
Syntax, Parsing and Production of Natural Language in a

Framework of Information Compression by Multiple

Alignment, Uni�cation and Search

J Gerard Wol�
(University of Wales, Bangor, UK

gerry@sees.bangor.ac.uk)

Abstract: This article introduces the idea that information compression by multi-
ple alignment, uni�cation and search (ICMAUS) provides a framework within which
natural language syntax may be represented in a simple format and the parsing and
production of natural language may be performed in a transparent manner.
In this context, multiple alignment has a meaning which is similar to its meaning
in bio-informatics but with signi�cant di�erences, while uni�cation means a simple
merging of matching patterns, a meaning which is related to but simpler than the
meaning of that term in logic. The concept of search in the present context means
search for alignments which are `good' in terms of information compression, using
heuristic methods or arbitrary constraints (or both) to restrict the size of the search
space.
These concepts are embodied in a software model, SP61. The organisation and oper-
ation of the model are described and a simple example is presented showing how the
model can achieve parsing of natural language.
Notwithstanding the apparent paradox of `decompression by compression', the IC-
MAUS framework, without any modi�cation, can produce a sentence by decoding a
compressed code for the sentence. This is illustrated with output from the SP61 model.
The article includes four other examples - one of the parsing of a sentence in French
and three from the domain of English auxiliary verbs. These examples show how the
ICMAUS framework and the SP61 model can accommodate `context sensitive' features
of syntax in a relatively simple and direct manner.
An important motivation for this research is the possibility of developing the ICMAUS
framework as a unifying framework for diverse aspects of computing in addition to
those described in this article. Other aspects which appear to fall within the scope of
the ICMAUS framework but which are outside the scope of this article, include the
representation of natural language semantics, best-match pattern recognition and infor-
mation retrieval, deductive and probabilistic reasoning, planning and problem solving,
and unsupervised inductive learning.

Key Words: natural language; syntax; parsing; production; multiple align-
ment; uni�cation; information compression; MML; MDL.

Category: I.2.7

1 Introduction

This article introduces the idea that information compression (IC) by multiple
alignment, uni�cation and search (ICMAUS) provides a framework within which
natural language syntax may be represented in a simple format and the parsing
and production of natural language may be performed in a transparent manner.

In this context,multiple alignment has a meaning which is similar to its mean-
ing in bio-informatics but with signi�cant di�erences, while uni�cation means a

Journal of Universal Computer Science, vol. 6, no. 8 (2000), 781-829
submitted: 15/3/99, accepted: 17/5/00, appeared: 28/8/00  Springer Pub. Co.



simple merging of matching patterns, a meaning which is related to but simpler
than the meaning of that term in logic. In the present context, search means
search for alignments amongst patterns which are `good' in terms of information
compression, with constraints to reduce the size of the search space as described
in Section 2.

The mechanisms for heuristic search which are incorporated in the ICMAUS
framework as it has been developed here allow syntactic knowledge to be ex-
pressed as patterns (as described in Section 3.1), a mode of expression which is
signi�cantly di�erent from existing formalism.1 The use of patterns (in the sense
of this article), has potential advantages compared with existing formalisms.

These concepts are embodied in a software model, SP61. This article de-
scribes the organisation and operation of the model with examples of what the
model can do.

1.1 Novelty of proposals

Aspects of these proposals which appear to be novel are described in the following
subsections.

1.1.1 Parsing (with choices at many levels) as multiple alignment

The most novel feature of the present proposals appears to be the idea that
parsing, in the sense understood in theoretical and computational linguistics
and natural language processing, may be understood as multiple alignment.

A concept of parsing is already well-established in the literature on data
compression (see, for example, [Storer 88]). In that context, it means a process
of analysing data into segments, each of which is replaced by a relatively short
`code' associated with the given segment in a `dictionary' of segments.

But this kind of parsing is simpler than `linguistic' kinds of parsing. In the
�rst case, although segments may have internal hierarchical structure, alterna-
tives can be chosen only at one level. In the second kind of parsing, which is
the focus of interest in this article, there may be alternatives at arbitrarily many
levels in the grammar which is used to guide the parsing.

1.1.2 Parsing as information compression

Research on parsing and related topics within computational linguistics and
AI does not normally consider these topics in terms of information com-
pression (IC) (but see, for example, [Berger et al. 96, Hu et al. 97]). How-
ever, there is a well-developed tradition of parsing and linguistic analysis in
terms of probabilities, with associated concepts such as `stochastic grammars',
`maximum-likelihood', `Bayesian inference' and `statistical analysis' (see, for

1 In this research, the term pattern has been adopted as a general term which means an
array of symbols of one, two or more dimensions. Notwithstanding the fact that this
research has so far been largely restricted to one-dimensional sequences of symbols,
the term pattern is generally used in preference to the term sequence as a reminder
of the intention, later in the research programme, to generalise the concepts to two
or more dimensions. Formal de�nitions of terms like symbol and pattern as they are
used in this research are given in Appendix A.

782 Wolff J.G.: Syntax, Parsing and Production of Natural Language ...



example, [Abney 97, Black et al. 93, Dreuth and Ruber 97, Garside et al. 87,
Takahashi and Sagayama 97, Wu 97, Lucke 95]) and there is a close connection
between probabilities and IC.2

1.1.3 Production of language as ICMAUS

Essentially the same points as were made above about parsing apply also to the
production of language. It is interesting that the ICMAUS framework, without
any modi�cation, lends itself to the production of language as well as it does to
parsing (see Section 6).

1.1.4 Representing syntax with patterns

As we shall see, the ICMAUS framework allows natural language syntax to be
represented with patterns in a manner which is signi�cantly di�erent from other
formalisms.

1.2 Background and context

The proposals in this article have been developed within a programme of research
developing the `SP' conjecture3 that all kinds of computing and formal reasoning
may usefully be understood as information compression by pattern matching,
uni�cation and search, and developing a `new generation' computing system
based on this thinking ([Wol� 90] to [Wol� 00]).

This entire programme of research is based on an earlier programme of re-
search into unsupervised learning of language structures (see [Wol� 88, Wol� 82]
and earlier articles cited there). That research and the present research are based
on principles of Minimum Length Encoding (MLE). Relevant sources are cited
in Section 1.3.

The overall aim of this research programme is the integration and simpli�ca-
tion of concepts in computing and cognition. Besides the aspects of natural lan-
guage processing considered in this article, the ICMAUS framework appears to
have potential to accommodate several other aspects of computing and cognition,
including unsupervised learning [Wol� 96], the representation of non-linguistic
`semantic' structures (examples may be found in [Wol� 99b, Wol� 98c]), math-
ematics and logic [Wol� 00], probabilistic reasoning [Wol� 99b, Wol� 96], best-
match information retrieval ([Wol� 94a]) and best-match pattern recognition
([Wol� 95a]). It can be argued ([Wol� 99a]) that the ICMAUS framework pro-
vides an interpretation for the organisation and operation of any Universal Tur-
ing Machine (UTM), and equivalent models of `computing' such as the Post
Canonical System (PCS).

2 Measures of frequency or probability have a key role in techniques for economical
coding such as the Hu�man method or the Shannon-Fano-Elias (S-F-E) method (see
[Cover and Thomas 91]). Conversely, measures of compression may be translated
into measures of probability (see [Wol� 99b]).

3 Information compression may be interpreted as a process of maximising Simplicity
in information (by reducing redundancy) whilst retaining as much as possible of its
non-redundant descriptive Power. Hence the sobriquet `SP' which has been applied
to these ideas.

783Wolff J.G.: Syntax, Parsing and Production of Natural Language ...



1.3 Related research

As an attempt to integrate concepts across several areas of computing, the SP
programme naturally has many connections with other research in the several
areas that it seeks to integrate. Some connections are described in [Wol� 91,
Wol� 93, Wol� 95b].

In terms of theoretical foundations, the closest links are with work on
Algorithmic Information Theory (AIT, see, for example, [Li and Vitanyi 93])
and Minimum Length Encoding (MLE, see, for example,
[Solomono� 64, Wallace and Boulton 68, Rissanen 78,
Belloti and Gammerman 96, Gammerman 91]) which is itself closely related to
Bayesian inference (see, for example, [Cheeseman 90, Pednault 91]).

1.3.1 Distinctive features of the SP programme compared with MLE
and AIT

Although the SP theory is based on MLE principles, there are important dif-
ferences in objectives and orientation between the SP programme and other
research in MLE and AIT. These di�erences are described in Section 3.6 of
[Wol� 95b] and Sections 7.1 and 7.2 of [Wol� 94b]). In brief, the main di�er-
ences are:

{ The SP programme seeks to integrate all kinds of computing and formal rea-
soning within a framework of information compression. This goal is broader
than it is in other research in AIT or MLE.

{ The SP programme is based on the hypothesis that all kinds of information
compression may be understood in terms of multiple alignment, uni�cation
and search. In essence this means the hypothesis that all kinds of information
compression is achieved by the uni�cation of matching patterns. All existing
and projected SP models are restricted to ICMAUS mechanisms and avoid
`arithmetic coding' and other mathematical techniques which are used for
information compression.
The restriction has been imposed in the interests of simplicity in the SP
theory. The aim is to build a theoretical framework from a `bedrock' of ap-
parently primitive operations of matching symbols and patterns and unifying
symbols and patterns. The theory should avoid including any concepts that
cannot be derived from this foundation.
If, as conjectured, arithmetic and, perhaps, mathematics, may be understood
in terms of ICMAUS (see [Wol� 00]), then compression techniques that use
mathematical concepts may also be understood in terms of ICMAUS. But
until this has been demonstrated, the adoption of arithmetic coding or any
other mathematical technique would add unwanted complexity to the SP
model.

{ In the �rst point above, the phrase \all kinds of computing" includes the
concept of `computing' itself in its full depth and generality. Thus the SP
programme hypothesises that other models of computing such the Turing
model or the Post Canonical System may be understood in terms of the
ICMAUS concepts (see [Wol� 99a]). By contrast, researchers in AIT and
MLE accept the Turing model (and equivalent models) as the foundation of
concepts in computing.

784 Wolff J.G.: Syntax, Parsing and Production of Natural Language ...



1.4 Scope of this article

This paper describes new concepts in the representation of syntax and in the
parsing and production of language. It does not describe a complete working
system, including a complete grammar of one or more languages, and it should
not be evaluated as such.

In the space available, it is possible only to present these proposals in outline.
It has been necessary to omit many details and there are many associated issues
which could not be discussed.

Although integration of concepts right across the �eld of computing provides
the main motivation for this programme of research (as noted in Section 1.2),
topics other than syntax, parsing and production of natural language will not
be considered except brie
y where they are relevant.

1.5 Presentation

In what follows, I have tried to bring the important ideas into relief by describ-
ing them relatively brie
y in the body of the article and moving details into
appendices. The main sections after this one are these:

2 introduces multiple alignment problems in general terms and describes how
the concept has been generalised in this programme of research.

3 describes the use of patterns (de�ned in Appendix A) to represent the broad
features of the syntax of natural language and describes how the parsing of
language may be seen as multiple alignment.

4 describes in outline how an alignment may be evaluated in terms of IC.
5 describes the main features of the SP61 model, a partial realisation of the
ICMAUS framework, running on a conventional computer.

6 describes how the production of language may be seen in terms of multiple
alignment - between a `coded' representation of a sentence and rules in a
grammar.

7 presents a selection of other examples showing how the ICMAUS framework
can accommodate `context sensitive' features of syntax.

8 discusses brie
y some associated issues and makes some concluding remarks.

The appendices are as follows:

A provides formal de�nitions of the main terms used in this article.
B supplements Section 4 with a more detailed account of the method for evalu-

ating the IC associated with any alignment which is used in the SP61 model.
C describes the organisation of the SP61 model in more detail than Section 5.

Generally speaking, small examples have been used in this article for the
sake of clarity and to save space. It should not be assumed that the examples
represent the limits of what the system can do (see Section 5.2).

785Wolff J.G.: Syntax, Parsing and Production of Natural Language ...



2 Multiple alignment problems

Multiple alignment is a term borrowed from bio-informatics where it means the
arrangement of two or more sequences of symbols in horizontal rows one above
the other so that, by judicious `stretching' of sequences where necessary, sym-
bols that match each other from one sequence to another can be brought into
alignment in vertical columns.

A `good' alignment is, in general, one where there is a relatively large number
of hits (positive matches) between symbols and where any gaps (sequences of
unmatched symbols) between hits are relatively few and relatively short. The
meaning of `good' in this context is described in Section 4 and Appendix B.

Multiple alignments like these are normally used in the computational anal-
ysis of (symbolic representations of) sequences of DNA bases or sequences of
amino acid residues as part of the process of elucidating the structure, functions
or evolution of the corresponding molecules. An example of an alignment of DNA
sequences is shown in Figure 1.

G G A G C A G G G A G G A T G G G G A
| | | | | | | | | | | | | | | | | | |
G G | G G C C C A G G G A G G A | G G C G G G A
| | | | | | | | | | | | | | | | | | | | |

A | G A C T G C C C A G G G | G G | G C T G G A | G A
| | | | | | | | | | | | | | | | | |
G G A A | A G G G A G G A | A G G G G A
| | | | | | | | | | | | | | | | |
G G C A C A G G G A G G C G G G G A

Figure 1: A `good' alignment amongst �ve DNA sequences.

2.1 Search and the need for constraints

In this area of research, it is widely recognised that, with the exception of align-
ments of patterns which are very small and very few, the number of possible
alignments of symbols is too large to be searched exhaustively. For any set of
patterns of realistic size, a search which has acceptable speed and acceptable
scaling properties can only be achieved if some kind of constraint is used:

{ Arbitrary parts of the search space may be excluded a priori. For example,
in multiple alignment problems, an upper limit may be set to the size of any
`gap' between `hits', as described above.

{ With `heuristic' techniques, searching is done in stages, with a progressive
narrowing of the search space in successive stages using some kind of measure
of `goodness' to guide the search. Heuristic techniques include `hill climbing'
(sometimes called `descent'), `beam search', `genetic algorithms', `simulated
annealing', `dynamic programming' and others. These techniques may be
described generically as `metrics-guided search'.

786 Wolff J.G.: Syntax, Parsing and Production of Natural Language ...



Either or both of these kinds of constraint may be applied. Given one or
both of these kinds of constraint, it is not possible to guarantee that, for any set
of patterns, the best possible alignment has been found. For many tasks, this
guarantee is not necessary and it is su�cient to �nd alignments that are \good
enough".

There is now a fairly large literature about methods for �nding good align-
ments amongst two or more sequences of symbols. All of them use constraints of
one kind or another and, for that reason, none of them can guarantee that the
best possible result is always found. Some of the existing methods are reviewed in
[Taylor 88, Barton 90, Chan et al. 92, Day and McMorris 92]. For reasons which
will be explained in the next section, none of the current methods seem to be
entirely suitable for incorporation in the proposed SP system.

2.2 Development of the concept of multiple alignment in the
present research

In this research, concepts associated with multiple alignment and the multiple
alignment concept itself have been adapted and developed in the following way:

{ One (or more) of the patterns of symbols to be aligned has a special status
and is designated as `New'. In the context of parsing, this would be the
sentence (or other sequence of symbols) which is to be parsed.

{ All other patterns are designated as `Old'. In the context of parsing, this
would be the patterns of symbols which represent grammatical `rules' (more
about this in Section 3, below).

{ A `good' alignment is one which, through the uni�cation of symbols in New
with symbols in Old, and through uni�cations amongst the symbols in Old,
leads to a relatively large amount of compression of New in terms of the
sequences in Old. How this may be done is explained in outline in Section 4
and in more detail in Appendix B.

{ By contrast with `multiple alignment' as normally understood in bio-
informatics, any given sequence in Old may appear two or more times in
any one alignment and, in these cases, it is possible for the given sequence
to be aligned with itself.

{ As noted already, it is envisaged that, at some point in the future, the con-
cept of multiple alignment as it is understood here will be generalised to
alignments of patterns with two dimensions or higher (diagrams, pictures
and so on).

Notice that two or more appearances of a pattern in an alignment are re-
peated appearances of a single entity in the alignment - and this is not the same
as having two or more copies of a given pattern in an alignment. In the latter
case, it is permissible to form a hit between a given symbol in one copy of a
pattern and the corresponding symbol in another copy. In the case of two or
more appearances of a pattern in an alignment, it is not permissible to form a
hit between a symbol in one appearance and the corresponding symbol in an-
other appearance - because this would mean forming a hit between one symbol
and itself.

787Wolff J.G.: Syntax, Parsing and Production of Natural Language ...



3 Syntax as `patterns' and parsing as multiple alignment

This section describes how the simpler aspects of syntax may be represented
with patterns and how the parsing of a sentence in terms of a grammar may be
seen in terms of multiple alignment.

The example considered in this section and again in Section 6 may give
the impression that the ICMAUS framework is merely a trivial variation of
familiar concepts of context-free phrase-structure grammar (CF-PSG) with their
well-known inadequacies for representing and analysing the `context sensitive'
structures found in natural languages. The examples presented in Section 7 show
that the ICMAUS framework is much more `powerful' than CF-PSGs and can
accommodate quite subtle context-sensitive features of natural language syntax
in a simple and elegant manner.

3.1 Representing a grammar with patterns of symbols

Figure 2 shows a simple CF-PSG describing a fragment of the syntax of English.
This grammar generates sentences like `t h i s b o y l o v e s t h a t g i r l', `t
h a t b o y h a t e s t h i s g i r l', and so on. Any of these sentences may be
parsed in terms of the grammar giving a labelled bracketing like this:

(S(NP(D t h i s)(N b o y))(V l o v e s)
(NP(D t h a t)(N g i r l)))

or an equivalent representation in the form of a tree.
Figure 3 shows the grammar from Figure 2 expressed as a set of strings,

sequences or patterns of symbols (as de�ned in Appendix A). Each pattern in
this `grammar' is like a re-write rule in the CF-PSG notation except that the
rewrite arrow has been removed, some other symbols have been introduced (`0',
`1' and symbols with an initial `#' character) and there is a number to the right
of each rule.

S -> NP V NP
NP -> D N
D -> t h i s
D -> t h a t
N -> g i r l
N -> b o y
V -> l o v e s
V -> h a t e s

Figure 2: A CF-PSG describing a fragment of English syntax.

The number to the right of each rule in Figure 3 is a frequency of occurrence
of the rule in a (`good') parsing of a notional sample of the language. These
frequencies have a role in determining the IC associated with any alignment but

788 Wolff J.G.: Syntax, Parsing and Production of Natural Language ...



their main signi�cance (considered in [Wol� 99b] and outsid the scope of this
article) is in determining probabilities associated with any given alignment.

The reasons for the symbols which have been added to each rule will become
clear but a few words of explanation are in order here. The symbols `0' and `1'
have been introduced to di�erentiate the two versions of the `D' patterns, and
likewise for the `N' patterns and `V' patterns. They enter into matching and
uni�cation in exactly the same way as other symbols. Although the symbols are
the same as are used in other contexts to represent numbers they do not have
the meaning of numbers in this grammar.

S NP #NP V #V NP #NP #S (500)
NP D #D N #N #NP (1000)
D 0 t h i s #D (600)
D 1 t h a t #D (400)
N 0 g i r l #N (300)
N 1 b o y #N (700)
V 0 l o v e s #V (650)
V 1 h a t e s #V (350)

Figure 3: The grammar from Figure 2 recast as patterns of symbols.

The symbols which begin with `#' (e.g., `#S', `#NP') serve as `termination
markers' for patterns in the grammar. Although their informal description as
`termination markers' suggests that these symbols are meta symbols with spe-
cial meaning, they have no hidden meaning and they enter into matching and
uni�cation like every other symbol.

In general, all the symbols that can be seen in Figure 3 and other examples
in this article are simply `marks' that can be discriminated from each other
by yes/no matches but otherwise have no intrinsic meaning. Although some of
these symbols can be seen to serve a distinctive role, there is no hidden meaning
attached to any of them and no formal distinction between upper- and lower-
case letters or between digit symbols and alphabetic symbols and so on (see
Appendix A).

3.2 Parsing as alignment of a sentence and rules in a grammar

Figure 4 shows how a parsing of the sentence `t h i s b o y l o v e s t h a t
g i r l' may be seen as an alignment of patterns which includes the sentence
and relevant rules from the grammar shown in Figure 3. The similarity between
this alignment and the conventional parsing may be seen if the symbols in the
alignment are `projected' on to a single sequence, thus:

S NP D 0 t h i s #D N 1 b o y #D #NP V 0 l o v e s #V
NP D 1 t h a t #D N 0 g i r l #N #NP #S

In this projection, the two instances of `NP' in the second column of the
alignment have been merged or `uni�ed' and likewise for the two instances of

789Wolff J.G.: Syntax, Parsing and Production of Natural Language ...



0 t h i s b o y l o v e s 0
| | | | | | | | | | | |

1 | | | | | | | | | | | | 1
| | | | | | | | | | | |

2 | | | | | | | | | | | | 2
| | | | | | | | | | | |

3 | | | | | | | | | | | | 3
| | | | | | | | | | | |

4 | | | | | | | V 0 l o v e s #V 4
| | | | | | | | |

5 S NP | | | | | | | #NP V #V 5
| | | | | | | | |

6 | D 0 t h i s #D | | | | 6
| | | | | | |

7 NP D #D N | | | #N #NP 7
| | | | |

8 N 1 b o y #N 8

0 t h a t g i r l 0
| | | | | | | |

1 | | | | N 0 g i r l #N 1
| | | | | |

2 NP D | | | | #D N #N #NP 2
| | | | | | | |

3 | D 1 t h a t #D | 3
| |

4 | | 4
| |

5 NP #NP #S 5

6 6

7 7

8 8

Figure 4: The best alignment found by SP61 with `t h i s b o y l o v e s t h a t g i r l'
in New and the grammar from Figure 3 in Old.

`D' in the third column and so on wherever there are two or more instances of a
symbol in any column.

This projection is the same as the conventional parsing except that `0' and
`1' symbols are included, right bracket symbols (`)') are replaced by `termination
markers' and each of the upper-case symbols is regarded both as a `label' for a
structure and as a left bracket for that structure.

Notice that the pattern `NP D #D N #N #NP' appears twice in the align-
ment in Figure 4, in accordance with what was said in Section 2.2. In general,
any pattern in the grammar used for parsing may appear two or more times in
an alignment. Other examples will be seen later.

790 Wolff J.G.: Syntax, Parsing and Production of Natural Language ...



As was noted in Section 2.2, the sentence or other sequence of symbols to be
parsed is regarded as New, while the rules in the grammar are regarded as Old.
For the sake of readability and ease of interpretation, New is normally placed at
the top of each alignment with patterns from Old below it.

For the sake of clarity in Figure 4 and other alignments shown in this article,
each appearance of a pattern in any alignment is given a line to itself (so that the
two appearances of `NP D #D N #N #NP' in Figure 4 are on two di�erent lines).
Apart from the convention that New is always at the top, the order in which
patterns appear (from top to bottom of the alignment) is entirely arbitrary. An
alignment in which the patterns appear in one order is totally equivalent to an
alignment in which they appear in any other order, provided all other aspects
of the alignment are the same.

All the examples of parsing by alignment shown in this article are output from
the SP61 model and in every case, the alignment shown is the best alignment
(in terms of IC) that the model has found with the given sentence in New (in
row 0) and the grammar identi�ed in the caption in Old.

4 Multiple alignments and information compression

This section describes in broad terms how alignments are evaluated in terms of
IC. A more detailed account of the method of evaluation used in the SP61 model
is given in Appendix B.

Although IC and related concepts of probability are well-established in the
evaluation of alignments in bio-informatics (see, for example,
[Reichert et al. 73, Felsenstein 81, Allison et al. 92, Chan et al. 92,
Allison and Wallace 94, Wol� 94a]), the framework here is di�erent (as
described in Section 2.2) which means that existing methods cannot be applied
directly.

In the present work, a good alignment is one which allows an economical
coding of New in terms of the patterns in Old. The compression method exploits
the elementary principle that a (relatively long) sequential pattern which repeats
two or more times in a body of information may be replaced by a shorter iden-
ti�er, `tag' or `code' associated with that pattern in some kind of `dictionary' of
patterns. In e�ect, each instance of the pattern in the data is uni�ed with the
same pattern as it appears in the repository of patterns. This is the basis of all
standard methods for IC (see [Storer 88]).

In the ICMAUS scheme, this principle can be applied at a single `level', as
in the majority of standard compression schemes, but it can also be applied
at an arbitrary number of `higher' levels. To see what this means, consider the
alignment shown in Figure 4.

At the most basic level, a word like `t h i s' in New (the sentence being
parsed) is matched by the pattern `D 0 t h i s #D' in Old (the grammar) which
means that the symbols `D 0 #D' can be used as a `code' for the pattern.4

A certain amount of compression can be achieved by encoding the words
in the sentence being parsed at a single level. But more compression can be
achieved by taking advantage of the fact that the words in the sentence are not

4 Although the code `D 0 #D' does not appear to be much smaller than `t h i s' in
New, a weighting factor ensures that the number of bits to be encoded is signi�cantly
larger than the code, as explained in Appendix B.

791Wolff J.G.: Syntax, Parsing and Production of Natural Language ...



a random sequence of words but they conform to grammatical patterns de�ned
in the grammar like `NP D #D N #N #NP' and `S NP #NP V #V NP #NP
#S'. The details of how this may be done are explained in Appendix B. As
indicated above, this kind of encoding at a `higher' level can be applied through
arbitrarily many levels, depending on the patterns of redundancy in New and in
the language from which it comes.

5 The SP61 model

Given the example sentence discussed earlier (shown at the top of Figure 4) and
the grammar in Figure 3, the SP61 model can �nd the alignment shown in Figure
4 and, in terms of compression, it identi�es it as the best alignment amongst
the several which it forms for the given sentence and the given grammar. Given
relevant sentences and grammars, the model �nds all the other alignments shown
in this article (they are indeed taken directly from the output of the model). In
each case, the alignments shown are the best in terms of IC amongst alternative
alignments that the model �nds for a given sentence and grammar.

It is interesting to see that, in general, alignments that are good in terms
of IC are also `correct' in terms of our linguistic intuitions. This relationship
holds true for several other examples of parsing by the model. Space limitations
prevents them being shown here but they can be found in [Wol� 98b].

5.1 How the model works

The SP61 model works by building alignments in a pairwise fashion selecting
the `best' in terms of compression at each stage. The method thus constitutes
a fairly straightforward application of `metrics-guided' search: examine large
search spaces in stages, narrowing the search progressively at each stage using
some kind of `search metric' to guide the search. This accords with the need
for constraints in searching what is normally an astronomically large space of
possible alignments (Section 2.1).

Alignments can be built up in a pairwise manner because, at every stage,
new alignments are accepted only if they can `project' into a one-dimensional
pattern as described in Section 3.2. Since any such alignment can be treated as
a single sequence of symbols it is possible to match it against any of the original
patterns in the grammar or any of the alignments formed at earlier stages.

The program starts by searching for `good' alignments between the sentence
to be parsed and patterns in the grammar. For the example in Figure 4, the best
alignments found at this stage are between the individual words in the sentence
and corresponding patterns in the grammar.

At the next stage, the program looks for `good' alignments between the best
of the alignments previously found and patterns in the grammar. The `best'
alignments at this stage are ones between the alignments corresponding to the
words and `higher level' patterns in the grammar. Thus `D 0 t h i s #D' and `N
1 b o y #N' form an alignment with `NP D #D N #N #NP', giving `NP D 0 t
h i s #D N 0 b o y #D #NP'; likewise, `V 0 l o v e s #V' forms an alignment
with `S NP #NP V #V NP #NP #S' giving `S NP #NP V 0 l o v e s #V NP
#NP #S'; then `D 1 t h a t #D' and `N 0 g i r l #N' form an alignment with
`NP D #D N #N #NP' giving `NP D 1 t h a t #D N 0 g i r l #N #NP'.

792 Wolff J.G.: Syntax, Parsing and Production of Natural Language ...



Finally, `NP D 0 t h i s #D N 1 b o y #D #NP' and `NP D 1 t h a t #D N
1 g i r l #N #NP' are aligned with `S NP #NP V 0 l o v e s #V NP #NP #S'
giving the result shown in Figure 4. At each stage, many `worse' alignments are
formed which are weeded out by the selection process.

An outline of how the model works is shown as pseudocode in Appendix C
together with explanatory text.

5.2 Computational complexity

Given the well-known computational demands of multiple alignment problems,
readers may reasonably ask whether the proposed framework for parsing would
scale up to handle realistically large grammars and longer sentences.

Estimates of the time complexity and space complexity of the model are
given here largely without justi�cation owing to shortage of space. In a serial
processing environment, the time complexity of the model has been estimated
[Wol� 98c] to be approximately O(log2n � nm), where n is the length of the
sentence (in bits) and m is the sum of the lengths of the patterns in the grammar
(in bits). In a parallel processing environment, the time complexity may approach
O(log2n�n), depending on how the parallel processing is applied. In serial and
parallel environments, the space complexity should be O(m).

These estimates are based on the assumption that any given sentence is
processed as a single entity. However, the program has been designed so that it is
possible to process any given sentence as a succession of `windows' (see Appendix
C.4). Since it is possible to discard all but the best intermediate results at the
end of each window, the time complexity of the model in a serial environment
and operating in `windows' mode appears to be approximately O(nm). The time
complexity of the program in `windows' mode in a parallel environment depends
on exactly how the parallelism is applied but, in general, it is likely to be better
than in a serial environment.

6 Decoding by compression: the production of language

As described in Appendix B, a succinct, coded representation of a sentence may
be derived from a `good' alignment amongst a set of sequences which includes
the sentence and rules in an appropriate grammar. This section proposes an idea
which at �rst sight may seem contradictory or paradoxical: that the decoding
of a coded representation of a sentence may be achieved by precisely the same
process of compression (by multiple alignment, uni�cation and search) as was
used to achieve the original encoding! Although this may super�cially appear
to be nonsense, careful reading of this section should convince readers that the
proposal is sound and that no laws of logic or mathematics have been violated.

In this reversal of the original process of encoding, a sentence may be created
by �nding a `good' alignment amongst a set of patterns that includes a pattern
that encodes the sentence (in New) together with rules in the grammar which
were used to create the encoding (in Old). In both cases (encoding and decod-
ing), alignments may be evaluated in terms of the potential compression of one
sequence: the sentence in the �rst case and the encoded representation of the
sentence in the second case.

793Wolff J.G.: Syntax, Parsing and Production of Natural Language ...



Figure 5 shows an alignment of this kind produced by the SP61 model. At
the top of the �gure is the sequence `S 0 1 0 1 0 #S' which is the encoded version
of `t h i s b o y l o v e s t h a t g i r l', as described in Appendix B. The other
sequences in the �gure are rules from the grammar shown in Figure 3.

0 S 0 1 0 0
| | | |

1 S NP | | #NP V | #V 1
| | | | | | |

2 | | | | V 0 l o v e s #V 2
| | | |

3 | | | | 3
| | | |

4 | | | | 4
| | | |

5 | | | | 5
| | | |

6 | D 0 t h i s #D | | 6
| | | | |

7 NP D #D N | #N #NP 7
| | |

8 N 1 b o y #N 8

0 1 0 #S 0
| | |

1 NP | | #NP #S 1
| | | |

2 | | | | 2
| | | |

3 | | N 0 g i r l #N | 3
| | | | |

4 NP D | #D N #N #NP 4
| | |

5 D 1 t h a t #D 5

6 6

7 7

8 8

Figure 5: The best alignment found by SP61 with `S 0 1 0 1 0 #S' in New and the
grammar from Figure 3 in Old.

As with parsing (Section 3), an alignment may be interpreted by projecting
its constituent symbols into a single sequence. In the case of the alignment in
Figure 5, the result of this projection is exactly the same as was shown in Section
3.2. Although this sequence contains grammatical symbols other than words, it
has the right words in the right order and may thus be regarded as a realisation
of the sentence corresponding to the coded sequence `S 0 1 0 1 0 #S'.

794 Wolff J.G.: Syntax, Parsing and Production of Natural Language ...



6.1 Decompression by compression

The alignment shown in Figure 5 achieves the paradoxical e�ect of `decompres-
sion by compression' because the `input' (in New) is a compressed code for a
sentence and the `output' is an alignment whose uni�cation contains the original
uncompressed sentence (together with `service' symbols like `S', `NP' etc).

How can this paradox be resolved and how is it possible to achieve compres-
sion with something (the code for the sentence) which is already compressed?

This is not as mysterious as it may at �rst sight seem. The answer to the
riddle is the provision of two distinct sizes for each symbol, as described in
Appendices B.1 and B.7. The minimum size (in bits) is the theoretical minimum
calculated according to the S-F-E method, while the actual size (in bits), which
is the real size of the symbol in a practical system, is larger than the minimum
size by some constant factor.

In the calculation of the compression di�erence (CD) for each alignment
(described in Appendix B.7), the actual sizes of symbols are used to compute
BN , the number of bits required to represent, in `raw' form, the symbols from
New that enter into the alignment. But the minimum sizes of symbols are used
to compute BE , the number of bits required to encode the alignment. Thus the
CD which is derived from BN and BE represents the maximum compression
which is theoretically possible (with the given alignment within the ICMAUS
framework).

Given the distinction between a theoretical minimum size for each symbol and
a larger actual size, and given this way of calculating CD, the alignment method
that was used for the original parsing can be used, without any modi�cation,
to �nd the best alignment for the code for the sentence (in terms of CD values)
and to discriminate it from the many `wrong' alignments that are possible.

The foregoing remarks re
ect what appears to be a general truth about IC:
if lossless compression of a body of information is required (so that the original
form of the information can be reconstituted) then it seems that the encoded
form of the information must always contain some residual redundancy. The
existence of this residual redundancy may not always be obvious but it seems
that decoding is not possible without it.

7 Context sensitive aspects of syntax

The examples considered so far may have given the impression that the ICMAUS
framework is merely a trivial variation on CF-PSG. This section presents align-
ments from two areas of syntax showing how the ICMAUS framework as it is
realised in the SP61 model may accommodate `context sensitive' aspects of syn-
tax.

7.1 Syntactic dependencies in French

It often happens in natural languages that there are syntactic dependencies
between one part of a sentence and another. For example, there is usually a
`number' dependency between the subject of a sentence and the main verb of
the sentence: if the subject has a singular form then the main verb must have a
singular form and likewise for plural forms of subject and main verb.

795Wolff J.G.: Syntax, Parsing and Production of Natural Language ...



A prominent feature of these kinds of dependency is that they are often
`discontinuous' in the sense that the elements of the depency can be separated,
one from the next, by arbitrarily large amounts of intervening structure. For
example, the subject and main verb of a sentence must have the same number
(singular or plural) regardless of the size of qualifying phrases or subortinate
clauses that may come between them.

Another interesting feature of syntactic dependencies is that one kind of
dependency (e.g., number dependency) can overlap other kinds of dependency
(e.g., gender (masculine/feminine) dependency), as can be seen in the following
example.

In the French sentence Les plumes sont vertes (\The feathers are green")
there are two sets of overlapping syntactic dependencies like this:

P P P P Number dependencies
Les plume s sont vert e s

F F Gender dependencies

In this example, there is a number dependency, which is plural (`P') in this case,
between the subject of the sentence, the main verb and the following adjective:
the subject is expressed with a plural determiner (Les) and a noun (plume) which
is marked as plural with the su�x (s); the main verb (sont) has a plural form and
the following adjective (vert) is marked as plural by the su�x (s). Cutting right
across these number dependencies is the gender dependency, which is feminine
(`F') in this case, between the feminine noun (plume) and the adjective (vert)
which has a feminine su�x (e).

For many years, linguists puzzled how these kinds of syntactic depen-
dency could be represented succinctly in grammars for natural languages.
But then elegant solutions were found in Transformational Grammar (TG,
[Chomsky 57]) and, later, in systems like De�nite Clause Grammars (DCG,
[Pereira and Warren 80]), based on Prolog.

The solution proposed here is di�erent from any established system and is
arguably simpler and more transparent than other systems. It will be described
and illustrated with a fragment of the grammar of French which can generate
the example sentence just shown. This fragment of French grammar, shown in
Figure 6, is expressed with `patterns' in the same manner as the grammar in
Figure 3 and others in this article.

Apart from the use of patterns as the medium of expression, this grammar
di�ers from systems like TG or DCGs because the parts of the grammar which
express the forms of `high level' structures like sentences, noun phrases and verb
phrases (represented by the �rst four patterns in Figure 6) do not contain any
reference to number or gender.

Instead, the grammar contains patterns like `NP SNG SNG #NP' and `N M
V A M' (the last eight patterns in Figure 6). The �rst of these says, in e�ect, that
between the symbols `NP' and `#NP' there are two structures marked as singular
(`SNG'). In this simple grammar, there is no ambiguity about what those two
structures are: they can only be a determiner (`D') followed by a noun (`N').
In a more complex grammar, there would need to be disambiguating context to
establish the `correct' alignments of symbols. The second pattern says, in e�ect,
that in a sentence which contains the (discontinuous) sequence of symbols `N V
A', the noun (`N') is masculine (`M') and the adjective (`A') is also masculine.

796 Wolff J.G.: Syntax, Parsing and Production of Natural Language ...



S NP #NP VP #VP #S (500)
NP D #D N #N #NP (700)
VP 0 V #V A #A #VP (300)
VP 1 V #V P #P NP #NP #VP (200)
P 0 sur #P (50)
P 1 sous #P (150)
V SNG est #V (250)
V PL sont #V (250)
D SNG M 0 le #D (90)
D SNG M 1 un #D (120)
D SNG F 0 la #D (130)
D SNG F 1 une #D (110)
D PL 0 les #D (125)
D PL 1 des #D (125)
N NR #NR NS1 #NS1 #N (450)
NS1 SNG - #NS1 (250)
NS1 PL s #NS1 (200)
NR M papier #NR (300)
NR F plume #NR (400)
A A AR #AR AS1 #AS1 AS2 #AS2 #A (300)
AS1 F e #AS1 (100)
AS1 M - #AS1 (200)
AS2 SNG - #AS2 (175)
AS2 PL s #AS2 (125)
AR 0 noir #AR (100)
AR 1 vert #AR (200)
NP SNG SNG #NP (450)
NP PL PL #NP (250)
NP M M #NP (450)
NP F F #NP (250)
N SNG V SNG A SNG (250)
N PL V PL A PL (250)
N M V A M (300)
N F V A F (400)

Figure 6: A fragment of French grammar with patterns for number dependencies and
gender dependencies.

7.1.1 An alignment

The alignment in Figures 7 and 8 shows the best alignment found by SP61 with
our example sentence in New and the grammar from Figure 6 in Old.5 The
main constituents of the sentence are marked in an appropriate manner and
dependencies for number and gender are marked by patterns appearing in rows
13, 14 and 15 of the alignment.

5 By contrast with the alignments shown in Figures 4 and 5, the alignment in Figures
7 and 8, and all subsequent alignments in this article, were originally created with
spaces between the letters in every word, as in Figures 4 and 5. However, for the sake
of readability (as suggested by one of the referees) and to save space, the alignments
have been prepared again with no spaces within words (except where su�xes need
to be identi�ed as distinct entities within the grammar).

797Wolff J.G.: Syntax, Parsing and Production of Natural Language ...



0 les plume s sont 0

| | | |

1 | | | | 1

| | | |

2 | | | | 2

| | | |

3 | | | | 3

| | | |

4 | | | V PL sont #V 4

| | | | | |

5 | | | VP 0 V | #V 5

| | | | | |

6 | | NS1 PL s #NS1 | | | 6

| | | | | | | |

7 | N NR | #NR NS1 | #NS1 #N | | | 7

| | | | | | | | | |

8 | | NR F plume #NR | | | | | 8

| | | | | | | |

9 D PL 0 les #D | | | | | | | 9

| | | | | | | | | |

10 NP D | #D N | | #N #NP | | | 10

| | | | | | | | |

11 S NP | | | | #NP VP | | 11

| | | | | | | |

12 | | | | | | | | 12

| | | | | | | |

13 NP PL | | PL #NP | | 13

| | | | |

14 N | PL V PL 14

| | |

15 N F V 15

Figure 7: The best alignment found by SP61 with `les plume s sont vert e s' in New
and the grammar from Figure 6 in Old (Part 1).

7.1.2 Discussion

Readers may wonder why, in the example just shown, the pattern `NP PL PL
#NP' is separate from the pattern `N PL V PL A PL'. Why not simply merge
them into something like `NP PL N PL #NP V PL A PL'. The reason for sep-
arating the number dependencies in noun phrases (`NP') from the other num-
ber dependencies is that they do no always occur together. For example, noun
phrases may be found within one of the two verb-phrase (`VP') patterns shown in
Figure 6 (the fourth pattern in the grammar) and this context does not contain
the `N ... V ... A ...' pattern.

Another question that may come to mind is what happens when there are
one or more subordinate clauses between the subject of a sentence and the main
verb of the sentence, and when there are verbs in the subordinate clauses. In
the case of number dependencies between subject and main verb, how can the

798 Wolff J.G.: Syntax, Parsing and Production of Natural Language ...



0 vert e s 0

| | |

1 | AS1 F e #AS1 | 1

| | | | |

2 A A AR | #AR AS1 | #AS1 AS2 | #AS2 #A 2

| | | | | | | | |

3 | AR 1 vert #AR | | | | | 3

| | | | | |

4 | | | | | | 4

| | | | | |

5 A | | | | #A #VP 5

| | | | | |

6 | | | | | | 6

| | | | | |

7 | | | | | | 7

| | | | | |

8 | | | | | | 8

| | | | | |

9 | | | | | | 9

| | | | | |

10 | | | | | | 10

| | | | | |

11 | | | | | #VP #S 11

| | | | |

12 | | AS2 PL s #AS2 12

| | |

13 | | | 13

| | |

14 A | PL 14

| |

15 A F 15

Figure 8: The best alignment found by SP61 with `les plume s sont vert e s' in New
and the grammar from Figure 6 in Old (Part 2).

system distinguish between the main verb and one of the verbs in the subordinate
clauses? There is insu�cient space here for a full answer to this question. In brief,
it seems that this kind of problem can be overcome by providing disambiguating
context in the patterns that express number dependency (see [Wol� 98b]).

These ideas are still relatively new and there is plenty of scope for further
investigation and development.

7.2 Dependencies in the syntax of English auxiliary verbs

This subsection presents a grammar and examples showing how the syntax of
English auxiliary verbs may be described in the ICMAUS framework. Before
the grammar and examples are presented, the syntax of this part of English is
described and alternative formalisms for describing the syntax are brie
y dis-
cussed.

799Wolff J.G.: Syntax, Parsing and Production of Natural Language ...



In English, the syntax for main verbs and the `auxiliary' verbs which may
accompany them follows two quasi-independent patterns of constraint which
interact in an interesting way.

The primary pattern of constraint may be expressed with this sequence of
symbols,

M H B B V,

which should be interpreted in the following way:

{ Each letter represents a category for a single word:

� `M' stands for `modal' verbs like `will', `can', `would' etc.
� `H' stands for one of the various forms of the verb `to have'.
� Each of the two instances of `B' stands for one of the various forms of
the verb `to be'.

� `V' stands for the main verb which can be any verb except a modal verb
(except, arguably, when it occurs by itself).

{ The words occur in the order shown but any of the words may be omitted.
{ Questions of `standard' form follow exactly the same pattern as statements
except that the �rst verb, whatever it happens to be (`M', `H', the �rst `B',
the second `B' or `V'), precedes the subject noun phrase instead of following
it.

Here are two examples of the primary pattern with all of the words included:

It will have been being washed
M H H B V

Will it have been being washed?
M H H B V

The secondary constraints are these:

{ Apart from the modals, which always have the same form, the �rst verb in
the sequence, whatever it happens to be (`H', the �rst `B', the second `B'
or `V'), always has a `�nite' form (the form it would take if it were used by
itself with the subject).

{ If an `M' auxiliary verb is chosen, then whatever follows it (`H', �rst `B',
second `B', or `V') must have an `in�nitive' form (i.e., the `standard' form
of the verb as it occurs in the context `to ...', but without the word `to').

{ If an `H' auxiliary verb is chosen, then whatever follows it (the �rst `B', the
second `B' or `V') must have a past tense form such as `been', `seen', `gone',
`slept', `wanted' etc. In Chomsky's Syntactic Structures [Chomsky 57], these
forms were characterised as en forms and the same convention has been
adopted here.

{ If the �rst of the two `B' auxiliary verbs is chosen, then whatever follows
it (the second `B' or `V') must have an ing form, e.g., `singing', `eating',
`having', `being' etc.

{ If the second of the two `B' auxiliary verbs is chosen, then whatever follows
it (only the main verb is possible now) must have a past tense form (marked
with en as above).

800 Wolff J.G.: Syntax, Parsing and Production of Natural Language ...



{ The constraints apply to questions in exactly the same way as they do to
statements.

Figure 9 shows a selection of examples with the dependencies marked.

H------en B2---------en
---- -- -- --

It will have been being washed
---- ---- -- --- ----
M----inf B1------ing V

B1------ing
-- ---

Will he be talking?
---- -- ----
M-------inf V

V
------

They have finished
---- --
H----------en

fin

Are they gone?
--- ----
B2----------en
fin V

B1--------ing
-- ---

Has he been working?
--- -- ----
H---------en V

fin

Figure 9: A selection of example sentences in English with markings of dependencies
between the verbs. Key: M = modal, H = forms of the verb `have', B1 = �rst instance
of a form of the verb `be', B2 = second instance of a form of the verb `be', V = main
verb, �n = a �nite form, inf = an in�nitive form, en = a past tense form, ing = a verb
ending in `ing'.

7.2.1 Transformational grammar and English auxiliary verbs

In Figure 9 it can be seen that in many cases but not all, the dependencies which
have been described may be regarded as discontinuous because they connect one

801Wolff J.G.: Syntax, Parsing and Production of Natural Language ...



word in the sequence to the su�x of the following word thus bridging the stem
of the following word. Three instances of this discontinuous kind of dependency
can be seen in the �rst example in the �gure.

In Syntactic Structures, [Chomsky 57] showed that this kind of regularity in
the syntax of English auxiliary verbs could be described using Transformational
Grammar (TG). For each pair of symbols linked by a dependency (`M inf', `H
en', `B1 ing', `B2 en') the two symbols could be shown together in the `deep
structure' of a sentence and then moved into their proper position or modi�ed
in form (or both) using `transformational rules'.

This elegant demonstration argued persuasively in favour of TG compared
with alternatives which were available at that time. However, later research has
shown that the same kinds of regularities in the syntax of English auxiliary
verbs can be described quite well without recourse to transformational rules,
using De�nite Clause Grammars (DCGs) or other systems which do not use
that type of rule (see, for example, [Pereira and Warren 80, Gazdar 89]). An
example showing how English auxiliary verbs may be described using the DCG
formalism may be found in [Wol� 87, pp. 183-184]).

7.2.2 English auxiliary verbs in the ICMAUS framework

Figures 10 and 11 show an `ICMAUS' grammar for English auxiliary verbs which
exploits several of the ideas described earlier in this article. Figure 12, Figures
13 and 14, and Figure 15 show the best alignments in terms of IC for three
di�erent sentences produced by the SP61 model using this grammar. In the
following paragraphs, aspects of the grammar and of the examples are described
and discussed.

S ST NP #NP X1 #X1 XR #S (3000)
S Q X1 #X1 NP #NP XR #S (2000)
NP SNG it #NP (4000)
NP PL they #NP (1000)
X1 0 V M #V #X1 XR XH XB XB XV #S (1000)
X1 1 XH FIN #XH #X1 XR XB XB XV #S (900)
X1 2 XB1 FIN #XB1 #X1 XR XB XV #S (1900)
X1 3 V FIN #V #X1 XR #S (900)
XH V H #V #XH XB #S (200)
XB XB1 #XB1 XB #S (300)
XB XB1 #XB1 XV #S (300)
XB1 V B #V #XB1 (500)
XV V #V #S (5000)
M INF (2000)
H EN (2400)
B XB ING (2000)
B XV EN (700)
SNG SNG (2500)
PL PL (2500)

Figure 10: A grammar for the syntax of English auxiliary verbs (Part 1).

802 Wolff J.G.: Syntax, Parsing and Production of Natural Language ...



V M 0 will #V (2500)
V M 1 would #V (1000)
V M 2 could #V (500)
V H INF have #V (600)
V H PL FIN have #V (400)
V H SNG FIN has #V (200)
V H EN had #V (500)
V H FIN had #V (300)
V H ING hav ING1 #ING1 #V (400)
V B SNG FIN 0 is #V (500)
V B SNG FIN 1 was #V (400)
V B INF be #V (400)
V B EN be EN1 #EN1 #V (600)
V B ING be ING1 #ING1 #V (700)
V B PL FIN 0 are #V (300)
V B PL FIN 1 were #V (500)
V FIN wrote #V (166)
V INF 0 write #V (254)
V INF 1 chew #V (138)
V INF 2 walk #V (318)
V INF 3 wash #V (99)
V ING 0 chew ING1 #ING1 #V (623)
V ING 1 walk ING1 #ING1 #V (58)
V ING 2 wash ING1 #ING1 #V (102)
V EN 0 made #V (155)
V EN 1 brok EN1 #EN1 #V (254)
V EN 2 tak EN1 #EN1 #V (326)
V EN 3 lash ED #ED #V (160)
V EN 4 clasp ED #ED #V (635)
V EN 5 wash ED #ED #V (23)
ING1 ing #ING1 (1883)
EN1 en #EN1 (1180)
ED ed #ED (818)

Figure 11: A grammar for the syntax of English auxiliary verbs (Part 2).

7.2.3 The primary constraints

The �rst line in the grammar is a sentence pattern for a statement (marked with
the symbol `ST') and the second line is a sentence pattern for a question (marked
with the symbol `Q'). Apart from these markers, the only di�erence between the
two patterns is that, in the statement pattern, the symbols `X1 #X1' follow the
noun phrase symbols (`NP #NP'), whereas in the question pattern they precede
the noun phrase symbols. As can be seen in the examples in Figure 12, Figures 13
and 14, and Figure 15, the pair of symbols, `X1 #X1', has the e�ect of selecting
the �rst verb in the sequence of auxiliary verbs and ensuring its correct position
with respect to the noun phrase. In Figure 12 it follows the noun phrase, while
in Figures 13 and 14, and Figure 15 it precedes the noun phrase.

Each of the next four patterns in the grammar have the form `X1 ... #X1
XR ... #S'. The symbols `X1' and `#X1' align with the same pair of symbols
in the sentence pattern. The symbols `XR ... #S' encode the remainder of the

803Wolff J.G.: Syntax, Parsing and Production of Natural Language ...



0 it is 0
| |

1 | | 1
| |

2 | | 2
| |

3 | | 3
| |

4 | B | 4
| | |

5 | V B SNG FIN 0 is #V 5
| | | | | |

6 | XB1 V B | | #V #XB1 6
| | | | |

7 | X1 2 XB1 | FIN #XB1 #X1 XR XB 7
| | | | |

8 NP SNG it #NP | | | | 8
| | | | | | |

9 S ST NP | #NP X1 | #X1 XR 9
| |

10 SNG SNG 10

0 wash ed 0
| |

1 V EN 5 wash ED | #ED #V 1
| | | | | |

2 | | ED ed #ED | 2
| | |

3 XV V | #V #S 3
| | |

4 XV EN | 4
| |

5 | | 5
| |

6 | | 6
| |

7 XV #S 7
|

8 | 8
|

9 #S 9

10 10

Figure 12: The best alignment found by SP61 with `it is wash ed' in New and the
grammar from Figures 10 and 11 in Old.

804 Wolff J.G.: Syntax, Parsing and Production of Natural Language ...



0 will it have 0

| | |

1 | | | 1

| | |

2 | | | 2

| | |

3 | | | 3

| | |

4 | | | 4

| | |

5 | | | 5

| | |

6 | | | 6

| | |

7 V M 0 will #V | | 7

| | | | |

8 X1 0 V M #V #X1 | XR XH | XB 8

| | | | | | | |

9 | | | NP SNG it #NP | | | | 9

| | | | | | | | |

10 S Q X1 | #X1 NP #NP XR | | | 10

| | | |

11 | | V H INF have #V | 11

| | | | | | |

12 | XH V H | #V #XH XB 12

| | |

13 | | | 13

| | |

14 M | INF 14

|

15 H 15

16 16

Figure 13: The best alignment found by SP61 with `will it have be en brok en' in New
and the grammar from Figures 10 and 11 in Old (Part 1).

sequence of verbs.
The �rst `X1' pattern encodes verb sequences which start with a modal verb

(`M'), the second one is for verb sequences beginning with a �nite form of the
verb `have' (`H'), the third is for sequences beginning with either of the two
`B' verbs in the primary sequence (see below), and the last `X1' pattern is for
sentences which contain a main verb without any auxiliaries.

In the �rst of the `X1' patterns, the subsequence `XR ... #S' encodes the
remainder of the sequence of auxiliary verbs using the symbols `XH XB XB
XV'. In a similar way, the subsequence `XR ... #S' within each of the other `X1'
patterns encodes the verbs which follow the �rst verb in the sequence.

Notice that the pattern `X1 2 XB1 FIN #XB1 #X1 XR XB XV #S' can
encode sentences which start with the �rst `B' verb and also contains the second

805Wolff J.G.: Syntax, Parsing and Production of Natural Language ...



0 be en brok en 0

| | | |

1 | EN1 en #EN1 | | 1

| | | | |

2 V B EN be EN1 #EN1 #V | | 2

| | | | | |

3 XB1 V B | #V #XB1 | | 3

| | | | | |

4 | | | | V EN 1 brok EN1 | #EN1 #V 4

| | | | | | | | | |

5 | | | | XV V | | | | #V #S 5

| | | | | | | | | |

6 XB XB1 | | #XB1 XV | | | | #S 6

| | | | | | | | |

7 | | | | | | | | | 7

| | | | | | | | |

8 XB | | XV | | | | #S 8

| | | | | | | |

9 | | | | | | | | 9

| | | | | | | |

10 | | | | | | | #S 10

| | | | | | | |

11 | | | | | | | | 11

| | | | | | | |

12 | | | | | | | #S 12

| | | | | | |

13 | | | | EN1 en #EN1 13

| | | |

14 | | | | 14

| | | |

15 | EN | | 15

| | |

16 B XV EN 16

Figure 14: The best alignment found by SP61 with `will it have be en brok en' in New
and the grammar from Figures 10 and 11 in Old (Part 2).

`B' verb. And it also serves for any sentence which starts with the �rst or the
second `B' verb with the omission of the other `B' verb. In the latter two cases,
the `slot' between the symbols `XB' and `XV' is left vacant. Figure 12 illustrates
the case where the verb sequence starts with the �rst `B' verb with the omission
of the second `B' verb. Figure 15 illustrates the case where the verb sequence
starts with the second `B' verb (and the �rst `B' verb has been omitted).

7.2.4 The secondary constraints

The secondary constraints are represented using the patterns `M INF', `H EN',
`B XB ING' and `B XV EN'. Singular and plural dependencies are marked in a
similar way using the patterns `SNG SNG' and `PL PL'.

806 Wolff J.G.: Syntax, Parsing and Production of Natural Language ...



0 are they 0
| |

1 | | 1
| |

2 | | 2
| |

3 | | 3
| |

4 | NP PL they #NP 4
| | | |

5 S Q X1 | #X1 NP | #NP 5
| | | |

6 X1 2 XB1 FIN | #XB1 #X1 | 6
| | | | |

7 | V B PL FIN 0 are #V | | 7
| | | | | | |

8 XB1 V B | #V #XB1 | 8
| | |

9 | PL PL 9
|

10 B 10

0 walk ing 0
| |

1 V ING 1 walk ING1 | #ING1 #V 1
| | | | | |

2 | | ING1 ing #ING1 | 2
| | |

3 XV V | #V #S 3
| | |

4 | | | 4
| | |

5 XR | | #S 5
| | | |

6 XR XB XV | #S 6
| |

7 | | 7
| |

8 | | 8
| |

9 | | 9
| |

10 XB ING 10

Figure 15: The best alignment found by SP61 with `are they walk ing' in New and the
grammar from Figures 10 and 11 in Old.

807Wolff J.G.: Syntax, Parsing and Production of Natural Language ...



Examples appear in all three alignments in Figure 12, Figures 13 and 14,
and Figure 15. In every case except one (row 4 in Figure 12), the patterns
representing secondary constraints appear in the bottom rows of the alignment.
These examples show how dependencies bridging arbitrarily large amounts of
structure, and dependencies that overlap each other, can be represented with
simplicity and transparency in the medium of multiple alignments.

Notice, for example, how dependencies between the �rst and second verb in a
sequence of auxiliary verbs are expressed in the same way regardless of whether
the two verbs lie side by side (e.g., the statement in Figure 12) or whether they
are separated from each other by the subject noun-phrase (e.g., the question
in Figures 13 and 14 and the question in Figure 15). Notice, again, how the
overlapping dependencies in Figures 13 and 14 and their independence from
each other are expressed with simplicity and clarity in the ICMAUS framework.

Readers may wonder why the two patterns representing dependencies be-
tween a `B' verb and whatever follows it (`B XB ING' and `B XV EN') contain
three symbols rather than two. One reason is that, when two (or more) patterns
begin with the same symbol (or sequence of symbols), the scoring method for
evaluating alignments requires that the two patterns can be distinguished from
each other by one (or more) symbols in each pattern which does not include
the terminal symbol in each pattern. A second reason is that the second symbol
in each pattern helps to determine whether the `B' at the start of the pattern
corresponds to the �rst or the second `B' verb in the primary sequence:

{ `B XB ING'. The inclusion of `XB' in this pattern means that the `B' verb
is the �rst of the two `B' verbs in the primary sequence and the following
verb must be `ING'.

{ `B XV EN'. The inclusion of `XV' in this pattern means that the `B' verb
may be the �rst or the second of the two `B' verbs. However, since the �rst
case is already covered by 'B XB ING', this pattern covers the constraint
between the second `B' verb and verbs of the category `EN'.

8 Discussion and Conclusion

This section considers brie
y a selection of topics relating to the development of
these ideas.

8.1 Other examples

In the space available, it has not been possible to show more than a small se-
lection of examples. Additional example may be found in [Wol� 98a, Wol� 98b]
showing: how the system can �nd alternative parsings when there are ambiguities
in the text being parsed; how recursive structures in syntax can be parsed; how
the provision of appropriate context can resolve ambiguities when discontinuous
dependencies of one type are nested, one within another; and one possible way
in which `cross-serial dependencies' in syntax may be represented and parsed in
the ICMAUS framework.

Other examples showing how the system can handle recursive structures in
syntax may be found in [Wol� 99a].

808 Wolff J.G.: Syntax, Parsing and Production of Natural Language ...



8.2 Parsing and learning

As was noted in Section 1.2, much of the thinking in this research programme
is based on an earlier programme of research into the unsupervised learning
of linguistic structures [Wol� 91, Wol� 88, Wol� 82]. The ICMAUS framework
and the SP61 model have been developed with the express intention that they
should accommodate inductive learning and integrate it in a seamless manner
with other capabilities of the model.

It is envisaged that the framework will be developed so that, when New infor-
mation is received that cannot be uni�ed fully with patterns in Old, the patterns
or parts of patterns in New which do not unify with existing patterns in Old will
be simply added to Old with system-generated code symbols where appropriate.
By hypothesis in this research programme, the process of adding New knowl-
edge to Old in a manner which minimises redundancy (as far as is practically
possible) will capture the essentials of unsupervised inductive learning.

Development of the ICMAUS framework to incorporate inductive learning in
this way is currently in progress.

8.3 Potential advantages of using patterns to represent knowledge

In this research, `patterns' have been adopted as the medium for representing
knowledge:

{ Because they seem to o�er a good prospect of providing a `universal' medium
for representing diverse kinds of knowledge.

{ For similar reasons, `patterns' seem to lend themselves to the representation
of knowledge at both `concrete' and `abstract' levels of abstraction.

{ For these reasons, the use of patterns may facilitate the seamless integration
of diverse kinds of knowledge over a wide range of abstractions.

{ Likewise, the use of patterns may facilitate the development of a learning
system that can operate freely with diverse kinds of knowledge over a wide
range of abstractions.

8.4 Integration and generalisation

If, as suggested in Section 1.2, both linguistic and non-linguistic structures may
be accommodated naturally within the ICMAUS framework, then grammars
of the kind shown previously may, at some stage, be extended seamlessly to
include the `meanings' of syntactic forms. Parsing and production of language
as described here should generalise without radical reorganisation to a more
rounded model of language understanding and production of language which
includes meanings.

In a similar way, the potential of the system noted in Section 1.2 to accom-
modate other aspects of `intelligence' such as probabilistic and other kinds of
reasoning, best-match pattern recognition and inductive learning suggests po-
tential in the system for the eventual integration of natural language processing
with non-linguistic `intelligence' of various kinds.

809Wolff J.G.: Syntax, Parsing and Production of Natural Language ...



8.5 Conclusion

In this article I have tried to show informally with examples how the represen-
tation of natural language syntax and the parsing and production of natural
language may be understood as ICMAUS.

A novel feature of these proposals is the super�cially paradoxical idea that
a single process of information compression by multiple alignment, uni�cation
and search may achieve both the encoding and the decoding of information, both
the analysis and the production of sentences. This is not simply a gimmick: in
practical terms it o�ers the prospect that one search engine may be used for both
purposes and it o�ers a theoretical bonus in extending the explanatory range of
the model without the need for any ad hoc additions or modi�cations.

The suggested method of representing the syntax of natural language ap-
pears to be simpler and more direct than existing methods. This method may
have bene�ts in the creation of hand-crafted grammars for natural languages.
Perhaps more signi�cantly, it may simplify the automatic learning of grammars
for natural languages which is envisaged in the further development of these
ideas.

In general, an important motivation for further development of these ideas
is the potential which they o�er for the integration of parsing and production
of language with other aspects of computing including unsupervised learning,
deductive and probabilistic inference, (fuzzy) pattern recognition, (fuzzy) in-
formation retrieval and others. In the broadest terms, the aim of this research
programme and a touchstone for its success or failure is the development of a
model which exhibits a favourable combination of conceptual simplicity with
explanatory or descriptive power.

Acknowledgements

I am grateful to Prof. C. S Wallace of Monash University for discussion of some
of the ideas presented in this article, to Dr Chris Mellish of the Deparment of
Arti�cial Intelligence (Division of Informatics), University of Edingburgh, for
useful comments and advice, and to Dr. Tim Porter and Mr. John Hornsby both
of the School of Informatics, University of Wales at Bangor, for constructive
comments on an earlier version of this article. I am grateful also to James Crook
of Dublin for positive comments and constructive suggestions about these ideas.

References

[Abney 97] Abney, S. P.: \Stochastic attribute-value grammars"; Computational Lin-
guistics, 23, 4 (1997) 597-618.

[Allison and Wallace 94] Allison, L. and Wallace, C. S.: \The posterior probability
distribution of alignments and its application to parameter estimation of evolutionary
trees and to optimization of multiple alignments"; Journal of Molecular Evolution,
39 (1994) 418-430.

[Allison et al. 92] Allison, L, Wallace, C. S. and Yee, C. N.: \Finite-state models in
the alignment of macromolecules"; Journal of Molecular Evolution, 35 (1992) 77-89.

[Barton 90] Barton G. J.: \Protein Multiple Sequence Alignment and Flexible Pattern
Matching"; Methods in Enzymology, 183 (1990) 403-428.

810 Wolff J.G.: Syntax, Parsing and Production of Natural Language ...



[Belloti and Gammerman 96] Belloti, T. and Gammerman, A.; \Experiments in solv-
ing analogy problems using Minimal Length Encoding"; Presented at Applied Deci-
sion Technologies '95, Brunel University, April 1995. Proceedings of Stream 1, Com-
putational Learning and Probabilistic Reasoning (1996) 209-220).

[Berger et al. 96] Berger, A. L., Della Pietra, S. A. and Della Pietra, V. J.: \A maxi-
mum entropy approach to natural language processing"; Computational Linguistics,
22, 1 (1996) 39-71.

[Black et al. 93] Black, E., Garside, R. and Leech, G. (Eds.): Statistically-driven
computer grammars of English: the IBM/Lancaster approach; Rodopi, Amsterdam
(1993).

[Chan et al. 92] Chan, S. C., Wong, A. K. C. and Chiu, D. K. Y. A.: \Survey of
Multiple Sequence Comparison Methods"; Bulletin of Mathematical Biology, 54, 4
(1992) 563-598.

[Cheeseman 90] Cheeseman, P.: \On �nding the most probable model". In J. Strager
and P. Langley (Eds.) Computational models of scienti�c discovery and theory for-
mation, Chapter 3, Morgan Kaufmann, San Mateo, California, (1990) 73-95.

[Chomsky 57] Chomsky, N.: Syntactic Structures; Mouton, The Hague (1957).
[Cover and Thomas 91] Cover, T. M. and Thomas, J. A.: Elements of Information
Theory; John Wiley, New York (1991).

[Day and McMorris 92] Day, W. H. E. and McMorris, F. R.: \Critical Comparison of
Consensus Methods for Molecular Sequences"; Nucleic Acids Research, 20, 5 (1992)
1093-1099.

[Dreuth and Ruber 97] Dreuth, E. W. and Ruber B.: \Context-dependent probability
adaptation in speech understanding"; Computer Speech and Language, 11 (1997) 225-
252.

[Felsenstein 81] Felsenstein, J.: \Evolutionary trees from DNA sequences: a maximum
likelihood approach"; Journal of Molecular Evolution, 17 (1981) 368-376.

[Gammerman 91] Gammerman, A. J.: \The representation and manipulation of the
algorithmic probability measure for problem solving"; Annals of Mathematics and
Arti�cial Intelligence, 4 (1991) 281-300.

[Garside et al. 87] Garside, R., Leech, G. and Sampson, G. (Eds.): The Computational
Analysis of English: A Corpus-Based Approach; Longman, London (1987).

[Gazdar 89] Gazdar, G. and Mellish, C.: Natural Language Processing in Prolog.
Addison-Wesley, Wokingham (1989).

[Hu et al. 97] Hu, J., Turin, W. and Brown, M. K.: \Language modelling using stochas-
tic automata with variable length contexts"; Computer Speech and Language, 11
(1997) 1-6.

[Li and Vitanyi 93] Li, M. and Vitanyi, P.: An Introduction to Kolmogorov Complexity
and Its Applications. Springer-Verlag, New York (1993).

[Lowry 89] Lowry, R.: The Architecture of Chance; Oxford University Press, Oxford
(1989).

[Lucke 95] Lucke, H: \Bayesian belief networks as a tool for stochastic parsing"; Speech
Communication, 16 (1995) 89-118.

[Pednault 91] Pednault, E. P. D.: \Minimal-length encoding and inductive inference".
In G. Piatetsky-Shapiro and W. J. Frawley (eds.), Knowledge Discovery in Databases;
MIT Press, Cambridge Mass (1991).

[Pereira and Warren 80] Pereira, F. C. N. and Warren, D. H. D.: \De�nite Clause
Grammars for language analysis - a survey of the formalism and a comparison with
augmented transition networks"; Arti�cial Intelligence, 13 (1980) 231-278.

[Reichert et al. 73] Reichert, T. A., Cohen, D. N. and Wong, A. K. C.: \An applica-
tion of information theory to genetic mutations and the matching of polypeptide
sequences"; Journal of Theoretical Biology, 42 (1973) 245-261.

[Rissanen 78] Rissanen, J.: \Modelling by the shortest data description"; Automatica-
J., IFAC 14 (1978) 465-471.

811Wolff J.G.: Syntax, Parsing and Production of Natural Language ...



[Solomono� 64] Solomono�, R. J.: \A formal theory of inductive inference, parts I and
II"; Information and Control, 7 (1964) 1-22 and 224-254.

[Storer 88] Storer, J. A.: Data Compression: Methods and Theory; Computer Science
Press, Rockville, Maryland (1988).

[Takahashi and Sagayama 97] Takahashi, J. and Sagayama, S.: \Vector-�eld smoothed
Bayesian learning for fast and incremental speaker/telephone-channel adaptation";
Computer Speech and Language, 11 (1997) 127-146.

[Taylor 88] Taylor, W. R.: \Pattern matching methods in protein sequence comparison
and structure prediction"; Protein Engineering, 2, 2 (1988) 77-86.

[Wagner and Fischer 74] Wagner, R. A. and Fischer, M. J.: \The string-to-string cor-
rection problem"; Journal of the ACM, 21, 1 (1974) 168-173.

[Wallace and Boulton 68] Wallace, C. S. and Boulton, D. M.: \An information measure
for classi�cation"; Computer Journal, 11, 2 (1968) 185-195.

[Wol� 00] Wol�, J. G.: \Mathematics and logic as information compression by
multiple alignment, uni�cation and search"; School of Informatics Report, March
2000. A copy may be obtained from
http://www.sees.bangor.ac.uk/~gerry/sp summary.html#maths logic.

[Wol� 99a] Wol�, J. G.: \`Computing' as information compression by multiple
alignment, uni�cation and search"; Journal of Universal Computer Science, 5, 11
(1999a) 777-815. A copy may be obtained from
http://www.jucs.org/jucs 5 11/computing as information compression.

[Wol� 99b] Wol�, J. G.: \Probabilistic reasoning as information compression by
multiple alignment, uni�cation and search: an introduction and overview"; Journal
of Universal Computer Science, 5, 7 (1999b) 417-472. A copy may be obtained
from: http://www.jucs.org/jucs 5 7/probabilistic reasoning as information. The
three articles on which this article is based may be obtained from
http://www.iicm.edu/wol�/1998a, b, c.

[Wol� 98a] Wol�, J. G.: \Parsing as information compression by multiple alignment,
uni�cation and search: SP52"; SEECS Report, February 1998. A copy may be ob-
tained from: http://www.iicm.edu/wol�/1998e.

[Wol� 98b] Wol�, J. G.: \Parsing as information compression by multiple alignment,
uni�cation and search: examples"; SEECS Report, February 1998. A copy may be
obtained from: http://www.iicm.edu/wol�/1998f.

[Wol� 98c] Wol�, J. G.: \Probabilistic reasoning as information compression by
multiple alignment, uni�cation and search"; SEECS Report, December 1998. A
copy may be obtained from:
http://www.sees.bangor.ac.uk/~gerry/sp summary.html#PrbRs.

[Wol� 97] Wol�, J. G.: \Causality, statistical learning and multiple alignment"; Paper
presented at the UNICOM Seminar and Tutorial on Causal Models and Statistical
Learning, London, March 1997.

[Wol� 96] Wol�, J. G.: \Learning and reasoning as information compression by mul-
tiple alignment, uni�cation and search"; In: A. Gammerman (ed.), Computational
Learning and Probabilistic Reasoning, Wiley, Chichester (1996) 67-83. An earlier ver-
sion was presented at Applied Decision Technologies '95, Brunel University, April
1995 (Proceedings of Stream 1, Computational Learning and Probabilistic Reasoning
223-236).

[Wol� 95a] Wol�, J. G.: \Computing as compression: an overview of the SP theory
and system"; New Generation Computing, 13 (1995) 187-214.

[Wol� 95b] Wol�, J. G.: \Computing as compression: SP20"; New Generation Com-
puting 13 (1995) 215-241.

[Wol� 94a] Wol�, J. G.: \A scaleable technique for best-match retrieval of sequen-
tial information using metrics-guided search"; Journal of Information Science, 20, 1
(1994a) 16-28.

[Wol� 94b] Wol�, J. G.: \Towards a new concept of software"; Software Engineering
Journal, 9, 1 (1994b) 27-38.

812 Wolff J.G.: Syntax, Parsing and Production of Natural Language ...



[Wol� 94c] Wol�, J. G.: \Computing and information compression: a reply"; AI Com-
munications, 7, 3/4 (1994c) 203-219.

[Wol� 93] Wol�, J. G.: \Computing, cognition and information compression"; AI Com-
munications, 6, 2 (1993) 107-127.

[Wol� 91] Wol�, J. G.: Towards a Theory of Cognition and Computing; Ellis Horwood,
Chichester (1991).

[Wol� 90] Wol�, J. G.: \Simplicity and power: some unifying ideas in computing";
Computer Journal, 33, 6 (1990) 518-534.

[Wol� 88] Wol�, J. G.: \Learning syntax and meanings through optimization and dis-
tributional analysis"; In Y. Levy, I. M. Schlesinger and M. D. S. Braine (Eds.),
Categories and Processes in Language Acquisition; Lawrence Erlbaum, Hillsdale, NJ
(1988). Reprinted in Chapter 2 of [Wol� 91].

[Wol� 87] Wol�, J. G.: \Cognitive development as optimisation"; In L. Bolc (Ed.),
Computational Models of Learning, Springer-Verlag, Heidelberg (1987) pp. 161-205.

[Wol� 82] Wol�, J. G.: \Language acquisition, data compression and generalization";
Language and Communication, 2 (1982) 57-89. Reprinted in Chapter 3 of [Wol� 91].

[Wu 97] Wu, D.: \Stochastic inversion transduction grammars and bilingual parsing
of parallel corpora"; Computational Linguistics, 23, 3 (1997) 377-403.

A De�nitions of terms

A.1 `Symbol'

A symbol is some kind of mark which can be compared with any other symbol.
In the context of pattern matching, a symbol is the smallest unit which can
participate in matching: a symbol can be compared (matched) only with another
single symbol and the result of matching is either that the two symbols are the
same or that they are di�erent. No other result is permitted.

An important feature of the concept of a symbol, as it is used in this research,
is that, with one quali�cation, it has no hidden meaning. In this research, a
symbol is a primitive mark which can be discriminated in a yes/no manner from
other symbols. There are no symbols like the symbols in an arithmetic function
(e.g., `6', `22', `+', `-', `�', `/', `(`, `)' etc), each of which has a meaning for the
user which is not directly visible.

The one quali�cation to the slogan \no hidden meaning" is that it seems
necessary to allow the system to make a distinction, relative to each pattern,
between symbols that are `code' for that pattern and symbols that are `data'
or `contents' for the pattern. Labels like `code' or `data' re
ect operations of
the system itself (or some comparable system in the past) and may therefore
be regarded as distinct from `user-oriented' meanings that are intrinsic to the
material being processed.

For any given symbol (or group of symbols), it is possible to express meanings
of this latter kind but those meanings must take the form of one or more addi-
tional symbols which are associated with the given symbol (or group of symbols)
and are thus explicit and visible within the structure of symbols and patterns.

A.1.1 `Symbol type' and `alphabet'

If two symbols match, we say that they belong to the same symbol type. In any
system which contains symbols, we normally recognise an alphabet of symbol
types such that every symbol in the system belongs in one and only one of the

813Wolff J.G.: Syntax, Parsing and Production of Natural Language ...



symbol types in the alphabet, and every symbol type is represented at least once
in the system.

A.1.2 `Hit' and `gap'

A positive match between two symbols is termed a hit. In any given pattern in
an alignment of two more patterns, one or more unmatched symbols between
two hits in the pattern or before the �rst or after the last hit is termed a gap.

A.2 `Pattern'

A pattern is an array of symbols in one, two or more dimensions. In this article,
one dimensional patterns (sequences or strings of symbols) are the main focus of
attention.

The meaning of the term pattern includes the meanings of the terms substring
and subsequence, de�ned next.

A.3 `Substring'

A substring is a sequence of symbols of length n within a sequence of length m,
where n 6 m and where the constituent symbols in the substring are contiguous
within the sequence which contains the substring.

A.4 `Subsequence'

A subsequence is a sequence of symbols of length n within a sequence of length
m, where n 6 m and where the constituent symbols in the subsequence may not
be contiguous within the sequence which contains the subsequence. The set of
all subsequences of a given sequence includes all the substrings of that sequence.

A.5 `Alignment'

In the case of one-dimensional patterns,6 an alignment is a two-dimensional
array of one or more sequences of symbols, each one in a separate row in the
array. The alignment shows sets of two or more matching symbols by arranging
the symbols in each set in a column of the array.7 In an alignment, as de�ned
in this research:

{ Symbols which are contiguous in a pattern which appears in an alignment,
need not occupy contiguous cells in the array.

{ Any one pattern may appear zero or more times in an alignment.

6 As previously noted, the concept of an alignment may be generalised to patterns of
two or more dimensions. But no attempt is made here to provide a formal de�nition
for alignments of patterns of two dimensions or higher.

7 The fact that, in displaying alignments, it can sometimes be convenient to put non-
matching symbols in the same column with lines to mark the symbols that do match
(as in Figure 1) is not relevant to the abstract de�nition of an alignment presented
here.

814 Wolff J.G.: Syntax, Parsing and Production of Natural Language ...



{ Where a pattern appears two or more times in an alignment, no symbol in
one appearance of the pattern should ever be shown as matching the same
symbol in another appearance of the pattern.

{ Any symbol in one pattern may be placed in the same column as any other
symbol from the same pattern or another pattern, providing order constraints
are not violated.

For any alignment, order constraints are preserved if the following state-
ment is always true:

For any two rows in the alignment, A and B, and any four symbols, A1

and A2 in A, and B1 and B2 in B, if A1 is in the same column as B1,
and if A2 is in the same column as B2, and if A2 in A follows A1 in A,
then B2 in B must follow B1 in B.

This condition holds when the two rows contain two di�erent patterns and also
when the two rows contain two appearances of one pattern.

A.6 `Mismatch'

A mismatch in an alignment occurs when, between two columns in the align-
ment containing hits, or between one column containing hits and the beginning
or end of the alignment, there are no other columns containing hits and there are
two more columns containing single symbols from two or more di�erent patterns
in Old.

B Evaluation of an alignment in terms of compression

Section 4 described in outline how, in the ICMAUS scheme, an alignment is
evaluated in terms of compression. This section provides more detail.

As explained earlier, an alignment and its uni�cation is interpreted as a
means of encoding New or part of New in terms of patterns in Old. If New
(the sentence to be parsed) or part of New is matched by a pattern in Old (the
grammar) then code symbols from that pattern may be used as an abbreviated
description of that part of New.

By contrast with standard compression methods, each code serves a dual role:
to identify the corresponding pattern uniquely within the grammar, and to mark
the left and right ends of the pattern. For present purposes, the second role is
required to remove the ambiguity which would otherwise exist about left-to-right
sequencing of symbols in alignments.

As noted in Section 4, the coding principle may be applied through two
or more `levels' so that the symbols which encode a sequence of two or more
patterns at one level may themselves be recognised as an instance of a recurrent
pattern which has its own code at the next higher level. Examples will be seen
below.

A key point in this connection is that a recurrent pattern may be discontin-
uous in the sense that the symbols in the pattern are not necessarily contiguous
as they appear in any or all of its occurrences. In other words, a recurrent pat-
tern may appear as a subsequence within larger patterns. Thus, for example, a

815Wolff J.G.: Syntax, Parsing and Production of Natural Language ...



sequence of symbols like `A B C D E F' may be recognised as a recurrent pattern
within a set of instances which includes patterns like `P A B Q C R D E F S',
`A L B C D M N E F O P', `X A B C D Y E F Z' and so on.

In what follows (Appendices B.1 to B.5), I shall �rst give an informal expla-
nation of the method of calculating the compression associated with any align-
ment using the example shown in Figure 4. Then the principles embodied in the
method are discussed in Appendix B.6 and a formal summary of the method is
presented in Appendix B.7.

B.1 Encoding individual symbols

The simplest way to encode individual symbols in the sentence and the grammar
is with a `block' code using a �xed number of bits for each symbol. In the
grammar in Figure 3, there are 24 symbol types so the minimum number of bits
required for each symbol is dlog224e = 5 bits per symbol.

In fact, the SP61 model (described in Section 5) uses variable-length codes
for symbols, assigned in accordance with the Shannon-Fano-Elias (S-F-E) cod-
ing scheme (described by [Cover and Thomas 91]) so that the shortest codes
represent the most frequent symbols and vice versa.

Notice that the number of bits required for each symbol is entirely indepen-
dent of the number of characters in the name of the symbol as it is shown in the
examples. Names of symbols are chosen purely for their mnemonic value and to
aid comprehension.

There are many variations and re�nements that may be made at this level
but, in general, the choice of coding system for individual symbols is not critical
for the principles to be described below where the focus of interest is the ex-
ploitation of redundancy which may be attributed to sequences of two or more
symbols rather than any redundancy attributed to unbalanced frequencies of
individual symbols.

For reasons which are given in Section 6.1 connected with the decoding of in-
formation, the code for each symbol has two di�erent sizes (in bits): a `minimum
cost' which is the theoretical minimum number of bits needed to represent that
symbol according to the S-F-E calculations, and an `actual cost' which is the
(larger) number of bits that are needed to allow robust decoding of information
as well as encoding.

In the following informal description of the encoding principles, the distinc-
tion between the `minimum cost' and the `actual cost' of each symbol is not
important and will be ignored. For the sake of simplicity in this presentation, it
will be assumed that all symbols are encoded with the same number of bits so
that `one symbol' can be treated as the minimum unit of information.

B.2 Encoding words

As explained in Section 4, a word like `t h i s' in the grammar shown in Figure
3 may be encoded as `D 0 #D', In a similar way, the word `l o v e s' may be
encoded as `V 0 #V' and likewise for the other words. In all cases except `b o
y', there is a modest saving of one or two symbols for each word.

816 Wolff J.G.: Syntax, Parsing and Production of Natural Language ...



B.3 Encoding phrases

Consider the phrase `t h i s b o y'. If this were encoded with a code pattern
for each word, the result would be `D 0 #D N 1 #N' which is only one symbol
smaller than the original. However, we can encode the phrase with fewer symbols
by taking advantage of the fact that the sequence `D 0 #D N 1 #N' has a
subsequence, `D #D N #N', which is a substring within the pattern `NP D
#D N #N #NP' in the grammar. Notice that the sequence `D #D N #N' is
discontinuous within the sequence `D 0 #D N 1 #N' in the sense described
earlier.

Since the `noun phrase' pattern `NP D #D N #N #NP' is in the grammar,
we may replace the substring, `D #D N #N', by the `code' sequence `NP #NP'.
But then, to encode the two words within the noun phrase (`t h i s' and `b o y'),
we must add the symbols, `0' and `1' from `D 0 #D N 1 #N' so that the �nal
coded sequence is `NP 0 1 #NP'.

Notice how the symbols `NP' and `#NP' in the code pattern `NP 0 1 #NP'
serve as a disambiguating context so that the symbol `0' identi�es the pattern
`D 0 t h i s #D' and the symbol `1' identi�es the pattern `N 1 b o y #N'. The
overall cost of the code pattern `NP 0 1 #NP' is 4 symbols compared with the
original 7 symbols in `t h i s b o y' - a saving of 3 symbols. In a similar way,
the phrase `t h a t g i r l' may be encoded as `NP 1 0 #NP' which is 4 symbols
smaller than the original.

B.4 Encoding the sentence

Given the two noun phrases in their encoded forms (`NP 0 1 #NP' for `t h i s
b o y' and `NP 1 0 #NP' for `t h a t g i r l') and the encoding of `l o v e s' as
`V 0 #V', the whole sentence may be encoded as `NP 0 1 #NP V 0 #V NP 1 0
#NP'.

However, this sequence contains the subsequence `NP #NP V #V NP #NP'
and this sequence is a substring within the `sentence' pattern `S NP #NP V
#V NP #NP #S' - and this pattern is in the grammar. So we may replace
the sequence `NP #NP V #V NP #NP' by the `code' sequence `S #S'. To
discriminate the words in this sentence we must add the symbols `0 1 0 1 0'
from the sequence `NP 0 1 #NP V 0 #V NP 1 0 #NP'. The overall result is an
encoded representation of the sentence as:

S 0 1 0 1 0 #S.

The 7 symbols in this encoding of the sentence represents a substantial com-
pression compared with the 20 symbols in the unencoded sentence.

B.5 Taking account of the sizes of gaps

The account of pattern matching and coding in Sections B.3 and B.4 illustrates
the way in which `matching' in the proposed scheme embraces the matching of
subsequences (where the matched symbols need not be contiguous) as well as the
more traditional matching of coherent substrings (where the matched symbols
are always contiguous, one with the next).

817Wolff J.G.: Syntax, Parsing and Production of Natural Language ...



In this connection, most people have a strong intuition that, where there are
gaps in matching, small gaps or no gaps are `better' than large ones. It seems
that our intuitions in this area can be justi�ed in terms of probability theory.
A method, based on probability principles, for making allowances for gaps has
been developed and is applied in the SP61 model. A brief outline of the method
and how it is applied is presented in Section B.7, below.

B.6 Discussion

Each pattern expresses sequential redundancy in the data to be encoded and
this sequential redundancy can be exploited to reduce the number of symbols
which need to be written out explicitly. In the grammar shown in Figure 3,
each pattern for an individual word expresses the sequential redundancy of the
letters within that word; the pattern for a noun phrase expresses the sequential
redundancy of `determiner' followed by `noun'; and the pattern for a sentence
expresses the sequential redundancy of the pattern: `noun phrase' followed by
`verb' followed by `noun phrase'.

Since this principle operates at all levels in the `hierarchy' of patterns, many
of the symbols at intermediate levels may be omitted completely. A sentence
may be speci�ed with symbols marking the start and end of the sentence pattern
together with interpolated symbols which discriminate amongst alternatives at
lower levels.

Notice that these ideas are only applicable to alignments which can `project'
into a single sequence of symbols, as is the case with the alignment shown in
Figure 4. Any alignment like this:

a x b a b x
| | or this | |
a y b a b y

where there is a `mismatch' of symbols, cannot be evaluated in this way. For
present purposes, any such alignment is excluded from consideration. When the
SP model is generalised to other areas such as learning, it is intended that
alignments like those just shown will be evaluated alongside those which can
project without mismatches.

The method that has been described illustrates the role of context in the
encoding of information. Any one symbol like `0' or `1' is ambiguous in terms of
the patterns in the grammar in Figure 3. But in the context of the pattern `S 0
1 0 1 0 #S' and the same grammar, it is possible to assign each instance of `0'
or `1' unambiguously to one of the words in the grammar, giving the sequence of
words in the original sentence. It appears that ICMAUS provides a mechanism
for `decoding' the encoded form of the sentence, as discussed in Section 6.

B.7 Summary of method for calculating the compression associated
with an alignment

The proposed method of calculating the compression di�erence (CD) associated
with an alignment of patterns is summarised in more formal terms here. This
is the method embodied in the SP61 model (which is described in Section 5

818 Wolff J.G.: Syntax, Parsing and Production of Natural Language ...



and Appendix C). The method is designed to calculate the compression of New
information or part of it (all or part of the sentence to be parsed) which may
be achieved by `encoding' New information in terms of Old information (where
Old information is the patterns of symbols representing the grammar used in
parsing). This CD is calculated as:

CD = BN �BE ;

where BN is the number of bits required to represent the hit symbols in New
without any encoding (except S-F-E coding at the level of single symbols), and
BE is the number of bits required for the encoding of those same symbols from
New in terms of Old information. How these values are calculated is described
below.

B.7.1 Information costs of symbols

If a simple block code is used for symbols, then the `minimum cost',M , for each
symbol is

M = dlog2jSje

bits where jSj is the number of symbol types in the alphabet of symbol types
(S) used throughout New and Old.

As previously noted, the value of M for each symbol type (and thus each
individual symbol) is calculated in SP61 by the S-F-E method. For any one
symbol type, the input for this calculation is the frequency of occurrence of the
symbol type either measured directly or approximated using this formula:

fst =

PX

i=1

(fi � oi)

where fi is the (notional) frequency of the ith pattern in the grammar (illustrated
by the numbers on the right of Figure 3), oi is the number of occurrences of the
given symbol in the ith pattern and P is the number of patterns in the grammar.

Whichever way the value of M is calculated, the `actual cost', A, of each
symbol is:

A =M � c;

where c is a factor whose size is not critical except that c > 1.

B.7.2 Calculation of E, the minimum number of bits required for
the encoding of a given pattern in Old

The calculation of BE for any alignment requires a value for the `encoding cost',
E, for each pattern from Old which appears in the alignment.

Since there is a frequency of occurrence associated with each pattern in any
grammar, it is possible to calculate a theoretical minimum for the value of E for
each pattern using the S-F-E method. However, there is an alternative method of

819Wolff J.G.: Syntax, Parsing and Production of Natural Language ...



calculating E which, for present purposes, appears to be more useful and which
has been adopted in the SP61 model described in Section 5.

In summary, the alternative method is to calculate E as

E =
nX

i=1

Di

whereDi is theM value for the ith symbol in a subsequence of n `discrimination'
symbols within the given pattern which identi�es the pattern uniquely amongst
the patterns in the grammar without over-specifying the pattern.

Ideally, the discrimination symbols for a pattern would be whatever sub-
sequence of the pattern was most distinctive of the pattern, regardless of the
position of the symbols within the pattern. However, in the SP61 model, two
constraints have been imposed:

{ The simplifying assumption has been made that the discrimination symbols
are the smallest substring of one or more symbols starting at the beginning
of the pattern which enables the pattern to be identi�ed uniquely within the
grammar. For any pattern, it is easy to discover what this substring is by a
process of systematic comparison of candidate substrings with corresponding
symbols in other patterns in the grammar.
Although a constrained subsequence of symbols is used in calculating the
value of E for the pattern, this does not mean that a pattern can only ever
be recognised by those symbols and no others. In the SP61 model, a pattern
can be fully or partially recognised by any subsequence of its symbols.

{ Whenever a pattern ends in a `termination' symbol (a symbol whose �rst
character is the hash character (`#')), this symbol is added to the set of
discrimination symbols for the pattern if it is not otherwise there.

B.7.3 Calculation of BN (the number of bits required to represent
hit symbols from New in `raw' form)

For any one alignment, BN is calculated as:

BN =

hX

i=1

Ai

where Ai is the `actual cost' of the symbol corresponding to the ith hit in a
sequence of hits, H1:::Hh, with an adjustment to be described in the next para-
graph. The hit sequence H1:::Hh comprises the hits between symbols in New
and symbols in patterns in Old. The symbols from New in this hit sequence are
a subsequence of the sequence N1:::Nn, which is the pattern in New.

B.7.4 Allowing for gaps

Before the formula, above, is applied, the value of each Ai is adjusted to take
account of any `gap' which may exist between the given hit and any previous
hits in the sequence of hits between New and patterns in Old. For this purpose,
the alignment is treated as if it were two sequences of symbols: the sequence of

820 Wolff J.G.: Syntax, Parsing and Production of Natural Language ...



symbols which is New (the sentence being parsed) and the sequence of symbols
which is the projection of the alignment into a single sequence.

As indicated above, there is insu�cient space to present fully the method
of allowing for gaps. In outline, it is based on an analogy with the rolling of
two A-sided dice, where A is the size of the alphabet used in New and Old.
The sequence of rolls of one die corresponds with the sequence of symbols in
New and the sequence of rolls of the other die corresponds with the sequence of
symbols in the projection. The method is based closely on the method described
in [Lowry 89] for calculating probabilities of various contingencies in problems
of this type.

For the symbol corresponding to the ith hit in the sequence H1:::Hh, the
adjusted value of Ai is calculated as:

Ai = ai � Fs

where ai is the actual cost of the symbol corresponding to the ith hit in H1:::Hh,
and Fs is the sth entry in a table of `scaling factors' which is calculated at the
outset of processing. The value of F1 is always 1. For each hit in H1:::Hh after
the �rst, the variable s (which represents the `span' between the current hit in
H1:::Hh and the preceding hit) is calculated as:

s = (Pi � Pi�1)� (Ci � Ci�1)

where Pi is the position in N1:::Nn of the symbol corresponding to the ith hit
in H1:::Hh, Pi�1 is the position in N1:::Nn of the symbol corresponding to the
(i�1)th hit inH1:::Hh. Ci and Ci�1 are the analogous positions in the projection
of the alignment into a single sequence - which means that Ci and Ci�1 represent
columns in the alignment itself.

B.7.5 Calculation of BE (the number of bits required to encode the
hit symbols from New)

For each new alignment, the value of BE is:

BE =
rX

i=2

Ei � S

where Ei is the `encoding cost' of the Old pattern appearing on one of r rows of
the alignment other than the top line (where New appears) and S is the saving in
encoding costs arising from the fact that some patterns in the alignment convey
information about the sequential arrangement of other patterns in the alignment
or the selection of other patterns in the alignment where alternatives are possible
in a given context.

The `encoding cost' of any pattern is the value of E for that pattern, calcu-
lated as described in Appendix B.7.2. Notice that if any pattern appears two or
more times in the alignment, its encoding cost is added a corresponding number
of times to the sum of encoding costs.

The calculation of BE depends on three main ideas:

821Wolff J.G.: Syntax, Parsing and Production of Natural Language ...



{ As previously noted, a pattern may be fully or partially recognised by any
subsequence of the pattern. In other words, it is not necessary to use the
speci�c symbols which were used in calculating the value of E for that pat-
tern. As a general rule when the grammar is largely free of redundancy, if
the M values of the relevant symbols (adjusted for gaps - see next) add up
to the value of E then that subsequence of symbols will identify the pat-
tern uniquely amongst the other patterns in the grammar. Where there is
redundancy in the grammar, more bits may be needed to achieve unique
identi�cation of a pattern.

{ If there are gaps in a sequence of hits, information values must be reduced
in accordance with the rules used in calculating the value of BN (Appendix
B.7.4).

{ For present purposes, there is nothing to be gained by over-specifying a
pattern. If one pattern matches a second pattern by the minimum number
of symbols needed to achieve unique identi�cation of that second pattern,
then the saving in encoding costs from this source is maximal. Any additional
hits between the two patterns do not give any additional saving in encoding
costs.

BE is calculated in the following way:

1. For each row (R) in the alignment corresponding to a pattern from Old,
create a variable (V ) containing the value of E for the pattern in that row.

2. Traverse the alignment from left to right examining the columns contain-
ing two or more symbols (including symbols in New). Any such column is
designated a `hit' column (CH ).

3. For each CH which contains two or more symbols from patterns in Old
(which we may designate CHO), examine each row which has a hit symbol
from Old in the column (designated RHO). For this symbol, calculate MA,
an `adjusted' value of M for the symbol, taking account of any gap which
may exist between the given CHO and any previous CH . The method of
making the adjustment is the same as is used for calculating the value of BN
(Section B.7.4) except that, for each RHO , the gaps (or spans) are measured
as if all the rows in the alignment except the given RHO is treated as if it
were a single pattern to which the pattern in the given RHO is aligned. As
in the calculation of BN , it is assumed that there is no gap associated with
the �rst CH for any given pattern.

4. For each CHO , examine each RHO and, amongst these rows, identify the
`leading' row, RHOL, whose pattern starts furthest to the left in the align-
ment (if there is a tie, make an arbitrary choice amongst the ties). For exam-
ple, in Figure 4, for either of the two columns which contains a hit between
`D' in `D 0 t h i s #D' and `D' in `NP D #D N #N #NP', the RHOL is the
one containing `NP D #D N #N #NP' (row 7 in the �rst case and row 2
in the second case); for either of the two columns containing a hit between
`NP' in `NP D #D N #N #NP' and `NP' in `S NP #NP V #V NP #NP
#S', the RHOL is the row containing `S NP #NP V #V NP #NP #S' (row
5 in both cases).

5. For each CHO , consider, in turn, each RHO , excluding the RHOL. For each
row considered, subtract the value of MA from the value of V for that row.
If the new value of V is less than 0, V is set to 0 and no further subtraction
from that instance of V is allowed.

822 Wolff J.G.: Syntax, Parsing and Production of Natural Language ...



6. When all relevant columns have been examined and the values of the V
variables have been reduced, calculate

BE =

rX

i=2

Vi

where r is the number of rows in the alignment and the summation excludes
the top line (which contains New).

The rationale for this method of calculating BE is that it gives us the sum
of the E values of the patterns from Old corresponding to each row of the
alignment after the �rst, with a reduction for hits between those patterns (with
an adjustment for gaps as outlined above).

The reason for reducing the value of BE when there are hits between patterns
in Old is that any such hit re
ects a degree of `coverage' of one pattern from Old
by another such pattern. To the extent that one pattern provides information
that also exists in another pattern there is a reduced need for the second pattern
to be identi�ed in the encoding. In the extreme case, where two patterns are
identical, only one of them need be identi�ed in the encoding. As indicated
above, any saving in encoding costs resulting from the coverage of one or more
patterns by another cannot exceed the E value for each pattern - any additional
hits are `wasted'. Hence, the V value for any row cannot be reduced below 0.

In the method described above, the `leading' row for any one column (RHOL)
is regarded as the row with which the other symbols in the column are uni�ed.
Hence, for the given column, this is the row where the V value is not reduced
by the value of MA. Intuitively, the left-to-right bias in the de�nition of `leading
row' is less theoretically `clean' than if all concepts were entirely symmetrical
between left and right directions in the alignment. However, the concepts as
described are the best to have been found so far and seem to work quite well.

C The organisation and operation of the SP61 model

Figure 16 presents a high level view of the organisation of the SP61 model using
pseudocode while Figures 17 and 18 show, with pseudocode, the �rst and second
parts of the compress() function within the model. The text below describes how
the model works together with details of its organisation that are not included
in the pseudocode.

C.1 Preliminary processing

C.1.1 Calculation of the information cost of each symbol

As was described in Section 3.1, each rule in the grammar has an associated
frequency of occurrence in (a `good' parsing of) some notional sample of the
language. In Step 3 of main() in Figure 16, the model derives the frequency of
occurrence of each symbol type as described in Appendix B.7.1.

These frequencies are then used (in Step 4 of main()) to calculate the min-
imum number of bits needed to represent each symbol type using the S-F-E
coding scheme (see [Cover and Thomas 91]), as described in Appendix B.7.1.

823Wolff J.G.: Syntax, Parsing and Production of Natural Language ...



main()
{

1 Read the rules of the grammar, each one with a frequency
of occurrence in a notional sample of the language,
and store the patterns with their frequencies in Old.

2 Read the sentence to be parsed and store it in New.
3 Derive a frequency for each symbol in the grammar

(as described in Appendix B).
4 Using the frequencies of the symbols with the method,

assign to each symbol in New and Old a number
of bits representing the `minimum' information `cost'
of that symbol. Also, calculate an `actual'
information cost for each symbol.

5 For each pattern in the grammar, calculate E, the
minimum number of bits needed to encode that pattern.

6 Select the sentence to be parsed and add it as the first
`driving pattern' to an otherwise empty list of
driving patterns.

7 while (new alignments are being formed)
compress ()

8 Out of all the new alignments which have been formed,
print the ones with the best CDs.

}

Figure 16: A high level view of the organisation of the SP61 model.

The resulting sizes for each symbol type are then assigned as `minimum cost'
sizes to corresponding symbols in New and Old. Each symbol in New and Old is
also given an `actual cost' which is the minimum cost increased by an arbitrary
factor, rounded up to ensure that the actual cost is at least one bit larger than
the minimum cost (see Section B.7.1).

C.1.2 Establishing the encoding cost of each pattern in Old

In Step 5 of main() in Figure 16, each pattern in the grammar is assigned a
minimum number of bits required to discriminate the pattern from other patterns
in the grammar using frequencies of the patterns with the S-F-E method, as was
outlined in Section B.7.2.

C.2 Building the `hit structure' (step 2 of the compress() function in
Figure 17)

The compress() function shown in Figures 17 and 18 is the heart of the SP61
model. This subsection and the ones that follow supplement the description in
the �gure.

As can be seen from the �gure and inferred from the outline description in
Section 5, the compress() function is applied iteratively. On the �rst cycle, the
`driving' pattern is simply the sentence to be parsed. On subsequent cycles, the
list of driving patterns is a subset of the alignments formed in preceding cycles.

824 Wolff J.G.: Syntax, Parsing and Production of Natural Language ...



compress()
{

1 Clear the `hit structure' (described in the text).
2 while (there are driving patterns that have not

yet been processed)
{

2.1 Select the first or next driving pattern
in the set of driving patterns.

2.2 while (there are more symbols in the
current driving pattern)

{
2.2.1 Working left to right through the

current driving pattern, select the
first or next symbol in the pattern.

2.2.2 `Broadcast' this symbol to make a
yes/no match with every symbol in the
`target patterns' in Old.

2.2.3 Record each positive match (hit) in a
`hit structure' (as described in the
text). As more symbols are broadcast,
the hit structure builds up a record
of sequences of hits between the
driving pattern and the several target
patterns in Old. As each hit sequence
is extended, the compression score of
the corresponding alignment is
estimated using a `cheap to compute'
method of estimation.

2.2.4 If the space allocated for the hit
structure is filled at any time, the
system `purges' the worst hit sequences
from the hit structure to release more
space. The selection uses the estimates
of compression scores assigned to each
hit sequence in Step 2.2.3.

}
}

Figure 17: First part of the compress() function of the SP61 model.

Iteration stops when no new alignments can be found which satisfy conditions
described below.

C.2.1 Fuzzy matching of one pattern with another

Step 2 of the compress() function is based on the central process in SP21
[Wol� 94a], a process which is related to dynamic programming (DP,
[Wagner and Fischer 74]) and is designed to �nd `fuzzy' matches which are
`good' between one `driving' pattern and one or more `target' patterns. In this
context, a `fuzzy' match is one where only a subsequence of the symbols in one
pattern need match the symbols in the other pattern and vice versa.

825Wolff J.G.: Syntax, Parsing and Production of Natural Language ...



3 For each hit sequences which has an estimated
compression score above some threshold value
and which will `project' into a single
sequence (as described in the text), convert
the hit sequence into the corresponding
alignment. Discard this alignment if it is
identical with any alignment already in Old.
Otherwise, compute the compression score using
the method described in Appendix C, print
the new alignment and add it to Old. If
no new alignments are formed, quit the
compress() function.

4 Excluding the original patterns in Old, examine
all the alignments that have been added to Old
since the beginning of processing and choose
a subset of these alignments using the method
described in the text. Remove from Old all the
alignments which have not been selected. The
original patterns are never removed from Old.

5 Clear the list of driving patterns and then, using
the same method as is used in 4 but (usually)
with a more restrictive parameter, select a
subset of the alignments remaining in Old and
add references to those alignments to the list
of driving patterns (these patterns are not
removed from Old and may therefore also be
target patterns on the next cycle).

}

Figure 18: Second part of the compress() function of the SP61 model.

The technique is to `broadcast' each symbol in the driving pattern to make
a yes/no match with each symbol in the set of target patterns and to record
sequences of hits in a `hits structure'. Each sequence of hits (termed a hit se-
quence) represents an alignment between the driving pattern and one of the
target patterns.

As is described in [Wol� 94a], the hit structure has the form of a list-
processing tree with each node representing a hit and each path from the root
to a leaf node representing a sequence of hits.

C.2.2 No one instance of a symbol should ever be matched with itself

Since driving patterns can also be target patterns, any one pattern may be
aligned with itself. That being so, a check is made to ensure that no instance
of a symbol is ever matched against itself (see Section 2.2). Obviously, any such
match would be meaningless in terms of the identi�cation of redundancy.

Since any symbol in the driving pattern and any symbol in the target pattern
may have been derived by the uni�cation of two or more other symbols, a check
is also made to exclude all hits where the set of symbols from which one of the
hit symbols was derived has one or more symbols in common with the set of

826 Wolff J.G.: Syntax, Parsing and Production of Natural Language ...



symbols from which the other hit symbol was derived. In short, while any given
pattern from the grammar may appear two or more times in one alignment, no
symbol in any of the original patterns in Old ever appears in the same column
as itself in any alignment.

C.2.3 The order of symbols in New must be preserved

As the matching process has been described so far, it would be entirely possible
for the system to align a pattern like `NP D 1 t h a t #D N 1 g i r l #N #NP'
in the example considered earlier with the �rst `NP #NP' in a pattern like `NP
#NP V 0 l o v e s #V NP #NP #S' from the same example and to align `NP
D 0 t h i s #D N 0 b o y #D #NP' with the second `NP #NP'. To avoid the
formation of alignments like this which violate the order of the symbols in New,
the system makes checks to ensure, at all stages, that the order of the symbols
in New is honoured.

C.2.4 Estimation of compression scores

While the hit structure is being built, the compression score for the alignment
corresponding to each hit sequence may be calculated at every stage but only at
the cost of a lot of processing which would slow the model down. Consequently,
a simple method of estimating the compression score is used in Step 2.2.3 of
Figure 17 which is computationally `cheap'. Although it gives results which do
not correspond exactly with the values calculated using the formulae presented in
Appendix B, the di�erences appear not to be critical for the purposes of purging
the hit structure (Step 2.2.4 in Figure 17, Appendix C.2.5) or determining the
threshold for converting hit sequences into alignments (Step 3 in Figure 16,
Appendix C.3).

C.2.5 Purging the hit structure

If the space allocated to the hit structure is exhausted at any time, the hit struc-
ture is `purged' or, more literally, `pruned' to remove branches corresponding to
the worst 50% of the hit sequences (where the meaning of `worst' is determined
using the estimates of compression scores calculated in Step 2.2.3 of the com-
press() function). In this way, space is released in which new sequences of hits
can be stored.

C.2.6 Distinctive features of the technique

The technique of recording hits in a tree using list processing, coupled with
the mechanism for purging the hit structure whenever the available space is
�lled, is probably the most important di�erence between the SP21 technique for
�nding partial matches and the more traditional kinds of DP. In the SP21/SP61
technique:

{ Both strings being compared can be arbitrarily long.
{ The `depth' of searching can be controlled by varying the space available for
the hit structure: larger spaces give better results than smaller ones.

{ Unlike standard DP algorithms, the system delivers a set of alternative align-
ments between two sequences rather than a single `best' alignment.

827Wolff J.G.: Syntax, Parsing and Production of Natural Language ...



C.3 Building, scoring and selection of alignments

C.3.1 Building alignments and scoring them (step 3 of the compress()
function)

When the hit structure for a set of driving patterns has been built, the best
hit sequences are converted into the corresponding alignments, excluding all
alignments which will not `project' on to a single sequence (as described in
Section 3.2 and Appendix B.6) and excluding alignments as described in C.3.2.

The process of converting a hit sequence into an alignment achieves two
things: it creates a one-dimensional sequence of symbols which is a uni�cation
of the driving pattern or patterns with the target pattern and it creates a two-
dimensional array representing the alignment itself. For each alignment, the array
occupies a portion of memory of exactly the right size, allocated dynamically at
the time the alignment is formed.

The one-dimensional sequence may enter into matching and uni�cation in
later iterations of the compress() function, while the two-dimensional array al-
lows the full structure of the alignment to be seen and can be used in later checks
to ensure that no instance of a symbol is ever matched with itself (Section C.2.2)
and to ensure that the order of symbols in New is not violated (Section C.2.3).

From time to time, identical alignments are formed via di�erent routes. The
program checks each of the newly-formed alignments against alignments already
formed. Any alignment which duplicates one already formed is discarded. The
process of comparing alignments is indi�erent to the order (from top to bottom)
in which patterns appear in the alignment (cf. Section 3.2, above).

Every new alignment which survives the several hurdles is added to Old and
its CD is computed using the method and formulae described in Appendix B.

C.3.2 Selection of alignments: a quota for each hit symbol in New

Apart from purging the hit structure when space is exhausted, the main way
in which the SP61 model narrows its search space is a two-fold selection of
alignments at the end of every cycle of the compress() function:

{ Excluding all the original patterns in Old, the program examines the align-
ments which have been added to Old since the start of processing and selects
a subset by a method to be described. All the other alignments are removed
from Old and discarded.

{ Using the same method, the program selects a subset of the alignments
which remain in Old to be used as driving patterns on the next cycle. These
alignments are not removed from Old so they may also function as target
patterns.

At �rst sight it seems natural to select alignments purely on the basis of
their compression scores. However, it can easily happen that, at intermediate
stages in processing, the best alignments are trivial variations of each other
and involve the same subset of the symbols from New. If selection is made by
choosing alignments with a CD above a certain threshold, the alignments which
are chosen may all involve the same subset of the symbols in New, while other
alignments, containing symbols from other parts of New, may be lost. If this

828 Wolff J.G.: Syntax, Parsing and Production of Natural Language ...



happens, the model cannot ever build an alignment which contains all or most
the symbols in New and may thus never �nd the `correct' answer.

A solution to this problem which seems to work well is to make selections in
relation to the symbols in New which appear in the alignments. Each symbol in
New is assigned a `quota' (the same for all symbols) and, for each symbol, the
best alignments up to the quota are identi�ed. Any alignment which appears in
one or more of the quotas is preserved. All other alignments are purged. The
merit of this technique is that it can `protect' any alignment which is the best
alignment for a given subsequence of the symbols in New (or is second or third
best etc) but which may, nevertheless, have a relatively low CD compared with
other alignments in Old.

C.4 Processing New in Stages

A feature of the SP61 model that, to avoid clutter, has been omitted from Figure
16 is that New may be divided into `windows' of any �xed size (determined by
the user) and the model can be set to process New in stages, one window at a
time, from left to right. This feature of the model was introduced for two reasons:

{ It seems to bring the model closer to the way people seem to operate, pro-
cessing sentences stage by stage as they are heard or read, not waiting until
the whole of a sentence has been seen before attempting to analyse it.

{ Since it is possible to discard all but the best intermediate results at the end
of each window, this mode of processing has the advantage of reducing peak
demands for storage of information and it also has the e�ect of reducing the
size of the search space.

829Wolff J.G.: Syntax, Parsing and Production of Natural Language ...


