
Application of the Forest Approach to the

Light Control Case Study

Martin Kronenburg

(University of Kaiserslautern, Germany

kronburg@informatik.uni-kl.de)

Christian Peper

(University of Kaiserslautern, Germany

peper@informatik.uni-kl.de)

Abstract: Forest is a requirements engineering approach designed to support the
creation of precise and intelligible problem speci�cations of reactive systems. It inte-
grates a product model, a process model, and an editing tool. In this paper, we present
the results of applying the Forest approach to the Light Control Case Study. This
includes the presentation of excerpts of the resulting problem speci�cation, as well as
the discussion of the strengths and shortcomings of the Forest approach.

Key Words: formal requirements speci�cation, problem speci�cation, real-time tem-
poral logic, object-orientation

Category: C.3, D.2.1, D.2.2, F.3.1, F.4.3

1 Introduction

It is widely accepted that the �rst activities in the development of (software)

systems are very critical because they have a great impact on the subsequent

phases. Customer and system developer have to agree on a common perception

of the problem that has to be solved by a system. This agreement should be

documented in an intelligible and precise way.

Forest1 is an approach that has been designed to support the creation of pre-

cise and intelligible problem speci�cations, especially in the context of reactive

systems. Forest integrates a product model, a process model, and an editing

tool. The product model provides a reference model for problem speci�cations,

which comprise all information about which system to be built. The product

model also provides an instantiation of this document type for reactive systems

that is based on a real-time temporal logic and the structuring concepts mod-

ularization, aggregation, inheritance, and parameterization. The process model

prescribes the steps to be followed by the system developer as well as the inter-

action between customer and developer when creating a problem speci�cation.

1
Forest is an acronym for Formal Requirement Speci�cation Technique.

Journal of Universal Computer Science, vol. 6, no. 7 (2000), 679-703
submitted: 30/12/99, accepted: 20/4/00, appeared: 28/7/00  Springer Pub. Co.

The tool xforest supports the creation of syntactically correct speci�cations and

the consistency of references.

The focus of this paper is to illustrate and discuss the results of applying the

Forest approach to the Light Control Case Study (LCCS). We start with a brief

survey of the Forest approach in [Section 2]. [Section 3] presents an overview of

the Forest problem speci�cation of the Light Control Case Study. In [Section 4],

several excerpts of this speci�cation are considered in more detail and used to

explain the concepts of the Forest approach. The complete problem speci�ca-

tion is electronically available at [KP00]. In [Section 5], we analyze the problem

speci�cation, report on some statistical results, and elaborate on strengths and

shortcomings of the Forest approach. We end with some concluding remarks

in [Section 6].

2 Survey of the Forest Approach

In this section, we provide a brief survey of the Forest approach. For more

details concerning the various concepts realized in this approach, please refer

to [PGK97], [GKP98], and [KP99]. The objectives and concepts outlined in

the following are illustrated in [Section 3] and [Section 4], where we discuss the

application of the Forest approach to the LCCS.

2.1 Objectives

The Forest approach has been designed with the following objectives:

Precision avoids ambiguities and thus potential con
icts between customer and

system developer.

Intelligibility is important for the acceptance and maintainability of the doc-

ument.

Expressiveness determines the degree to which a problem speci�cation can be

formalized.

Scalability opens the way for the treatment of large systems.

Reuse within and across projects can increase productivity and reduce costs.

Traceability supports the validation of completeness and correctness, and the

e�ective propagation of changes into all depending speci�cation parts.

Practicability is related to the e�ort to create a speci�cation.

680 Kronenburg M., Peper Ch.: Application of the FOREST Approach ...

To point out which objectives are addressed in the following speci�cation ex-

cerpts, and by which means they are supported in the Forest approach, we

have included references of the form Objective by Means in some of the headings

in [Section 4] and [Section 5].

2.2 Reference Model

When creating a problem speci�cation, the main goal is to obtain a percep-

tion of the desired system that is common to customer and system developer.

A substantial precondition to achieve this goal is a precise characterization of

what a problem speci�cation should be and what it should contain. Therefore,

the Forest approach contains a general reference model for problem speci�ca-

tions [KP99]. This reference model prescribes the content of such a document

independently of a particular description technique.

The Forest reference model is based on the work of Jackson, Zave, et al. [ZJ97,

GGJZ00]. A related reference model, usually called the four variable model was

proposed by Parnas et al. [vSPM93, PM95]. Both reference models are compared

in [GGJZ00]. The CoRE method [FBWK92] is closely related to the Forest

approach, and uses a similar reference model.

2.2.1 Basic Notions

A system is a part of the real world that is for some reason considered as a unit.

In a system, several phenomena are collected and combined. A phenomenon is

an aspect in the real world that is essential for a system. Phenomena are, for

example, states of a system (e.g., in the LCCS the light intensity in a room),

events occurring in the real world (e.g., the switching on of a light), objects (e.g.,

sensors and actuators), and individuals (e.g., a facility manager of a building).

Terms (e.g., words in natural language) are used to designate speci�c phenom-

ena of a system. They are a prerequisite for each conversation about real world

phenomena. We demand that there is a one{to{one relation between phenom-

ena and terms, i.e., for each phenomenon there is exactly one term designating

it, and each term designates exactly one phenomenon. Statements express re-

lationships between several phenomena. Each statement is constructed of the

terms representing the considered phenomena. An example of a statement is: If

a room is occupied, then the light is on. Here, a relation between the terms room,

occupied, light, and on is expressed.

681Kronenburg M., Peper Ch.: Application of the FOREST Approach ...

2.2.2 Classi�cation of Phenomena

For the development of a system, it is very important to distinguish between the

part of a system that already exists, the environment, and the part of a system

that has still to be developed, the machine. Each phenomenon and also each

term (recall the one-to-one relation) has to be uniquely assigned to either the

environment or the machine. Although this is obviously a very central feature

of a phenomenon/term, it is neglected in many approaches and not expressed

explicitly. Let us consider the LCCS : while some sensors and actuators, such as

motion detectors or dimmers, are pre-installed and thus parts of the environment,

the control panels, for example, do not exist. They belong to the machine and

have to be developed.

Based on this distinction between environment and machine, phenomena/terms

are classi�ed further w.r.t. the following two aspects:

control: It is demanded that each phenomenon/term is controlled either by the

environment or by the machine.

visibility: It is demanded that each phenomenon/term controlled by one of

these parts is also visible to this part.

We say that a phenomenon belongs to the part it is controlled by. Note that a

phenomenon/term can be visible to both parts.

From these constraints concerning control and visibility, the following kinds of

phenomena/terms can be derived:

eh: environment controlled, hidden to the machine

ev: environment controlled, visible to the machine

mv: machine controlled, visible to the environment

mh: machine controlled, hidden to the environment

eh, ev, mh, and mv denote the scope of a phenomenon/term. It is required that

each phenomenon/term has exactly one of these scopes.

2.2.3 Classi�cation of Statements

The distinction between what already exists and what still has to be developed

has a great impact on the classi�cation of the statements and descriptions. We

demand that each statement has to be either in indicative mood or in optative

682 Kronenburg M., Peper Ch.: Application of the FOREST Approach ...

mood. A statement in indicative mood describes something in the real world as

it is. A statement in optative mood describes something in the real world as it

should be.

When combining the mood of a statement with the scopes of the terms that occur

in this statement, a large variety of di�erent kinds of statements is possible, but

only the following three disjoint combinations of mood and scope are reasonable:

domain statement: a statement in indicative mood where all terms are visible

to the environment (scopes eh, ev, or mv).

requirement statement: a statement in optative mood where at least one

term with scope eh is used.

machine statement: a statement in optative mood where all terms are visible

to the machine (scopes ev, mv, or mh).

For more details concerning the reference model, please refer to [KP99].

2.3 Instantiation of the Product Model

Within the Forest approach, the general reference model of problem speci�-

cations is instantiated using a real-time temporal logic (see [KPG96]) as basic

formal description technique. This allows the creation of precise problem spec-

i�cations with an unambiguous semantics. To enhance the intelligibility of a

problem speci�cation, we provide explanations in natural language for each el-

ementary phenomenon, object, and formalized property. Moreover, to be able

to handle problem speci�cations of large systems, we have combined structuring

concepts such as modularization, aggregation, inheritance, and parameterization

with the temporal logic. The resulting product model is explained and illustrated

in [Section 3] and [Section 4].

2.4 Process Model

Besides this product model, the Forest approach comprises a process model

that prescribes an iterative interaction between customer and developer to create

a problem speci�cation. In this process model, also the application of requirement

patterns is incorporated (see [GKP98]). For details, see [PGK97].

2.5 Tool Support

Finally, the editing tool xforest supports the creation of problem speci�cations

according to the product model (details in [SS99]). It also maintains the consis-

tency of references to achieve traceability.

683Kronenburg M., Peper Ch.: Application of the FOREST Approach ...

3 Overview of the Final Problem Speci�cation

The application of the Forest approach to the LCCS [PD00] resulted in a

problem speci�cation called LCCS-PS. By application of the tool xforest, rep-

resentations in PostscriptTM and HTML format were generated. Based on a

\vertical cut" through the LCCS-PS, we will elaborate on several objectives and

concepts addressed by the Forest approach. In [Section 4], we provide an ex-

cerpt of the LCCS-PS (mainly of the PostscriptTM representation). We assume

that the reader is familiar with the original problem description.

3.1 Document Structure

To manage problem speci�cations of large systems, we structure a problem spec-

i�cation into several so-called description classes. Relations among description

classes are established by aggregation and inheritance. Description classes speci-

fying common aspects are further organized in so-called groups. In the LCCS-PS

we have the following eight groups and 44 description classes:

Datatypes This group contains the description class LightScene. In this de-

scription class, we formalize the information contained in the corresponding

entry in the Dictionary of Terms of the original problem description.

BasicHumanMachineInterface This group only contains the description

class EnteredValue where the basic interface between machine and persons

is speci�ed.

Sensors This group consists of all description classes that contain speci�cations

related to sensors. It is discussed in [Section 4.1].

Actuators This group consists of all description classes that contain speci�ca-

tions related to actuators.

CombinedSensorsAndActuators This group contains all description classes

in which several sensors and actuators are combined. It is discussed in [Sec-

tion 4.2].

HumanMachineInterface This group contains the description classes where

the interface between machine and persons is speci�ed on a more abstract

level. This includes the speci�cations of control panels.

Occupancy This group contains the description classes where occupancy of an

area, i.e. a hallway section or a room, is de�ned.

684 Kronenburg M., Peper Ch.: Application of the FOREST Approach ...

BuildingUnits This group contains the description classes where the units of

the
oor, i.e. rooms, hallway sections, and staircases, as well as the so called

main description class Floor are speci�ed. These description classes are dis-

cussed in [Section 4.3] and [Section 4.4].

For each group containing more than one description class, we have created

a diagram displaying the aggregation and inheritance relations among the de-

scription classes of this group (see [Fig. 1], [Fig. 4], and [Fig. 7]). In these �gures,

boxes with bold frames refer to description classes that belong to other groups.

The shaded parts refer to the excerpts considered in more detail in [Section 4].

Not all groups, diagrams and other details could be addressed here. They can

be found in [KP00].

3.2 Description Class Structure

We shortly explain how description classes are structured. In general, a descrip-

tion class consists of seven parts:

{ Intention

{ Formal Parameters

{ Base Classes

{ Signature

{ Domain Knowledge

{ Requirement Specification

{ Machine Specification

The Intention part is mandatory. All other parts are optional. In the Inten-

tion part, a developer informally describes which part of a system is considered

in a description class. For sake of brevity, the Intention part will be omitted

in the following examples. Instead the intention of a description class will be

explained in the text.

In the Formal Parameters part, two kinds of parameters of a description

class can be speci�ed: sort parameters and number parameters. A parameter

of a parameterized description class always has to be instantiated if this class

is aggregated or if another description class inherits from this parameterized

description class. Both kinds of parameters are explained and illustrated below.

In the Base Classes part, all description classes from which this description

class inherits are listed. The Base Classes parts of all description classes thus

de�nes the inheritance relation among the description classes. Note that inheri-

tance between two classes also implies a specialization between both classes, in

the sense that the derived class is an extension of the base class.

The Signature part contains all entities that are necessary to talk about the

part of the system considered in this description class. In the excerpts below,

di�erent kinds of entities appear. Following the guidelines of the reference model,

there has to be an intention explaining which phenomenon is represented to

685Kronenburg M., Peper Ch.: Application of the FOREST Approach ...

support the one-to-one relationship between phenomena and terms. Moreover,

the scope of each entity representing an \elementary phenomenon" has to be

speci�ed.

In the Domain Knowledge, Requirement Specification, and Machine

Specification parts, the properties of the objects belonging to a description

class are speci�ed. The properties are assigned to these three parts according

to the classi�cation of statements given by the reference model. The name of

each property is chosen to re
ect the description class and the part to which this

property is assigned, e.g., D OLS2 denotes the second property in the Domain

Knowledge part of description class OutdoorLightSensor [Fig. 3]. Each prop-

erty usually consists of a formula in real-time temporal logic and of a translation

of this formula into natural language.

3.3 Development

We started with the speci�cation of the description classes of the groups Data-

types, BasicHumanMachineInterface, Sensors, and Actuators. Next, we consid-

ered the description classes of the groups CombinedSensorsAndActuators, Hu-

manMachineInterface, and Occupancy. Finally, the description classes of the

group BuildingUnits were speci�ed. Note that this bottom-up process could not

be followed strictly, since the speci�cation of a description class aggregating,

for example, another led to modi�cations of the aggregated description class.

Nevertheless, in principle the described bottom-up process was carried out.

4 Excerpts of the Final Problem Speci�cation

We present the excerpts of the LCCS-PS in a bottom-up way that corresponds

to the way the LCCS-PS is structured. This structure ensures that all entities

are introduced before they are used. We will consider four di�erent speci�cation

levels: in [Section 4.1], we start with the most elementary description classes

and provide an excerpt of the group Sensors as an example. In [Section 4.2],

we consider two examples of the group CombinedSensorsAndActuators, namely

CeilingLightGroup and DimmableCeilingLightGroup. On the next description

level, we consider several description classes of the group BuildingUnits in [Sec-

tion 4.3]. Finally in [Section 4.4], we present an excerpt of the top description

class Floor, the so-called main description class.

686 Kronenburg M., Peper Ch.: Application of the FOREST Approach ...

4.1 Group Sensors

[Fig. 1] shows a class diagram with aggregation and inheritance relations for

the description classes of group Sensors in UML notation [BRJ99]. The two

groups Actuators and Occupancy are structured in a similar way. The descrip-

tion classes NoMalfunctionSensor, MalfunctionSensor, Sensor, and BinarySen-

sor are abstract description classes from which the four concrete description

classes OutdoorLightSensor, StatusLine, DoorClosedContact, and MotionDetec-

tor are derived. In these description classes, we mainly formalize the information

given in Section 2.8 of the original problem description [PD00].

Outdoor
Light

Motion
Detector

Status Door
Closed

Binary
Sensor

Line

Malfunction
Sensor

Entered
Value

1

2

Contact

n
A B

B aggregates A n times

A B
B inherits from A

Sensor

NoMalfunction
Sensor

1

Sensor

Figure 1: Class Diagram of Group Sensors

[Fig. 2] shows a leaf description class, namely the description class NoMalfunc-

tionSensor. This description class generally speci�es the behavior of a sensor

in normal operation. This description class is aggregated by description class

Sensor from which description class OutdoorLightSensor is derived. Hence, each

outdoor light sensor is a sensor, and therefore it must contain an object that is

a NoMalfunctionSensor.

4.1.1 NoMalfunctionSensor

In the description class NoMalfunctionSensor, three kinds of entities are intro-

duced. reactionTime is a Time Constant. This means that it represents a real

687Kronenburg M., Peper Ch.: Application of the FOREST Approach ...

Description Class NoMalfunctionSensor

Formal Parameters
Sort ENV DOMAIN
Intention : This domain contains the possible values of the measured phenomenon

of the real world.
Sort MEASURED DOMAIN
Intention : This domain contains the possible measured analog values.
Sort CONVERTED DOMAIN
Intention : This domain contains the possible digital values, converted from an

analog value.
Signature
Time Constant reactionTime
Intention : This time constant represents the reaction time of a sensor. : : :
Scope : ev
...
Timed Function envEntity ! ENV DOMAIN
Intention : This function represents the value of the measured phenomenon in

the real world.
Scope : eh
Timed Function measuredEntity ! MEASURED DOMAIN
Intention : This function represents the measured analog value of the phe-

nomenon of the real world.
Scope : eh
Timed Function convertedEntity ! CONVERTED DOMAIN
Intention : This function represents the digital value derived from the measured

analog value.
Scope : ev
Function modifyReaction : ENV DOMAIN ! MEASURED DOMAIN
Intention: This function represents the way in which a value of the phenomenon

of the real world (envEntity) is modi�ed during the reaction of a sensor
resulting in a measured analog value measuredEntity.

Scope : eh
...

Domain Knowledge
Property D NMS1

Formal : �(envEntity BmodifyReaction
reactionTime measuredEntity)

NL : The measured analog value is always derived from the value of the
phenomenon of the real world using the function modifyReaction. A
change of the value in the real world is always propagated within the
time reactionTime.

...

Figure 2: Description Class NoMalfunctionSensor

number. The three Timed Functions envEntity, measuredEntity, and convert-

edEntity represent phenomena whose value can change over time. In contrast to

this, the FunctionmodifyReaction represents a phenomenon that is independent

of time. Signature entities of these three kinds always represent \elementary

phenomena" for which a scope has to be speci�ed.

688 Kronenburg M., Peper Ch.: Application of the FOREST Approach ...

Precision by Scopes

Looking at the three timed functions envEntity, measuredEntity, and converted-

Entity, we want to emphasize the signi�cance of the scope assigned to a phe-

nomenon. While the phenomena represented by envEntity and measuredEntity

are not visible to the machine, the phenomenon represented by convertedEntity

is visible to it. Note that the scopes would be di�erent if the sensors do not yet

exist. In this case, the scope of envEntity would be ev, and that of measured-

Entity and convertedEntity mh. To distinguish between the di�erent kinds of

control and visibility is especially important in the description classes specifying

actuators and the aspect occupancy.

Finally, we informally explain the meaning of the temporal operators � and

B we have applied in property D NMS1 to specify the delayed and modi�ed

dependence of an analog entity s2 from another analog entity s1. The meaning

of a temporal formula �' is that ' holds always. s1 B
f
� s2 means that s2 has a

value that is the result of function f applied to a value that s1 has had sometime

during the last � time units.

4.1.2 OutdoorLightSensor Reuse and Scalability by Inheritance

The description class OutDoorLightSensor is obtained by specializing Sensor

and instantiating the sort parameters ENV DOMAIN, MEASURED DOMAIN,

and CONVERTED DOMAIN in the Base Classes part (see [Fig. 3]).

Description Class OutdoorLightSensor

Base Classes
Class Sensor(ENV DOMAIN = REAL; MEASURED DOMAIN = REAL;

CONVERTED DOMAIN = OUT LIGHT VALUES)
Signature
Domain OUT LIGHT VALUES = f1 : : : 10000g
Intention: This domain contains the possible values measured by an outdoor

light sensor.
...

Domain Knowledge
...
Property D OLS2
Formal : �(noMalSens :reactionTime = 10)
NL : The reaction time of an outdoor light sensor is 10 milliseconds.
...

Figure 3: Description Class OutdoorLightSensor

689Kronenburg M., Peper Ch.: Application of the FOREST Approach ...

Furthermore, the specialization of the behavior can be expressed in the derived

class by either making a certain property more restrictive or by adding proper-

ties. The reaction time of an outdoor light sensor, for instance, is restricted to

a particular value in property D OLS2 in the Domain Knowledge part. This

re
ects the corresponding entry in Table 1 of the original problem description

[PD00]. A dot notation is used to refer to attributes of aggregated classes.

4.2 Group CombinedSensorsAndActuators

The group CombinedSensorsAndActuators (see [Fig. 4]) comprises the descrip-

tion classes CeilingLightGroup and DimmableCeilingLightGroup. The descrip-

tion classes of this group formalize information contained in the paragraphs 7,

8.2, 13, 14.2, 19, and in Figure 3 of the original problem description. These

description classes have in common that they aggregate several sensors and ac-

tuators and, thus, introduce a new level of abstraction that is also provided by

the original problem description, cf. Paragraphs 7, 8, 13, and 14 as well as the

Dictionary of Terms of the original problem description [PD00].

Dimmable
Ceiling

LightGroup
Door

Door
Contact

1

Ceiling
LightGroup

Status
Line Pulse

Control
System
Active

Push
Button

1 1 1 1

Dimmer

1
n

A B
B aggregates A n times

A B
B inherits from A

Figure 4: Class Diagram of Group CombinedSensorsAndActuators

4.2.1 CeilingLightGroup Intelligibility and Reuse by Aggregation

In the Forest approach, aggregation is expressed by an object declaration in

the Signature part of the aggregating description class. Each object declaration

starts with the keyword Object, followed by the name of the object and the

name of an already speci�ed description class to which this object shall belong.

Since an object does not represent an elementary phenomenon, no scope has to

be provided, but an intention in natural language must be given (see [Fig. 5] and

[Fig. 6]).

690 Kronenburg M., Peper Ch.: Application of the FOREST Approach ...

Description Class CeilingLightGroup

Formal Parameters
Function numPB ! NAT
Intention : This parameter represents the number of push buttons with direct

control of the ceiling light group (bypassing the machine).
Signature
Object sl : StatusLine
Intention : This object represents the status line indicating whether a ceiling light

group is on or o�.
Object pulse : Pulse
Intention : This object represents the actuator of a ceiling light group the machine

uses to switch the ceiling light group on or o�.
Object csa : ControlSystemActive
Intention : This object represents the actuator of a ceiling light group the machine

uses to signal that it is still active.
Object pb : PushButton [numPB]
Intention : These objects represent the push buttons of a ceiling light group a

person can use to switch the light on or o�. Note that a push of a
button is not directly visible to the machine.

...

Figure 5: Description Class CeilingLightGroup

Description class CeilingLightGroup has the number parameter numPB. Such

number parameters can be used on the one hand as functions representing a

nonnegative integer. On the other hand they can be used to specify the size of

an object array. In the description class CeilingLightGroup, numPB push buttons

are aggregated. By this, we can use the description class CeilingLightGroup to

model the ceiling light groups in a hallway section as well as in a room. Note that

according to the original problem description [PD00], each ceiling light group of

a room is controlled by one push button (Paragraph 8.2), and each ceiling light

group of a hallway section is controlled by several push buttons (Paragraph 14.3).

4.2.2 DimmableCeilingLightGroup Reuse by Inheritance

The excerpt of the description class DimmableCeilingLightGroup illustrates a

further possibility to specialize a description class { in addition to those men-

tioned in [Section 4.1]. Here, we introduce the new object dimmer, i.e. we extend

the signature of class CeilingLightGroup (see [Fig. 5] and [Fig. 6]).

4.3 Group BuildingUnits

[Fig. 7] shows the aggregation and inheritance hierarchy among the description

classes of the group BuildingUnits, which is the top level group.

691Kronenburg M., Peper Ch.: Application of the FOREST Approach ...

Description Class DimmableCeilingLightGroup

Base Classes
Class CeilingLightGroup(numPB = 1)
Intention : All de�nitions of description class CeilingLightGroup are inherited.
Signature
Object dimmer : Dimmer
Intention : This object represents the dimmer the machine uses to set the illu-

minance of a ceiling light group.

Figure 6: Description Class DimmableCeilingLightGroup

4.3.1 Area Traceability by References

In description class Area [Fig. 8], we specify the common properties of hallway

sections and rooms. This includes, for example, property R A2 which is a for-

malization of the facility manager needs FM2 and FM3 of the original problem

speci�cation. The traceability relation between these needs and property R A2

is explicitly expressed by the additional entry:

Prereferences: pdref FM2

pdref FM3

In the complete LCCS-PS, such traceability information is added to each signa-

ture entry and to each speci�ed property. For sake of brevity, we have omitted

these references in the other excerpts.

Obviously, such traceability information has to be explicitly given by the de-

veloper. Nevertheless, our tool xforest supports this traceability relation in the

following way: besides a problem speci�cation, a developer also enters the original

problem description in a general format [SS99]. Then it is possible to associate

either with a property the needs that are formalized by this property or with a

need the properties that formalize it. The corresponding inverse relation is com-

puted by the tool. In the HTML representation of the LCCS-PS, this traceability

relation is additionally supported by hyper-links (see [KP00]).

Besides the traceability relation between the original problem description and

a problem speci�cation the Forest approach supports a further traceability

relation within a problem speci�cation. Let ' be a formula in a property and

' the set of symbols occurring in ' then for each symbol ! 2
' there is

a link to the signature entry where ! is introduced. Analogously, we associate

with each signature entry a set of postreferences referring to the properties where

this signature entry is used. This traceability relation between properties and

signature entries is computed automatically. Note that due to the aggregation

and inheritance relations, this computation is not trivial. In the case of the

HTML representation this traceability relation is also supported by hyper-links.

692 Kronenburg M., Peper Ch.: Application of the FOREST Approach ...

Floor

Door

Outdoor
Light

Stair-
case

Hallway
Section

Motion

Office

Ceiling
LightGroup

1

Dimmable
Ceiling

LightGroup

Occu-
pancy

Detector

Motion
Detector

Motion
Detector

362

6

3

1 1 2

1
num

Door

numDoor
Hallway

Door

numDoor
Neighbour

Office
Neighbor

8

Neighbor
Room

Lights

AreaCtrl
PanelFM

1

No

Neighbor
Office

NoOffice

4

2

Room
CtrlPanel

1

WithoutWithout

2

Occu-
pancy

Connections

NoOffice

n
A B

B aggregates A n times

A B
B inherits from A

Inform
SensActMalFct

2

Office

Room

Area

NeighborNeighbor

Figure 7: Class Diagram of Group Building Units

Precision and Reuse by Requirement Patterns

Considering property R A2 of description class Area [Fig. 8], we can illustrate

two further aspects of the Forest approach: the increase of precision and the

reusability of requirement patterns. In the original problem description, the two

needs FM2 and FM3 only state that the ceiling light groups in an area have to

be o� if an area is unoccupied for a certain time span. It is not stated that the

ceiling light groups have to remain o�. This situation is typical: on the one hand

this additional aspect is often forgotten in a natural problem description and on

the other hand a state has to remain valid as long as a certain precondition holds.

693Kronenburg M., Peper Ch.: Application of the FOREST Approach ...

Description Class Area

Formal Parameters
Function numLights ! NAT
Intention : This parameter represents the number of lights in an area that are

controlled by the machine.
Function numPB ! NAT
Intention : This parameter represents the number of push buttons that can be

used by a person to control a ceiling light group in an area by bypass-
ing the machine.

Signature
...
Object light : CeilingLightGroup[numLights]
Intention : These objects represent the ceiling light groups in an area that are

controlled by the machine.
...

Requirement Specification
...
Property R A2
Formal : �(:occFM :occEnv)�T A1

8n 2 f1; : : : ; numLightsg :
(light [n]:sl :noMalSens :envEntity = 0))

NL : Whenever an area is unoccupied for at least T A1 milliseconds, all
ceiling light groups in this area are o� within this time and remain
o� at least as long as the area is unoccupied.

Prereferences: pdref FM2
pdref FM3

...

Figure 8: Description Class Area

Since FM2 and FM3 are representative for a particular type of requirement that

occurs quite frequently, it was possible to apply the requirement pattern De-

layedImplication(';) (see [Section 5.1]), yielding property R A2. This pattern

has been de�ned during a previous case study to normalize the speci�cation of

the corresponding properties.

In general, a requirement pattern consists of a formula, a translation of this for-

mula into natural language, examples of instantiations, and theorems expressing

valid properties of a requirement pattern. For more details concerning require-

ment patterns, please refer to [PGK97] and [GKP98]. In [Section 5.1], we report

on some statistical results of applying requirement patterns in the LCCS-PS.

4.3.2 Room

Let us now discuss description class Room [Fig. 9] in more detail to illustrate,

how product model and process model of the Forest approach contribute to

694 Kronenburg M., Peper Ch.: Application of the FOREST Approach ...

the precision and the completeness of speci�cations. We will also reconsider

specialization.

Description Class Room

Formal Parameters
Function numDoorHallway ! NAT
Intention : This parameter represents the number of doors of a room to a hallway

section.
Base Classes
Class Area(numLights = 2; numPB = 1)
Intention : All de�nitions of description class Area are inherited. There are two

ceiling light groups in a room that are controlled by the machine:

{ light [1] represents the ceiling light group near the window and

{ light [2] represents the ceiling light group near the wall to a hall-
way section.

Signature
Object Area :: light : DimmableCeilingLightGroup
Intention : The ceiling light groups in a room are dimmable ceiling light groups.
Timed Function curLightScene ! LightScene
Intention : This function represents the current light scene that is established by

the machine if light scenes are enabled.
Scope : mh
Timed Function curDefaultLightScene ! LightScene
Intention : This function represents the current default light scene that is estab-

lished by the machine if light scenes are enabled.
Scope : mh
Timed Function malDefaultLightScene ! LightScene
Intention : This function represents the light scene that is the default light scene

in the case of a malfunction of the outdoor light sensors.
Scope : mh
Timed Function noMalDefaultLightScene ! LightScene
Intention : This function represents the light scene that is the default light scene

in the case that the outdoor light sensors have no malfunctions.
Scope : mh
Machine Specification
Property I M R1
Formal : curDefaultLightScene = noMalDefaultLightScene
NL : Initially the current default light scene is the default light scene for

the case that the outdoor light sensors have no malfunction.
Property I M R2
Formal : curLightScene = curDefaultLightScene
NL : Initially the current light scene is the current standard light scene.

Figure 9: Description Class Room

Precision by Product Model

The product model forces a developer to distinguish between the relevant phe-

nomena and to introduce a corresponding name for each phenomenon. In the

case of the di�erent kinds of light scenes mentioned in the original problem de-

695Kronenburg M., Peper Ch.: Application of the FOREST Approach ...

scription, this activity results in the introduction of the four timed functions

curLightScene, curDefaultLightScene, malDefaultLightScene, and noMalDefault-

LightScene (see [Fig. 9]).

Completeness by Process Model

The process model includes a guideline that an initial value or the range of

possible initial values should be speci�ed for each machine controlled entity. Note

that it is important that customer and developer also clarify the initialization of

machine controlled entities as early as possible in the development process. In

the case of the description class Room, this guideline yields the two properties

I M R1 and I M R2. This information is not provided by the original problem

description, but has been acquired by interaction with the customer.

Reuse by Object Redeclaration

Description classRoom includes a further kind of specialization, a so-called object

redeclaration of the object light that Room inherits from description class Area.

Due to the declaration

Object Area::light : DimmableCeilingLightGroup

the ceiling light groups in a room are not only objects of the description class

CeilingLightGroup, but of its specialization DimmableCeilingLightGroup.

4.3.3 OÆce and OÆceNeighbor

Based on the description class Room, we speci�ed OÆceNeighbor, OÆceWithout-

Neighbor, NoOÆceNeighbor, and NoOÆceWithoutNeighbor. These four di�erent

specializations depend on whether a room is an oÆce or not and whether a room

has doors to neighbor rooms or not. In [Fig. 10] and [Fig. 11], we present one of

these four \paths".

Expressiveness by Natural Language

According to the original problem description, the only signi�cant di�erence

between oÆces and non-oÆces is expressed in user needs U11 and U12 that deal

with the installation of the control panels. This is also re
ected in our description

classes OÆce and NoOÆce. They only di�er in the nonformal property R O1

(see [Fig. 10]) and property R NO1 (see [KP00]). These properties as well as the

non-functional properties NF6 - NF8 of [PD00] cannot be formalized within our

approach. To keep a Forest problem speci�cation complete w.r.t. the original

problem description, such nonformal properties may be entirely expressed in

natural language.

696 Kronenburg M., Peper Ch.: Application of the FOREST Approach ...

Description Class OÆce
...

Base Classes
Class Room : : :
Intention : All de�nitions of description class Room are inherited.

Requirement Specification
Property R O1
NonFormal : The control panel should be movable in the oÆces like a telephone

with a cord.

Figure 10: Description Class OÆce

Description Class OÆceNeighbor
...

Base Classes
Class OÆce : : :
Intention : All de�nitions of description class OÆce are inherited.
Class NeighborRoomConnections : : :
Intention : All de�nitions of description class NeighborRoomConnections are in-

herited.

Figure 11: Description Class OÆceNeighbor

4.3.4 HallwaySection

Similar to the description class Room, the description class HallwaySection is

derived from the description class Area (details in [KP00]).

4.4 Main Description Class Floor

The �nal description class in a problem speci�cation is always the so-calledmain

description class. In this description class, all objects belonging to a system

are collected and related. In the LCCS-PS, the main description class is Floor

[Fig. 12]. Here, we aggregate all rooms, hallway sections, staircases, and outdoor

light sensors. Furthermore, we specify relations between these objects that can

only be stated on this top level. For example, property D F1 speci�es that

the rooms o435 and o433 share a door. Using such explicite equalizations, we

model the architecture of the
oor as depicted in Figure 1 of the original problem

description.

Reuse by Object Domains

Finally, we point out object domains which is a further concept of specialization.

The domain ROOMS introduced in the signature of description class Floor is

697Kronenburg M., Peper Ch.: Application of the FOREST Approach ...

Description Class Floor

Signature
Object o435 : OÆceNeighbor (numDoorHallway = 1; numDoorNeighbor = 1)
Intention : This object represents the oÆce with room number 435, which is

equipped with
{ one door to the hallway
{ one door to a neighbor room

Object o433 : OÆceNeighbor (numDoorHallway = 1; numDoorNeighbor = 2)
Intention : This object represents the oÆce with room number 433, which is

equipped with
{ one door to the hallway
{ two doors to neighbor rooms

Object o431 : OÆceNeighbor (numDoorHallway = 1; numDoorNeighbor = 1)
Intention : This object represents the oÆce with room number 431. This oÆce is

equipped with
{ one door to the hallway
{ one door to a neighbor room

...
Domain ROOMS = fo435 , o433 , o431 , : : : ; hl410g � Room
Intention : This domain contains all rooms of the speci�ed
oor.
...
Domain Knowledge
Property D F1
Formal : �(o435 :neighborDoor [1] = o433 :neighborDoor [1])
NL : The two rooms with room numbers 435 and 433 are connected by a

door.
Property D F2
Formal : �(o433 :neighborDoor [2] = o431 :neighborDoor [1])
NL : The two rooms with room numbers 433 and 431 are connected by a

door.
...
Machine Specification
Property M F2
Formal : �(8r 2 ROOMS : (r :OLSMalFct !

r :curDefaultLightScene = r :malDefaultLightScene))
NL : Whenever the machine assumes that some outdoor light sensor used

by a room is not working correctly, then the default light scene is the
default fault light scene, i.e. all ceiling lights are on.

...

Figure 12: Description Class Floor

an example of such an object domain. In an object domain, a developer can

collect objects of the same description class that have already been declared. For

this collection, which is a subset of a description class, a developer can specify

additional properties. Property M F2 of description class Floor is an example

of such an additional property. This is our formalization of the non-functional

need NF 2 of the original problem description [PD00].

698 Kronenburg M., Peper Ch.: Application of the FOREST Approach ...

5 Discussion

In this section, we analyze the problem speci�cation of the Light Control Case

Study and discuss the strengths and shortcomings of the Forest approach.

5.1 Analysis of the LCCS-PS

In the LCCS-PS, we speci�ed 44 description classes in eight groups. The �nal

PostscriptTM document without prereferences to the original problem speci�ca-

tion and without postreferences to the properties where a signature entry is used

has 112 pages, with these references, it has 139 pages.

In the 44 description classes, we have introduced 162 names for phenomena/ob-

jects and 174 names for properties explicitly. Implicitly, we consider over 10000

phenomena and over 6000 properties. Explicitly means that a name occurs in a

Signature part or in one of the three speci�cations parts Domain Knowl-

edge,Requirement Specification,Machine Specification. The implicitly

speci�ed number of names is determined by expansion of the objects aggregated

in the main description class Floor. For example, in the description class Room,

the timed function name curLightScene is explicitly speci�ed only once. But due

to the aggregation of 20 di�erent rooms in description class Floor, this function

name is implicitly speci�ed 20 times.

These numbers make it evident that the speci�ed LCCS deals with a large sys-

tem. On the other hand, they reveal the degree of compactness that is achieved

by the structuring concepts of the Forest approach. Without such structuring

concepts, the handling of large systems is practically impossible.

In the following, we provide some data concerning the kind of formulae in the

LCCS-PS: 167 of the 174 properties obtained from the problem description have

been formalized, i.e., they were speci�ed as formal properties. 33 properties were

concerned with the initialization of entities (as I M R1 and I M R2 in [Fig. 9]).

They could be formalized in classical �rst order logic, i.e. without any temporal

operator. From the remaining 134 properties containing at least one temporal

operator, 125 properties could be formulated by applying only �ve(!) di�erent

requirement patterns. [Table 1] shows how often each of these patterns was in-

stantiated. Additionally, the table contains the syntactical part of the pattern

de�nition, which appears in the Formal part of the involved properties.

Regarding the simple invariance requirement pattern, we emphasize that in �',

the formula ' does not contain any temporal operator. Hence, ' is in general a

�rst order formula. In 87 instantiations of the invariance requirement pattern,

the formula ' even does not contain any quanti�er.

699Kronenburg M., Peper Ch.: Application of the FOREST Approach ...

#Inst. Pattern Name Syntactical Part Comment

8 DelayedImplication �(')��) ')�� means that if ' is valid for
at least � time units, becomes valid
within the � time units and remains
valid at least as long as '.

5 DelayedCopy �(s1 B
f
� s2) s1 B

f
� s2 means that s2 has a value

that is the result of function f ap-
plied to a value that s1 has had some-
time during the last � time units.

8 BoundedResponse �('! ���) ��� means that is true within the
next � time units.

3 LimitedInvariance �([']! (���')) ['] means that ' becomes true at the
current time point. ���'means that
' is true for the next � time units.

101 Invariance �' �' means that ' is always true.

Table 1: Requirement Pattern Instantiations

In the end, most properties could be formalized using a small number of require-

ment patterns { only nine temporal formulae had to be formalized conventionally.

This shows that in spite of the decision for a formal description technique, the

knowledge of a few typical patterns is suÆcient to understand a large portion of

the formal part of the problem speci�cation.

5.2 Strengths and Shortcomings of the Forest approach

To complete the results from the application of the Forest approach to the

LCCS, we will now reconsider the objectives of [Section 2] and discuss to what

extent these objectives are achieved by the Forest approach.

Precision by Logic, (Requirement) Patterns, and Reference Model

Precision is achieved by the usage of a formal description technique (FDT).

96 percent of the properties obtained from the problem description have been

formalized. The remaining properties are rather vague, for instance, NF8: ,,The

control panels are easy and intuitive to use", and are therefore diÆcult to for-

malize in general.

Where applicable, requirement patterns clearly help to avoid mistakes and to

complete speci�cations. Nevertheless, there is still a risk of over-speci�cation, if

a pattern is instantiated at a place where it is too restrictive. In the end, this

decision is left to the requirements engineer.

700 Kronenburg M., Peper Ch.: Application of the FOREST Approach ...

Intelligibility by Structuring, Natural Language, and Patterns

If the speci�cation structure is correlated with some common structure of the real

world (e.g., the building structure), this facilitates understanding. Unfortunately,

information is often scattered over several description classes. For example, the

information of an oÆce with connections to neighbor rooms (OÆceNeighbor) is

contained in OÆce, NeighborRoomConnections, Room, and Area (see [Fig. 7]).

Generally, aggregation and inheritance increase the intelligibility by creating

new levels of abstraction. On the other hand, it can be laborious to collect all

information relevant for a description class by traversing all its base classes.

The explanation of each formal speci�cation part in natural language is very

useful, but can be potentially inaccurate. Together with the temporal logic that

was chosen to support a property-oriented speci�cation style, the resulting trans-

lations into natural language are close to the problem description given by the

customer.

Patterns lead to a kind of normalization of either properties and corresponding

translations into natural language.

Expressiveness by Logic and Natural Language

The expressiveness of the Forest approach is mainly determined by the decision

for a real-time temporal logic. Natural language must be used, where necessary

(see above).

Scalability by Structuring

The object-oriented structuring concepts increase the scalability in the sense

that they support the treatment of large systems.

Reuse by Structuring and Patterns

The reusability of speci�cation artifacts obviously depends on their universality

and on the application domain in which they shall be reused. In the LCCS, it was

possible to take parts from former case studies (see http://rn.informatik.uni-

kl.de/�forest/examples/). These were, for example, the overall structure

given by the groups, since it is typical for this kind of reactive systems, complete

description classes, especially on lower speci�cation levels, such as the NoMal-

functionSensor in [Fig. 2], and requirement patterns on the level of properties.

Traceability by References and Tool Support

The traceability of dependences between the original problem description and the

formal problem speci�cation, as well as within the formal problem speci�cation,

is improved by references from and to the related speci�cation parts. A well

de�ned document structure is a precondition for expressive references and the

corresponding tool support.

701Kronenburg M., Peper Ch.: Application of the FOREST Approach ...

Practicability by Tool Support

The tool xforest currently supports the creation of syntactically correct problem

speci�cations and manages the traceability relations. It can produce di�erent

projections of the speci�cation, especially in HTML format, where the trace-

ability relations are realized by hyper links. Without xforest, it would have been

diÆcult to create the LCCS-PS!

Most of the discussed shortcomings could be improved by suitable tool support.

For example, a semantic analysis option would increase precision. Graphical rep-

resentations, additional projections, and the possibility to generate an executable

prototype could further increase intelligibility (this would probably require the

addition of an operational description technique).

6 Conclusion

The Light Control Case Study is an example of a non-trivial reactive system.

We have shown that the Forest approach is applicable to this case study, and

that the structuring concepts of Forest have a positive impact on a range

of typical speci�cation objectives, namely scalability, reuse, and intelligibility.

Requirement patterns could be successfully applied in many cases. We have

con�rmed that the distinction between machine and environment as required

by all of the mentioned reference models, is substantial for the elaboration of

the problem, and that the applicability and acceptance of a formal speci�cation

technique strongly depends on the availability of a suitable tool.

Acknowledgements

We thank Reinhard Gotzhein for his valuable comments on this paper and the

Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 501, \Development

of Large Systems with Generic Methods" for supporting this work.

References

[BRJ99] Grady Booch, James Rumbaugh, and Ivar Jacobson. The Uni�ed Model-
ing Language User Guide. Addison Wesley, 1999.

[FBWK92] S. Faulk, J. Brackett, P. Ward, and J. Kirby. The core method for real-
time requirements. IEEE Software, 9(6):22{33, September 1992.

[GGJZ00] C. A. Gunter, E. L. Gunter, M. Jackson, and P. Zave. A reference
model for requirements and speci�cations. IEEE Software, 17(3):37{43,
May/June 2000.

702 Kronenburg M., Peper Ch.: Application of the FOREST Approach ...

[GKP98] R. Gotzhein, M. Kronenburg, and C. Peper. Reuse in requirements engi-
neering: Discovery and application of a real-time requirement pattern. In
A. P. Ravn and H. Richel, editors, Proc. of the 5th Intl. Symp. on Formal
Techniques in Real-Time and Fault-Tolerant Systems, Lyngby, Denmark,
pages 65{74. Springer, 1998.

[KP99] M. Kronenburg and C. Peper. De�nition and instantiation of a reference
model for problem speci�cations. In 11th International Conference on Soft-
ware Engineering and Knowledge Engineering (SEKE'99), pages 332{336,
1999.

[KP00] Martin Kronenburg and Christian Peper. Problem speci�cation of The
Light Control Case Study of the Journal of Universal Computer Science.
http://www-avenhaus.informatik.uni-kl.de/forest/EXAMPLES/JUCS/
JUCSStart.html, 2000.

[KPG96] M. Kronenburg, C. Peper, and R. Gotzhein. A tailored real time temporal
logic for specifying requirements of building automation systems. SFB 501
Report 16/96, University of Kaiserslautern, 1996.

[PD00] The Light Control Case Study: Problem Description. Journal of Univer-
sal Computer Science, Special Issue on Requirements Engineering (This
volume), 2000.

[PGK97] C. Peper, R. Gotzhein, and M. Kronenburg. A generic approach to the
formal speci�cation of requirements. In Proc. of the 1st IEEE Intl. Conf.
on Formal Engineering Methods (ICFEM'97), Hiroshima, Japan, pages
252{261, 1997.

[PM95] D. L. Parnas and J. Madey. Functional documentation for computer sys-
tems. Science of Computer Programming, 25:41{61, 1995.

[SS99] T. Schmidt-Samoa. FoReST { Entwurf und Implementierung einer Umge-
bung zur Erstellung formaller System-Anforderungsbeschreibungen (in
German). University of Kaiserslautern, Computer Science Departement,
Diploma Thesis, October 1999.

[vSPM93] A. J. van Schouwen, D. L. Parnas, and J. Madey. Documentation of re-
quirements for computer systems. In Proc. of IEEE International Sym-
posium on Requirements Engineering, pages 198{207. IEEE Computer
Society Press, 1993.

[ZJ97] P. Zave and M. Jackson. Four dark corners of requirements engineering.
ACM Transactions on Software Engineering and Methodology, 6(1):1{30,
1997.

703Kronenburg M., Peper Ch.: Application of the FOREST Approach ...

