100000000000000000 (0.875000, 0.750000)
01: 00000000000000000110.11000000000000000000 (0.750000, 0.375000)
02: 00000000000000000011.01100000000000000000 (0.375000, 0.750000)
03: 00000000000000000001.10110000000000000000 (0.687500, 0.500000)
05: 00000000000000000000.11011000000000000000 (0.843750, 0.000000)
06: 00000000000000000000.01101100000000000000 (0.421875, 0.000000)
07: 00000000000000000001.11011000000000000000 (0.843750, 0.500000)
08: 00000000000000000000.11101100000000000000 (0.921875, 0.000000)
09: 00000000000000000000.11011000000000000000 (0.843750, 0.000000)
10: 00000000000000000000.10110000000000000000 (0.687500, 0.000000)
11: 00000000000000000000.01100000000000000000 (0.375000, 0.000000)
00: 00000000000000000001.11000000000000000000 (0.750000, 0.500000)
01: 00000000000000000010.10000000000000000000 (0.500000, 0.250000)
02: 00000000000000000001.01000000000000000000 (0.250000, 0.500000)
03: 00000000000000000000.10100000000000000000 (0.625000, 0.000000)
05: 00000000000000000000.01010000000000000000 (0.312500, 0.000000)
04: 00000000000000000000.00101000000000000000 (0.156250, 0.000000)
04: 00000000000000000000.00010100000000000000 (0.078125, 0.000000)
04: 00000000000000000000.00001010000000000000 (0.039062, 0.000000)
04: 00000000000000000000.00000101000000000000 (0.019531, 0.000000)
04: 00000000000000000000.00000010100000000000 (0.009766, 0.000000)
04: 00000000000000000000.00000001010000000000 (0.004883, 0.000000)
04: 00000000000000000000.00000000101000000000 (0.002441, 0.000000)
04: 00000000000000000000.00000000010100000000 (0.001221, 0.000000)
04: 00000000000000000000.00000000001010000000 (0.000610, 0.000000)
04: 00000000000000000000.00000000000101000000 (0.000305, 0.000000)
04: 00000000000000000000.00000000000010100000 (0.000153, 0.000000)
04: 00000000000000000000.00000000000001010000 (0.000076, 0.000000)
04: 00000000000000000000.00000000000000101000 (0.000038, 0.000000)
04: 00000000000000000000.00000000000000010100 (0.000019, 0.000000)

...
! (0:0; 0:0)
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(2) The input is x =.0011_0 and y =.1_0, that is (())(((: : : . `(' and `)' in x is
consistent (or undecided) and the dynamics converges to (0.0, 1.0).

00: 00000000000000000001.00110000000000000000 (0.187500, 0.500000)
00: 00000000000000000011.01100000000000000000 (0.375000, 0.750000)
00: 00000000000000000111.11000000000000000000 (0.750000, 0.875000)
01: 00000000000000001110.10000000000000000000 (0.500000, 0.437500)
02: 00000000000000000111.01000000000000000000 (0.250000, 0.875000)
03: 00000000000000000011.10100000000000000000 (0.625000, 0.750000)
05: 00000000000000000001.11010000000000000000 (0.812500, 0.500000)
06: 00000000000000000000.11101000000000000000 (0.906250, 0.000000)
06: 00000000000000000000.01110100000000000000 (0.453125, 0.000000)
07: 00000000000000000001.11101000000000000000 (0.906250, 0.500000)
08: 00000000000000000000.11110100000000000000 (0.953125, 0.000000)
09: 00000000000000000000.11101000000000000000 (0.906250, 0.000000)
10: 00000000000000000000.11010000000000000000 (0.812500, 0.000000)
11: 00000000000000000000.10100000000000000000 (0.625000, 0.000000)
12: 00000000000000000000.01000000000000000000 (0.250000, 0.000000)
13: 00000000000000000000.00100000000000000000 (0.125000, 0.000000)
14: 00000000000000000001.01000000000000000000 (0.250000, 0.500000)
00: 00000000000000000011.10000000000000000000 (0.500000, 0.750000)
01: 00000000000000000110.00000000000000000000 (0.000000, 0.375000)
02: 00000000000000000011.00000000000000000000 (0.000000, 0.750000)
03: 00000000000000000001.10000000000000000000 (0.500000, 0.500000)
05: 00000000000000000000.11000000000000000000 (0.750000, 0.000000)
06: 00000000000000000000.01100000000000000000 (0.375000, 0.000000)
07: 00000000000000000001.11000000000000000000 (0.750000, 0.500000)
08: 00000000000000000000.11100000000000000000 (0.875000, 0.000000)
09: 00000000000000000000.11000000000000000000 (0.750000, 0.000000)
10: 00000000000000000000.10000000000000000000 (0.500000, 0.000000)
11: 00000000000000000000.00000000000000000000 (0.000000, 0.000000)
00: 00000000000000000001.00000000000000000000 (0.000000, 0.500000)
00: 00000000000000000011.00000000000000000000 (0.000000, 0.750000)
00: 00000000000000000111.00000000000000000000 (0.000000, 0.875000)
00: 00000000000000001111.00000000000000000000 (0.000000, 0.937500)
00: 00000000000000011111.00000000000000000000 (0.000000, 0.968750)
00: 00000000000000111111.00000000000000000000 (0.000000, 0.984375)
00: 00000000000001111111.00000000000000000000 (0.000000, 0.992188)
00: 00000000000011111111.00000000000000000000 (0.000000, 0.996094)
00: 00000000000111111111.00000000000000000000 (0.000000, 0.998047)
00: 00000000001111111111.00000000000000000000 (0.000000, 0.999023)
00: 00000000011111111111.00000000000000000000 (0.000000, 0.999512)
00: 00000000111111111111.00000000000000000000 (0.000000, 0.999756)
00: 00000001111111111111.00000000000000000000 (0.000000, 0.999878)
00: 00000011111111111111.00000000000000000000 (0.000000, 0.999939)
00: 00000111111111111111.00000000000000000000 (0.000000, 0.999969)
00: 00001111111111111111.00000000000000000000 (0.000000, 0.999985)

...
! (0:0; 1:0)
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A.3 Primality Checker

(1) The input is x =.00000011_0 and y =.11_0. The number of `00' in x is 3. It is
a prime number and the dynamics converges to (0.0, 0.0).

00: 00000000000000000011.00000011000000000000 (0.011719, 0.750000)
05: 00000000000000000110.00000110000000000000 (0.023438, 0.375000)
07: 00000000000000001101.00001100000000000000 (0.046875, 0.687500)
08: 00000000000000011010.00011000000000000000 (0.093750, 0.343750)
09: 00000000000000110100.00110000000000000000 (0.187500, 0.171875)
08: 00000000000001101000.01100000000000000000 (0.375000, 0.085938)
09: 00000000000011010000.11000000000000000000 (0.750000, 0.042969)
11: 00000000000110100001.10000000000000000000 (0.500000, 0.521484)
15: 00000000000011010000.11000000000000000000 (0.750000, 0.042969)
16: 00000000000001101000.01100000000000000000 (0.375000, 0.085938)
15: 00000000000000110100.00110000000000000000 (0.187500, 0.171875)
16: 00000000000000011010.00011000000000000000 (0.093750, 0.343750)
15: 00000000000000001101.00001100000000000000 (0.046875, 0.687500)
16: 00000000000000000110.10000110000000000000 (0.523438, 0.375000)
17: 00000000000000000011.01000011000000000000 (0.261719, 0.750000)
16: 00000000000000000001.10100001100000000000 (0.630859, 0.500000)
17: 00000000000000000000.11010000110000000000 (0.815430, 0.000000)
18: 00000000000000000001.10100001100000000000 (0.630859, 0.500000)
19: 00000000000000000011.01000011000000000000 (0.261719, 0.750000)
22: 00000000000000000110.10000110000000000000 (0.523438, 0.375000)
23: 00000000000000000011.01000011000000000000 (0.261719, 0.750000)
24: 00000000000000000111.10000110000000000000 (0.523438, 0.875000)
25: 00000000000000001110.00001100000000000000 (0.046875, 0.437500)
31: 00000000000000011100.00011000000000000000 (0.093750, 0.218750)
33: 00000000000000111000.00110000000000000000 (0.187500, 0.109375)
34: 00000000000001110000.01100000000000000000 (0.375000, 0.054688)
39: 00000000000011100001.11000000000000000000 (0.750000, 0.527344)
40: 00000000000001110000.11100000000000000000 (0.875000, 0.054688)
41: 00000000000000111000.01110000000000000000 (0.437500, 0.109375)
42: 00000000000000011100.00111000000000000000 (0.218750, 0.218750)
43: 00000000000000001110.00011100000000000000 (0.109375, 0.437500)
42: 00000000000000000111.00001110000000000000 (0.054688, 0.875000)
43: 00000000000000000011.10000111000000000000 (0.527344, 0.750000)
44: 00000000000000000111.00001110000000000000 (0.054688, 0.875000)
45: 00000000000000001110.00011100000000000000 (0.109375, 0.437500)
22: 00000000000000011100.00111000000000000000 (0.218750, 0.218750)
21: 00000000000000111000.01110000000000000000 (0.437500, 0.109375)
22: 00000000000001110000.11100000000000000000 (0.875000, 0.054688)
23: 00000000000000111000.01110000000000000000 (0.437500, 0.109375)
24: 00000000000001110001.11100000000000000000 (0.875000, 0.554688)
25: 00000000000011100010.11000000000000000000 (0.750000, 0.277344)
26: 00000000000111000101.10000000000000000000 (0.500000, 0.638672)
27: 00000000000011100010.11000000000000000000 (0.750000, 0.277344)
28: 00000000000001110001.01100000000000000000 (0.375000, 0.554688)
27: 00000000000000111000.10110000000000000000 (0.687500, 0.109375)
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28: 00000000000000011100.01011000000000000000 (0.343750, 0.218750)
27: 00000000000000001110.00101100000000000000 (0.171875, 0.437500)
28: 00000000000000000111.00010110000000000000 (0.085938, 0.875000)
27: 00000000000000000011.10001011000000000000 (0.542969, 0.750000)
28: 00000000000000000001.11000101100000000000 (0.771484, 0.500000)
29: 00000000000000000000.11100010110000000000 (0.885742, 0.000000)
30: 00000000000000000001.11000101100000000000 (0.771484, 0.500000)
00: 00000000000000000011.10001011000000000000 (0.542969, 0.750000)
01: 00000000000000000111.00010110000000000000 (0.085938, 0.875000)
02: 00000000000000000011.10001011000000000000 (0.542969, 0.750000)
03: 00000000000000000110.00010110000000000000 (0.085938, 0.375000)
04: 00000000000000001101.00101100000000000000 (0.171875, 0.687500)
05: 00000000000000011010.01011000000000000000 (0.343750, 0.343750)
07: 00000000000000110101.10110000000000000000 (0.687500, 0.671875)
11: 00000000000001101011.01100000000000000000 (0.375000, 0.835938)
12: 00000000000000110101.10110000000000000000 (0.687500, 0.671875)
13: 00000000000001101010.01100000000000000000 (0.375000, 0.335938)
14: 00000000000011010100.11000000000000000000 (0.750000, 0.167969)
11: 00000000000110101001.10000000000000000000 (0.500000, 0.583984)
15: 00000000000011010100.11000000000000000000 (0.750000, 0.167969)
16: 00000000000001101010.01100000000000000000 (0.375000, 0.335938)
15: 00000000000000110101.00110000000000000000 (0.187500, 0.671875)
16: 00000000000000011010.10011000000000000000 (0.593750, 0.343750)
17: 00000000000000001101.01001100000000000000 (0.296875, 0.687500)
16: 00000000000000000110.10100110000000000000 (0.648438, 0.375000)
17: 00000000000000000011.01010011000000000000 (0.324219, 0.750000)
16: 00000000000000000001.10101001100000000000 (0.662109, 0.500000)
17: 00000000000000000000.11010100110000000000 (0.831055, 0.000000)
18: 00000000000000000001.10101001100000000000 (0.662109, 0.500000)
19: 00000000000000000011.01010011000000000000 (0.324219, 0.750000)
22: 00000000000000000110.10100110000000000000 (0.648438, 0.375000)
23: 00000000000000000011.01010011000000000000 (0.324219, 0.750000)
24: 00000000000000000111.10100110000000000000 (0.648438, 0.875000)
25: 00000000000000001110.01001100000000000000 (0.296875, 0.437500)
31: 00000000000000011100.10011000000000000000 (0.593750, 0.218750)
32: 00000000000000111001.00110000000000000000 (0.187500, 0.609375)
31: 00000000000001110010.01100000000000000000 (0.375000, 0.304688)
33: 00000000000011100100.11000000000000000000 (0.750000, 0.152344)
46: 00000000000111001001.10000000000000000000 (0.500000, 0.576172)
48: 00000000000011100100.11000000000000000000 (0.750000, 0.152344)
49: 00000000000001110010.01100000000000000000 (0.375000, 0.304688)
50: 00000000000000111001.00110000000000000000 (0.187500, 0.609375)
49: 00000000000000011100.10011000000000000000 (0.593750, 0.218750)
48: 00000000000000001110.01001100000000000000 (0.296875, 0.437500)
49: 00000000000000000111.00100110000000000000 (0.148438, 0.875000)
50: 00000000000000000011.10010011000000000000 (0.574219, 0.750000)
51: 00000000000000000001.11001001100000000000 (0.787109, 0.500000)
52: 00000000000000000000.11100100110000000000 (0.893555, 0.000000)
53: 00000000000000000000.01110010011000000000 (0.446777, 0.000000)
53: 00000000000000000000.00111001001100000000 (0.223389, 0.000000)
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53: 00000000000000000000.00011100100110000000 (0.111694, 0.000000)
53: 00000000000000000000.00001110010011000000 (0.055847, 0.000000)
53: 00000000000000000000.00000111001001100000 (0.027924, 0.000000)
53: 00000000000000000000.00000011100100110000 (0.013962, 0.000000)
53: 00000000000000000000.00000001110010011000 (0.006981, 0.000000)
53: 00000000000000000000.00000000111001001100 (0.003490, 0.000000)
53: 00000000000000000000.00000000011100100110 (0.001745, 0.000000)
53: 00000000000000000000.00000000001110010011 (0.000873, 0.000000)
53: 00000000000000000000.00000000000111001001 (0.000436, 0.000000)
53: 00000000000000000000.00000000000011100100 (0.000218, 0.000000)

...
! (0:0; 0:0)

(2) The input is x =.0000000011_0 and y =.11_0. The number of `00' in x is 4 and
the minimal prime factor is 2. The dynamics converges to a 10-periodic orbit.

00: 00000000000000000011.00000000110000000000 (0.002930, 0.750000)
05: 00000000000000000110.00000001100000000000 (0.005859, 0.375000)
07: 00000000000000001101.00000011000000000000 (0.011719, 0.687500)
08: 00000000000000011010.00000110000000000000 (0.023438, 0.343750)
09: 00000000000000110100.00001100000000000000 (0.046875, 0.171875)
08: 00000000000001101000.00011000000000000000 (0.093750, 0.085938)
09: 00000000000011010000.00110000000000000000 (0.187500, 0.042969)
08: 00000000000110100000.01100000000000000000 (0.375000, 0.021484)
09: 00000000001101000000.11000000000000000000 (0.750000, 0.010742)
11: 00000000011010000001.10000000000000000000 (0.500000, 0.505371)
15: 00000000001101000000.11000000000000000000 (0.750000, 0.010742)
16: 00000000000110100000.01100000000000000000 (0.375000, 0.021484)
15: 00000000000011010000.00110000000000000000 (0.187500, 0.042969)
16: 00000000000001101000.00011000000000000000 (0.093750, 0.085938)
15: 00000000000000110100.00001100000000000000 (0.046875, 0.171875)
16: 00000000000000011010.00000110000000000000 (0.023438, 0.343750)
15: 00000000000000001101.00000011000000000000 (0.011719, 0.687500)
16: 00000000000000000110.10000001100000000000 (0.505859, 0.375000)
17: 00000000000000000011.01000000110000000000 (0.252930, 0.750000)
16: 00000000000000000001.10100000011000000000 (0.626465, 0.500000)
17: 00000000000000000000.11010000001100000000 (0.813232, 0.000000)
18: 00000000000000000001.10100000011000000000 (0.626465, 0.500000)
19: 00000000000000000011.01000000110000000000 (0.252930, 0.750000)
22: 00000000000000000110.10000001100000000000 (0.505859, 0.375000)
23: 00000000000000000011.01000000110000000000 (0.252930, 0.750000)
24: 00000000000000000111.10000001100000000000 (0.505859, 0.875000)
25: 00000000000000001110.00000011000000000000 (0.011719, 0.437500)
31: 00000000000000011100.00000110000000000000 (0.023438, 0.218750)
33: 00000000000000111000.00001100000000000000 (0.046875, 0.109375)
34: 00000000000001110000.00011000000000000000 (0.093750, 0.054688)
39: 00000000000011100001.00110000000000000000 (0.187500, 0.527344)
40: 00000000000001110000.10011000000000000000 (0.593750, 0.054688)
41: 00000000000000111000.01001100000000000000 (0.296875, 0.109375)
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42: 00000000000000011100.00100110000000000000 (0.148438, 0.218750)
43: 00000000000000001110.00010011000000000000 (0.074219, 0.437500)
42: 00000000000000000111.00001001100000000000 (0.037109, 0.875000)
43: 00000000000000000011.10000100110000000000 (0.518555, 0.750000)
44: 00000000000000000111.00001001100000000000 (0.037109, 0.875000)
45: 00000000000000001110.00010011000000000000 (0.074219, 0.437500)
22: 00000000000000011100.00100110000000000000 (0.148438, 0.218750)
21: 00000000000000111000.01001100000000000000 (0.296875, 0.109375)
22: 00000000000001110000.10011000000000000000 (0.593750, 0.054688)
23: 00000000000000111000.01001100000000000000 (0.296875, 0.109375)
24: 00000000000001110001.10011000000000000000 (0.593750, 0.554688)
25: 00000000000011100010.00110000000000000000 (0.187500, 0.277344)
31: 00000000000111000100.01100000000000000000 (0.375000, 0.138672)
33: 00000000001110001000.11000000000000000000 (0.750000, 0.069336)
46: 00000000011100010001.10000000000000000000 (0.500000, 0.534668)
48: 00000000001110001000.11000000000000000000 (0.750000, 0.069336)
49: 00000000000111000100.01100000000000000000 (0.375000, 0.138672)
50: 00000000000011100010.00110000000000000000 (0.187500, 0.277344)
49: 00000000000001110001.00011000000000000000 (0.093750, 0.554688)
50: 00000000000000111000.10001100000000000000 (0.546875, 0.109375)
51: 00000000000000011100.01000110000000000000 (0.273438, 0.218750)
54: 00000000000000001110.00100011000000000000 (0.136719, 0.437500)

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

55: 00000000000000000111:00010001100000000000 (0:068359; 0:875000)
56: 00000000000000000011:10001000110000000000 (0:534180; 0:750000)
57: 00000000000000000001:11000100011000000000 (0:767090; 0:500000)
58: 00000000000000000000:11100010001100000000 (0:883545; 0:000000)
59: 00000000000000000001:11000100011000000000 (0:767090; 0:500000)
60: 00000000000000000011:10001000110000000000 (0:534180; 0:750000)
63: 00000000000000000111:00010001100000000000 (0:068359; 0:875000)
62: 00000000000000001110:00100011000000000000 (0:136719; 0:437500)
61: 00000000000000011100:01000110000000000000 (0:273438; 0:218750)
64: 00000000000000001110:00100011000000000000 (0:136719; 0:437500)

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

55: 00000000000000000111:00010001100000000000 (0:068359; 0:875000)
56: 00000000000000000011:10001000110000000000 (0:534180; 0:750000)
57: 00000000000000000001:11000100011000000000 (0:767090; 0:500000)
58: 00000000000000000000:11100010001100000000 (0:883545; 0:000000)
59: 00000000000000000001:11000100011000000000 (0:767090; 0:500000)
60: 00000000000000000011:10001000110000000000 (0:534180; 0:750000)
63: 00000000000000000111:00010001100000000000 (0:068359; 0:875000)
62: 00000000000000001110:00100011000000000000 (0:136719; 0:437500)
61: 00000000000000011100:01000110000000000000 (0:273438; 0:218750)
64: 00000000000000001110:00100011000000000000 (0:136719; 0:437500)

...
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A.4 Minsky's universal Turing machine

(1) The input is x =.110111_0 and y =.11_0. The dynamics reaches the halting
state.

00: 00000000000000000011.11011100000000000000 (0.859375, 0.750000)
05: 00000000000000000110.10111000000000000000 (0.718750, 0.375000)
18: 00000000000000000011.01011100000000000000 (0.359375, 0.750000)
19: 00000000000000000111.10111000000000000000 (0.718750, 0.875000)
20: 00000000000000001110.01110000000000000000 (0.437500, 0.437500)
27: 00000000000000011101.11100000000000000000 (0.875000, 0.718750)
28: 00000000000000001110.11110000000000000000 (0.937500, 0.437500)
29: 00000000000000000111.01111000000000000000 (0.468750, 0.875000)
30: 00000000000000000011.10111100000000000000 (0.734375, 0.750000)
31: 00000000000000000001.11011110000000000000 (0.867188, 0.500000)
32: 00000000000000000010.10111100000000000000 (0.734375, 0.250000)
35: 00000000000000000001.01011110000000000000 (0.367188, 0.500000)
36: 00000000000000000000.10101111000000000000 (0.683594, 0.000000)
37: 00000000000000000000.01010111100000000000 (0.341797, 0.000000)
41: 00000000000000000001.10101111000000000000 (0.683594, 0.500000)
42: 00000000000000000000.11010111100000000000 (0.841797, 0.000000)
43: 00000000000000000000.10101111000000000000 (0.683594, 0.000000)
44: 00000000000000000000.01010111100000000000 (0.341797, 0.000000)
45: 00000000000000000000.00101011110000000000 (0.170898, 0.000000)
46: 00000000000000000000.00010101111000000000 (0.085449, 0.000000)
47: 00000000000000000001.00101011110000000000 (0.170898, 0.500000)
54: 00000000000000000011.01010111100000000000 (0.341797, 0.750000)
55: 00000000000000000001.10101011110000000000 (0.670898, 0.500000)
20: 00000000000000000010.01010111100000000000 (0.341797, 0.250000)
27: 00000000000000000101.10101111000000000000 (0.683594, 0.625000)
28: 00000000000000000010.11010111100000000000 (0.841797, 0.250000)
29: 00000000000000000001.01101011110000000000 (0.420898, 0.500000)
30: 00000000000000000000.10110101111000000000 (0.710449, 0.000000)
31: 00000000000000000000.01011010111100000000 (0.355225, 0.000000)
69: 00000000000000000001.10110101111000000000 (0.710449, 0.500000)
29: 00000000000000000000.11011010111100000000 (0.855225, 0.000000)
30: 00000000000000000000.01101101011110000000 (0.427612, 0.000000)
31: 00000000000000000000.00110110101111000000 (0.213806, 0.000000)
69: 00000000000000000001.01101101011110000000 (0.427612, 0.500000)
70: 00000000000000000001.01101101011110000000 (0.427612, 0.500000)
70: 00000000000000000001.01101101011110000000 (0.427612, 0.500000)
70: 00000000000000000001.01101101011110000000 (0.427612, 0.500000)
70: 00000000000000000001.01101101011110000000 (0.427612, 0.500000)
70: 00000000000000000001.01101101011110000000 (0.427612, 0.500000)
70: 00000000000000000001.01101101011110000000 (0.427612, 0.500000)
70: 00000000000000000001.01101101011110000000 (0.427612, 0.500000)

...
! (0:427612; 0:500000)
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(2) The input is x =.100111_0 and y =.11_0. The dynamics traps a loop of
internal states.

00: 00000000000000000011.10011100000000000000 (0.609375, 0.750000)
05: 00000000000000000110.00111000000000000000 (0.218750, 0.375000)
06: 00000000000000000011.00011100000000000000 (0.109375, 0.750000)
07: 00000000000000000001.10001110000000000000 (0.554688, 0.500000)
08: 00000000000000000000.11000111000000000000 (0.777344, 0.000000)
09: 00000000000000000000.10001110000000000000 (0.554688, 0.000000)

8>>>>><
>>>>>:

10: 00000000000000000000:01000111000000000000 (0:277344; 0:000000)
11: 00000000000000000000:00100011100000000000 (0:138672; 0:000000)
08: 00000000000000000000:00010001110000000000 (0:069336; 0:000000)
12: 00000000000000000001:00100011100000000000 (0:138672; 0:500000)
13: 00000000000000000000:10010001110000000000 (0:569336; 0:000000)
14: 00000000000000000000:00100011100000000000 (0:138672; 0:000000)

8>>>>><
>>>>>:

10: 00000000000000000000:00010001110000000000 (0:069336; 0:000000)
11: 00000000000000000000:00001000111000000000 (0:034668; 0:000000)
08: 00000000000000000000:00000100011100000000 (0:017334; 0:000000)
12: 00000000000000000001:00001000111000000000 (0:034668; 0:500000)
13: 00000000000000000000:10000100011100000000 (0:517334; 0:000000)
14: 00000000000000000000:00001000111000000000 (0:034668; 0:000000)

8>>>>><
>>>>>:

10: 00000000000000000000:00000100011100000000 (0:017334; 0:000000)
11: 00000000000000000000:00000010001110000000 (0:008667; 0:000000)
08: 00000000000000000000:00000001000111000000 (0:004333; 0:000000)
12: 00000000000000000001:00000010001110000000 (0:008667; 0:500000)
13: 00000000000000000000:10000001000111000000 (0:504333; 0:000000)
14: 00000000000000000000:00000010001110000000 (0:008667; 0:000000)

8>>>>><
>>>>>:

10: 00000000000000000000:00000001000111000000 (0:004333; 0:000000)
11: 00000000000000000000:00000000100011100000 (0:002167; 0:000000)
08: 00000000000000000000:00000000010001110000 (0:001083; 0:000000)
12: 00000000000000000001:00000000100011100000 (0:002167; 0:500000)
13: 00000000000000000000:10000000010001110000 (0:501083; 0:000000)
14: 00000000000000000000:00000000100011100000 (0:002167; 0:000000)

8>>>>><
>>>>>:

10: 00000000000000000000:00000000010001110000 (0:001083; 0:000000)
11: 00000000000000000000:00000000001000111000 (0:000542; 0:000000)
08: 00000000000000000000:00000000000100011100 (0:000271; 0:000000)
12: 00000000000000000001:00000000001000111000 (0:000542; 0:500000)
13: 00000000000000000000:10000000000100011100 (0:500271; 0:000000)
14: 00000000000000000000:00000000001000111000 (0:000542; 0:000000)

...
! (0:0; 0:0)
! (0:0; 0:5)
! � � �
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(3) The input is x =.110111_0 and y =.10_0. The behavior of the dynamics is
undecided yet.

00: 00000000000000000001.11011100000000000000 (0.859375, 0.500000)
05: 00000000000000000010.10111000000000000000 (0.718750, 0.250000)
18: 00000000000000000001.01011100000000000000 (0.359375, 0.500000)
19: 00000000000000000011.10111000000000000000 (0.718750, 0.750000)
20: 00000000000000000110.01110000000000000000 (0.437500, 0.375000)
27: 00000000000000001101.11100000000000000000 (0.875000, 0.687500)
28: 00000000000000000110.11110000000000000000 (0.937500, 0.375000)
29: 00000000000000000011.01111000000000000000 (0.468750, 0.750000)
30: 00000000000000000001.10111100000000000000 (0.734375, 0.500000)
31: 00000000000000000000.11011110000000000000 (0.867188, 0.000000)
32: 00000000000000000000.10111100000000000000 (0.734375, 0.000000)
35: 00000000000000000000.01011110000000000000 (0.367188, 0.000000)
36: 00000000000000000000.00101111000000000000 (0.183594, 0.000000)
37: 00000000000000000000.00010111100000000000 (0.091797, 0.000000)
41: 00000000000000000001.00101111000000000000 (0.183594, 0.500000)
56: 00000000000000000011.01011110000000000000 (0.367188, 0.750000)
57: 00000000000000000001.10101111000000000000 (0.683594, 0.500000)
58: 00000000000000000010.01011110000000000000 (0.367188, 0.250000)
66: 00000000000000000101.10111100000000000000 (0.734375, 0.625000)
64: 00000000000000001010.01111000000000000000 (0.468750, 0.312500)
65: 00000000000000000101.00111100000000000000 (0.234375, 0.625000)
58: 00000000000000001011.01111000000000000000 (0.468750, 0.812500)
66: 00000000000000010111.11110000000000000000 (0.937500, 0.906250)
64: 00000000000000101110.11100000000000000000 (0.875000, 0.453125)
65: 00000000000000010111.01110000000000000000 (0.437500, 0.906250)
58: 00000000000000101111.11100000000000000000 (0.875000, 0.953125)
59: 00000000000001011110.11000000000000000000 (0.750000, 0.476562)
64: 00000000000010111100.10000000000000000000 (0.500000, 0.238281)
65: 00000000000001011110.01000000000000000000 (0.250000, 0.476562)
58: 00000000000010111101.10000000000000000000 (0.500000, 0.738281)
59: 00000000000101111010.00000000000000000000 (0.000000, 0.369141)
60: 00000000001011110101.00000000000000000000 (0.000000, 0.684570)
61: 00000000000101111010.10000000000000000000 (0.500000, 0.369141)
62: 00000000000010111101.01000000000000000000 (0.250000, 0.738281)
63: 00000000000101111011.10000000000000000000 (0.500000, 0.869141)
58: 00000000001011110110.00000000000000000000 (0.000000, 0.434570)
66: 00000000010111101101.00000000000000000000 (0.000000, 0.717285)
67: 00000000001011110110.10000000000000000000 (0.500000, 0.434570)
68: 00000000000101111011.01000000000000000000 (0.250000, 0.869141)
31: 00000000000010111101.10100000000000000000 (0.625000, 0.738281)
32: 00000000000101111010.01000000000000000000 (0.250000, 0.369141)
33: 00000000000010111101.00100000000000000000 (0.125000, 0.738281)
34: 00000000000101111011.01000000000000000000 (0.250000, 0.869141)
29: 00000000000010111101.10100000000000000000 (0.625000, 0.738281)
30: 00000000000001011110.11010000000000000000 (0.812500, 0.476562)

...
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