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Abstract: The interactive theorem prover PVS is used to formalize the user needs of
the Light Control system. First the system is modeled at a high level of abstraction,
in terms of properties the user can observe. After resolving ambiguities and conicts,
a re�nement is de�ned, using dimmable light actuators. Correctness of the re�nement
has been proved in PVS, under the assumption that there are no internal delays. Next
these internal delays are taken into account, leading to a new notion of delay-re�nement
which allows abstraction from delays such that systems with delays can be seen as an
approximation of an undelayed speci�cation.
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1 Introduction

It is known from the literature that errors in a requirements speci�cation prop-
agate through all phases of the design; they are often diÆcult to detect and
costly to repair (see, e.g. [Rus93, Som92]). The general aim of our work is to
investigate how the quality of the requirements speci�cation can be improved,
especially focusing on embedded systems. Formulating the requirements of a
complex embedded system, including timing requirements, is far from trivial.
Often these speci�cations are ambiguous, incomplete, or even inconsistent.

To obtain unambiguous requirements, we propose to formalize the require-
ments in formal language, that is, a language with a precise mathematical mean-
ing. This also enables formal analysis of the speci�cation to detect errors and
inconsistencies and a formal proof of consistency. Moreover, subsequent re�ne-
ment and design steps can be proved correct in a formal, mathematical way.

Our approach is motivated by three points that we consider to be important
for a successful formalization of requirements.

{ The �rst formalization of the requirements should be close to the informal
speci�cation. This makes it easy to trace problems raised during formal
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analysis back to the informal formulation such that they can be discussed
with domain experts. After consulting these experts, the incorporation of
their solutions in the formal speci�cation is rather straightforward.Moreover,
by having a close connection with the informal speci�cation, validation of
the formal speci�cation (does it capture the requirements we really need?)
becomes easier, see e.g. [Wup98].

{ The approach should enable an iterative development of the (formal) require-
ments. It should be possible to re�ne a high-level, abstract speci�cation to
a more detailed, concrete speci�cation.

{ There should be convenient tool support to analyze the requirements speci-
�cation. For instance, it should be possible to reason about consequences of
the speci�cation and to prove consistency of a number of desired properties.

This article uses the Light Control Case Study [PD00] as a vehicle to demon-
strate our approach to requirements speci�cation for complex embedded systems.
In this case study the illumination of rooms is speci�ed based on settings of users
and (re)occupancy of rooms. To realize the required illumination, there are sen-
sors (e.g. to detect whether rooms are occupied and to measure the outdoor
light) and actuators (there are two dimmable ceiling light groups in a room).

Page numbers in the text of this article refer to the pages of the informal
speci�cation [PD00]. U1, U2, etc. refer to the user needs on p. 9. Q1, Q2, etc. re-
fer to the list of questions-and-answers, also available on the web site for [PD00].
We base our speci�cation on the original informal speci�cation and the answers
to questions Q1{Q46 (the state of a�airs as of December 15th 1999). More ques-
tions were asked, but we decided not to try to adapt our speci�cation to every
change. This does not appear to have been detrimental, although Q58 does add
information that makes some of our assumptions untrue (see section 4.1). To
high-light the essential points of our approach, we did not formalize the whole
speci�cation, but focussed on the user needs for rooms and the dimmable lights.

1.1 Terminology and Formalization Approach

A system is a black box that can be distinguished from its environment. We can
only observe the exterior of a system which has a �nite number of ports. Let L
denote the set of ports. The system interacts with its environment through these
ports, and only through the ports. Interaction in this case means exchanging
values. Each port has an associated port-type which can be any data type,
although simple data types (integers, booleans, records over these types) are
commonly used. The number of ports of a system is �xed (i.e. jLj) and there is
some �xed data type Tp for each port p 2 L.

We partition the ports of a system into two disjoint sets: the input ports Li

and the output ports Lo. We write I for the type of tuples over the types of the
input ports (i.e. �p2Li

Tp, the product of the types of the ports in Li), and O
for the type of tuples over the types of the output ports.

Since we are dealing with real-time-systems, we need some notion of time (see
e.g. [vT94, Koy91] for an overview). For the purpose of this article, we model
time with the real numbers. At each instant in time we can observe a system and
record a so-called observation, which is a tuple of length jLoj of type �p2Lo

Tp.
A characteristic of a system is a function which assigns an observation to each
point of time, i.e. gives us the values at the output ports for each point in time.
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We formalize the informal speci�cation using the following approach.

1. First formalize the types of the input ports of the system, including possible
assumptions about the input.

2. Next we formalize the types that constitute the outputs of the system.
3. This allows us to de�ne the types for observations and characteristics of the

system.
4. Then we formalize the informal speci�cation sentence-by-sentence, adding

quanti�ers where needed, resulting in formulae that are very close to the
informal text and that restrict the allowed output, i.e. what characteristics
are acceptable.

5. We analyze the resulting formulae concerning consistency (by trying to �nd
a model satisfying them) and by trying to derive undesired consequences
from the speci�cation { often called \putative" theorems [ORSvH95].

6. Problems encountered are related back to the informal speci�cation and
should be resolved, e.g. by consulting domain experts.

7. This process is repeated until we are satis�ed with the current formal spec-
i�cation.

1.2 Iterative Approach

In the Light Control Case Study, we proceed through three steps that represent
a typical iterative approach to formal requirements engineering of embedded
systems.

1. First we formulate a high-level abstract speci�cation in terms of concepts
that can be observed by users of the systems. In the Light Control Case
Study we formalize the user needs in terms of light scenes, occupancy of
rooms, observed illumination in a room, etc. This is done in the sections 2
and 3. The actual formalization proceeds according to the steps described in
section 1.1.

2. In section 4 we re�ne this high-level speci�cation by introducing sensors
and actuators. To keep the re�nement simple in this step, we assume that
there are no internal delays; all internal communication takes place instanta-
neously. In this paper we formally describe a dimmable light and re�ne the
high-level speci�cation by introducing two dimmable lights for each room
that together should realize the required illumination. We show that the re-
sulting speci�cation re�nes the high-level speci�cation in the classical sense.
That is, every output of the re�ned system is allowed by the high-level spec-
i�cation.

3. In the next step, described in section 5, we take the internal delays into
account. Important here is the observation that this is not a classical re�ne-
ment; due to these internal delays, the timing requirements of the high-level
speci�cation are not met. Still, we managed to establish a formal relation, by
de�ning a general notion of delay-re�nement. This saves us from rewriting
the entire speci�cation produced in previous steps to take the internal delays
into account. Most importantly, though, this allows us to relate the formal
speci�cation of a system with delays to the informal text which mentions
delays for actuators but abstracts from them in the high-level requirements.
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1.3 Tool Support

Our speci�cations are formulated in the language of the interactive theorem
prover PVS [ORSvH95, PVS99]. The speci�cation language of PVS is a classical,
typed higher-order logic with a large number of built-in types (e.g. booleans, in-
tegers, reals) and type-constructors (as functions, sets, tuples, records), including
a powerful mechanism to de�ne abstract data types. Typechecking PVS speci�-
cations is not decidable and the system may require the user to prove so-called
Type Check Conditions (TCCs) to ensure type correctness. Speci�cations can
be structured through a hierarchy of parameterized theories. Logical analysis of
speci�cations can be mechanized using the powerful theorem prover of the PVS
system.

Our choice of PVS is based on earlier experience with this tool, e.g. to model
a steam boiler control system [VH96] and to formalize the requirements of a
command and control system [vdPHdJ98]. The speci�cation language is very
expressive and fairly intuitive, which makes it easy to maintain a close connection
with informal text. The fact that the language is strongly typed turns out to be
very useful for the early detection of errors.

We will explain PVS notation throughout this article, when necessary. Some
preliminaries are in order, though. PVS groups de�nitions, axioms and theorems
into theories. A theory has a name, such as system. A minimal PVS theory is

system : THEORY
BEGIN
END system

PVS theories may have parameters, which are placed between [] after the theory
name. Theories can refer to each other; to import theory system, PVS uses the
notation IMPORTING system.

1.4 Formalization with PVS

We show by an example how we model system requirements in PVS. Consider a
system with four inputs and two outputs which should satisfy some speci�cation
S [see Fig. 1]. The set of ports for this system is L = fI1 : : : I4; O1; O2g. The set
of output ports is Lo = fO1; O2g.

specification S
System with

i1

In
pu

ts
i2

i3
i4

O
ut

pu
ts

o1
o2

Figure 1: A systems with four inputs and two outputs.
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Assume as given a PVS theory systemTypes which de�nes the type Time
and the types T1 through T4 of the ports I1 through I4, respectively. Moreover,
output port O1 has type T5, O2 has type T6, and the output type O is the product
type T5� T6. Henceforth we also frequently combine the outputs in a record.

The PVS theory system, shown below, �rst imports theory systemTypes
and next contains a list of parameters for the input. PVS uses the syntax
[ domain -> range ] to denote functions; a colon : means of-type. Each input
port is modeled as a function from Time to the type of the port. Given the inputs,
which can be seen as an implicit parameter of all de�nitions in the theory, the
possible outputs of the system are speci�ed by S_predicate. An arbitrary out-
put satisfying this predicate is given by instance which is de�ned as a constant
of the type consisting of all output functions satisfying S_predicate.

system [ (IMPORTING systemTypes)
I1:[Time->T1], I2:[Time->T2],
I3:[Time->T3], I4:[Time->T4] ] : THEORY

BEGIN
S_predicate : [ [Time->O] -> bool ] = ...
instance : { out:[Time->O] | S_predicate(out) }

END system

A few additional remarks about this theory:

{ Henceforth we often represent a de�nition such as
instance : f out:[Time->O] | S_predicate(out) g

by the equivalent notation
instance : (S_predicate).

{ There might be other parameters of the PVS theory modeling a system, such
as the number of CPUs or the width of a data bus.

{ Recall that the parameters of the theory are implicit parameters to all the
de�nitions within the theory, so the de�nition of S_predicate can make use
of the inputs to the system (here I1 through I4).

{ When type-checking this theory in PVS, the declaration of constant instance
leads to a TCC (Type Check Condition) which requires that the correspond-
ing type is not empty. In this case it means that we have to show that there
exists at least one output function satisfying S_predicate, i.e. that the spec-
i�cation of the system is consistent. We can use the instance given outside
of the theory as one unique but arbitrary representative of the system.

In this style, it is easy to compose a system out of parts that are connected
in some way. We simply instantiate the proper input ports of a part with the
instance that represents the output of another part. Consider the system in
[Fig. 2]. The system as a whole has inputs I1 through I4. These inputs are
passed to the theories which specify parts 1, 3 and 4. The outputs of parts 1 and
3 are passed on to other parts. The outputs of parts 2 and 4 are �nally declared
to be outputs of the system. In the next PVS �le this is realized by using an
alternative notation for IMPORTING; we use \p1: THEORY = . . . " to import a
theory and give it a name (p1) within the theory system. This leads to a theory
with the following structure:

system [ (IMPORTING systemTypes)
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Figure 2: A system composed of parts

I1:[Time->T1], I2:[Time->T2],
I3:[Time->T3], I4:[Time->T4] ] : THEORY

BEGIN
p1: THEORY = part1[I3,I4]
p2: THEORY = part2[p1.instance]
p3: THEORY = part3[I2,p1.instance]
p4: THEORY = part4[I1,p3.instance]
instance : [Time->O] = LAMBDA (t:Time) :

( p4.instance(t), p2.instance(t) )
END system

Observe the notation LAMBDA (t:Time) for lambda-abstraction, a common way
of de�ning functions.

2 Top-Level Formalization

In this section we describe our �rst formalization of a part of the Light Control
System [PD00], following the steps described in section 1.1. Instead of formal-
izing as much as possible of the informal speci�cation, we consider only a part
of the speci�cation and investigate formal analysis and re�nement steps for this
part. We focus on the user needs U1 through U12 (p. 9) that describe the desired
amount of illumination in a room.

According to p. 5, a room has a two ceiling light groups (window and wall),
each with a push button and a dimmer-actuator. Henceforth we refer to these
ceiling light groups as dimmable lights. The user can specify so-called light scenes,
consisting of a desired ambient light level in the room and how this should be
realized using the two dimmable lights (i.e. using one of them or both). There
is also a motion detector in each room and a door closed contact; in the current
formalization we abstract from them and simply assumewe can observe whether
a room is occupied or not. Moreover we do not consider the outdoor light sensors
here.

In a preliminary version, all PVS theories were parameterized by a uninter-
preted type Rooms and most de�nitions contained an argument to identify the
room under consideration. Since this parameter did not have any inuence on
the de�nitions, especially because the requirements of rooms are independent,
we removed it from the current formalization. So the room under consideration
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is left implicit here. Note that for a proper treatment of hallways sections, which
do inuence each other, we would have to reintroduce this parameter.

In section 2.1 we start with a PVS theory that introduces a few timing prim-
itives. Basic types to describe light scenes are presented in section 2.2. The in-
puts and the outputs of the theory containing the user needs are de�ned in the
sections 2.3 and 2.4, respectively. The most important informal user needs are
presented in section 2.5. Our �rst attempt to formalize them can be found in
section 2.6. Section 2.7 discusses the remaining user needs.

2.1 Timing Primitives

Since the user needs refer to periods of time, we start with a PVS theory that
introduces a few basic timing primitives. As mentioned in the introduction, we
use the real numbers to represent physical time. The type real is pre-de�ned in
PVS, together with the usual operations such as +;�;�;�.

TimePrim : THEORY
BEGIN

Time : NONEMPTY_TYPE = real
TimeDuration : NONEMPTY_TYPE = { d:real | d>=0 }
nzTimeDuration : NONEMPTY_TYPE = { d:TimeDuration | d>0 }

Using the reals as a model of time implies that time is dense, so the value of a
port might change at any point in time and with arbitrary separation in time.

We also introduce functions ms and sec that convert some whole number
of milliseconds or seconds into a real value corresponding to the same length
of time in the time model. Using functions like ms and sec make the formal
speci�cation easier to read for both domain experts and customers.

ms(n:nat) : TimeDuration = n
sec(n:nat) : TimeDuration = ms(1000*n)

END TimePrim

2.2 Light Primitives

The PVS theory LightTypes de�nes the type LightScene as a record con-
taining a desired ambient light level and an option that indicates which of the
lights should be used to achieve the desired ambient light level, based on the
text on p. 13. In general, records in PVS are of the form [# field1:Type1, ...
fieldn:Typen #]. For an element r of this type, both field1(r) and r`field1
can be used to refer to the �rst �eld.

BoundedLux stems from the informal text on p. 7 describing the external light
sensor. Although no mention of bounds is made on p. 13 in the description of
light scenes, we assumed that 0{10000 would be a good range for light scenes.

LightTypes : THEORY
BEGIN

IMPORTING TimePrim
Lux : NONEMPTY_TYPE = { n:real | n>=0 }
BoundedLux : NONEMPTY_TYPE = { l:Lux | l<=10000 }
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SceneOption : NONEMPTY_TYPE = { window, wall, both }
LightScene : NONEMPTY_TYPE =

[# light: BoundedLux, option: SceneOption #]

END LightTypes

2.3 Inputs to the System

Since the speci�cation is basically concerned with rooms that are occupied by
users, the occupation status of the room under consideration will be given as an
input to the system. A room could be considered occupied if the motion detector
(mentioned on p. 5 and p. 13) in the room senses motion. We have chosen not
to use the motion detectors in this initial speci�cation, since the motion sensors
are not part of the user's view of the system. The door-closed contact and the
outdoor light sensors have been abstracted away for the same reasons.

In PVS theory User Needs parameter occupied? has type [Time->bool]],
i.e. a function which expresses whether the room is occupied at each point in
time. The other inputs of the system are at least the things that the user can
choose, which are described in U9 on p. 9.

U9: The room control panel for an oÆce should contain at least: a pos-
sibility to set each ceiling light group; a possibility to set the chosen and
the default light scene; and a possibility to set T1.

Hence the parameters of theory UserNeeds include time-dependent functions
that model the chosen scene and the default scene. The clause \set each ceiling
light group" is interpreted to mean that the user has push buttons as described on
p. 7. This is translated in PVS as the two inputs pushbutton1 and pushbutton2
(they are used in a very limited fashion, namely to indicate that the user has
performed some explicit action to choose a light scene). The user can set T1, a
period of time which indicates how long a room must remain empty before the
control system should take action. It is referred to in U3 and U4 (see section
2.5). Hence theory UserNeeds starts as follows:

UserNeeds [ (IMPORTING TimePrim,LightTypes)
occupied? : [Time->bool],
chosen_scene : [Time->LightScene],
default_scene : [Time->LightScene],
pushbutton1 : [Time->bool],
pushbutton2 : [Time->bool],
T1 : [Time->nzTimeDuration] ] : THEORY

2.4 Outputs of the System

The outputs of the system are the things that the user can actually see. At the
highest level, the user needs on p. 9 are concerned with light scenes that should
be realized in the rooms. Earlier, in theory LightTypes we already introduced
type LightScene to model the things that the user can set, as de�ned on p. 13
under \light scene". In that de�nition, light intensities { in Lux { are stated
to vary between 1 and 10000. Note that the light level in a room is potentially
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unbounded, since it may be a very bright sunny day outside and the light level
in the room could very well be more than 10000 Lux. The amount of light the
lights themselves can produce is never stated in the informal speci�cation. Hence
we de�ne a new type roomObservables to model what is actually observed in a
room at some point in time.

roomObservables : NONEMPTY_TYPE =
[# light: Lux, option: SceneOption #]

roomCharacteristics : NONEMPTY_TYPE = [Time->roomObservables]

Summarizing this and the previous section, [Fig. 3] shows the input and output
of the system.

chosen
scene

default
scene

occupied?

button1
push

button2
push

T1

User Needs

option

light

ro
om

 O
bs

er
va

bl
es

Figure 3: Input and Output of User Needs

2.5 Informal Speci�cation of the User Needs

For reference, we include the text of the user needs U1{U4 from p. 9. The wording
of U1 has been changed by Q42, so we quote the modi�ed text here.

U1: If a person occupies a room, there has to be safe illumination unless
a speci�c light scene has been chosen or the ceiling light groups are set
manually. This means that when the default scene is established (i.e.
through U4) and the room is occupied, there must be safe illumination.
When the room is occupied and some light scene has been chosen by the
user, the lighting must be set according to that scene.

U2: As long as the room is occupied, the chosen light scene has to be
maintained.
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U3: If the room is reoccupied within T1 minutes since the last person
has left the room, the chosen light scene has to be reestablished.

U4: If the room is reoccupied after more than T1 minutes since the last
person has left the room, the default light scene has to be established.

The remaining user needs from p. 9 are discussed in section 2.7.

2.6 First Attempt at Formalization

Our initial attempt concentrated on the speci�cation of the user needs in a naive
manner. The initial wording of U1 on p. 9 was suÆciently confusing to require
a question (Q42), after which the wording of the user need was amended to its
�nal form as shown in section 2.5. Still later we discovered that this wording still
contains some ambiguities, but it suÆced to provide us with a �rst formula in
PVS. As a starting point, we �rst de�ne a number of variables of type Time.

t, t0, t1, t2 : VAR Time

A variable declaration in PVS introduces a type for the given variables (i.e. Time
for the variable t) so that we do not need to specify the type of that variable in
the rest of the theory. Henceforth, we mention variable declarations only once
and assume similar declarations in other theories.

We start with the formal de�nition of U1. It states that the illumination in a
room has to be safe in certain situations, namely if the default has been estab-
lished and as long as nothing has been chosen by the user. We interpret this
as meaning that when the default is established, the user's choice is \forgotten",
so that nothing else is desired. As long as the user makes no choice about the
light scene, for example by manipulating the controls for the chosen light scene
or toggling the lights, the safe lighting must persist.

The default light scene is established under conditions set out in U4. Hence
we formalize those conditions �rst. To formalize the notion of reoccupation,
as mentioned in U4, �rst a few predicates that abbreviate statements about
intervals.

occupied_until(t) : bool = EXISTS (t0 | t0 < t ) :
FORALL (t1 | t0 <= t1 AND t1 < t) : occupied?(t1)

unoccupied_period(t0,t) : bool =
FORALL (t1 | t0 <= t1 AND t1 < t) : NOT occupied?(t1)

A room is reoccupied at time t only if the room becomes occupied at t, it was
occupied until some moment t0 in the past, and unoccupied between t0 and t.

reoccupation_period(t0,t) : bool = t0 < t AND
occupied_until(t0) AND unoccupied_period(t0,t) AND occupied?(t)

With this notion of reoccupied we can de�ne notions reoccupied_withinT1
and reoccupied_longer_thanT1 which state that the previous occupation was
at most, respectively more than, T1 time ago.

630 de Groot A., Hooman J.: Analyzing the Light Control System with PVS



reoccupied_withinT1(t) : bool =
EXISTS t0 : reoccupation_period(t0,t) AND t - t0 <= T1(t0)

reoccupied_longer_thanT1(t) : bool =
EXISTS t0 : reoccupation_period(t0,t) AND t - t0 > T1(t0)

To increase the con�dence in the de�nitions, we have proved that the last two
notions are disjoint. The identi�er left of the LEMMA keyword is the name of
the lemma (disjoint_reoccupation here). This name can be used in proofs to
introduce the lemma in a proof of another property.

disjoint_reoccupation : LEMMA
NOT (reoccupied_withinT1(t) AND reoccupied_longer_thanT1(t))

When the default has been established, which can now be formalized with
the primitives above, we maintain safe illumination as long as nothing has been
chosen by the user. To formalize the last clause, we de�ne a function userInputs
that provides at each time an observation of the three inputs with which the user
can explicitly choose a scene, namely the push buttons and chosen_scene. Any
change in these inputs indicates that the user has taken action to choose a speci�c
scene. Changing the default scene parameters is not considered to be an action
indicating explicit choice.

userInputs(t) : [ bool,bool,LightScene ] =
( pushbutton1(t), pushbutton2(t), chosen_scene(t) )

The following predicate states that no change has occurred in the user's input
during the given interval.

no_input_change(t1,t2) : bool = t1 <= t2 AND
FORALL (t | t1 <= t AND t < t2) : userInputs(t)=userInputs(t1)

Formula safe_illumination is a straightforward translation of \safe illumina-
tion" as stated on p. 13 and used in U1.

safe_illumination(l:roomObservables) : bool = l`light>14

Variable roomlight represents the output of the system (i.e. the observed light
in a room at any point in time). In our formalization it is restricted by the
predicates U1(roomlight) through U4(roomlight). Together they represent the
S_predicate for our theory, following the general outline of section 1.1.

roomlight : VAR roomCharacteristics

After all these preparations we now present our �rst attempt to formalize U1.

U1try(roomlight) : bool = FORALL t : occupied?(t) AND
(EXISTS t1 : t1 <= t AND reoccupied_longer_thanT1(t1) AND

no_input_change(t1,t))
IMPLIES safe_illumination(roomlight(t))

While formalizing this de�nition, we realized that the speci�cation does not men-
tion the situation when the room was entered the �rst time, i.e. when there was
no previous occupation period. It seems reasonable to have also safe illumination
then. Hence we weakened the condition in U1 (i.e. strengthened U1) by remov-
ing the periods of occupation which are implied by reoccupied_longer_thanT1.
This has been formalized in a convenient predicate called enforce_safety.
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enforce_safety(t) : bool =
EXISTS t0, t1 : t0 + T1(t0) < t1 AND t1 <= t AND

unoccupied_period(t0,t1) AND no_input_change(t1,t)

Predicate enforce_safety applies to a room if it was unoccupied for a T1 period
of time | which is suÆcient to require the default scene and safety as well |
and the user subsequently made no explicit choice about the scene. Hence we
reformulate U1 as follows:

U1(roomlight) : bool = FORALL t : occupied?(t) AND
enforce_safety(t)
IMPLIES safe_illumination(roomlight(t))

Since our previous condition in U1try implies enforce_safety, it is easy to
prove that this U1 implies U1try. Note that it depends on the assumptions
about the initial value of T1 and how it changes (see also the remarks below
after U7) whether this now also imposes a requirement on the light at the �rst
entrance of the room.

Compared to all the steps taken for formalizing U1, the formalization of U2
is very straightforward.

U2(roomlight) : bool = FORALL t : occupied?(t)
IMPLIES roomlight(t)=chosen_scene(t)

Considering the informal formulation of U1 through U4 (see section 2.5), it is
important to mention that we have chosen a meaning for \maintains" and
\established" as follows:

Maintain: To maintain a light scene, the light scene must be estab-
lished at all moments within the interval over which the scene must be
maintained.

Establish: To establish a light scene in a room, the selected light groups
(as indicated by the option of the light scene) should be used to augment
the outdoor illumination of the room such that the total amount of
illumination is per the light scene.

Our de�nition of \establish" refers to outdoor illumination; since we have ab-
stracted away the outdoor illumination we interpret \to augment the outdoor
illumination of the room" as \to produce light".

Since we already formalized the notion of reoccupation, U3 and U4 can be
formulated easily.

U3(roomlight) : bool = FORALL t : reoccupied_withinT1(t)
IMPLIES roomlight(t)= chosen_scene(t)

U4(roomlight) : bool = FORALL t : reoccupied_longer_thanT1(t)
IMPLIES roomlight(t) = default_scene(t)
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2.7 Analysis of U5{U8

Above we have considered user needs U1{U4 and U9 (to determine the input).
We examine the user needs U5{U8 in short, to convince ourselves that they have
been suÆciently addressed and that we have not missed any important part of
the informal speci�cation.

U5: For each room, the chosen light scene can be set using the room
control panel.

U6: For each room, the default light scene can be set by using the room
control panel.

Requirements U5 and U6 are reected in the inputs to the system, although
we do not model how or where the user can make such a change. They are also
restated in U9.

U7: For each room, the value T1 can be set by using the room control
panel.

Allowing the user to change T1 makes it an input to the system instead of
some constant (as we did in a preliminary attempt, not shown here). This time-
dependent input makes it somewhat more complicated to �nd out when a room
is reoccupied after T1 time since we do not know which value of T1 to use (it can
change after all). In our de�nition of enforce_safetywe chose to use the value
of T1 at the beginning of a period of unoccupation as the duration required to
enforce safety, as opposed to the value of T1 at the moment of reoccupation. If
T1 cannot change while the room is unoccupied this distinction is not important,
but we have not assumed this here.

U8: If any outdoor light sensor or the motion detector of a room does
not work correctly, the user of this room has to be informed.

Since we are not concerned with sensors at this level of abstraction, and certainly
not with defective sensors, we leave this requirement out.

Note that user needs U10{U14 refer to particular kinds of rooms and we have
decided to concentrate on general rooms here.

Finally, we list a number of detailed observations or choices that have been
made in the current formalization.

{ The default scene is a separate scene that can be set by the user to whatever
he or she desires. This is super�cially di�erent from the behavior required
by the answers to the questions, where a single default scene is de�ned by
the facility manager (Q27). However, if the facility manager can change the
default settings then this is no di�erent to the user from the user changing
it, although it may be more bureaucratic. In addition, the answer to Q27
seems strangely at odds with U9.

{ Although initially we were pleased at the prospect of restricting the number
of possible light scenes to three as allowed by Q40, this proved to be unnec-
essary and we allow the user to set both the option and the desired light
level to whatever values he or she wishes.
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{ The \reoccupied" clauses in U3 and U4 mention \within T1" and \after
more than T1", respectively. This is interpreted to mean \� T1" and \>
T1", respectively.

{ In an earlier attempt we modeled that inputs to the system | related to
a single room | do not change when the room is unoccupied, i.e. the user
cannot change the settings for a room unless the user is in that speci�c room.
This was not actually used and has been removed from the speci�cation
presented here.

3 Analysis of the Requirements

Analyzing the formal speci�cation of the user needs, we identi�ed three conicts.
They are described in section 3.1. An improved formalization, avoiding these
conicts, is presented in section 3.2.

3.1 Conicts

The formalization as presented in section 2.6 has a number of conicting require-
ments within the speci�cation itself. A conict arises when there is a situation in
which several user needs impose a requirement on the desired light in the room.
The following fact illustrates a conict with U1 and U2. Note that PVS has a
number of synonyms for things-that-need-to-be-proved such as LEMMA, THEOREM,
and FACT. The di�erent names are meant for the human reader. Recall that
U1U2conflict is the name of the property.

U1U2conflict : FACT U1(roomlight) AND U2(roomlight) AND
occupied?(t) AND enforce_safety(t)
IMPLIES chosen_scene(t)`light>14

When the room is occupied and safety is enforced then both U1 and U2 apply
and the chosen scene must realize an ambient light level that is safe (i.e. greater
than 14 Lux). This imposes a strange restriction on the scenes that can be chosen
by the user. A similar conict exists between U1 and U4:

U1U4conflict : FACT U1(roomlight) AND U4(roomlight) AND
occupied?(t) AND enforce_safety(t) AND
reoccupied_longer_thanT1(t)
IMPLIES default_scene(t)`light>14

This implies that the default scene should be safe, although this is not implied
by any of the other informal requirements. Since we allow arbitrary user inputs
(including an arbitrary default scene), this could lead to a contradiction.

Another kind of conict is embodied in the relationship between U2 and
U4. U2 unconditionally states that the chosen scene must be maintained; U4
conditionally states that the default scene is to be established. Since we have
assumed that \to maintain" implies \to establish", this is a problem unless the
default and the chosen scenes are equal.

U2U4conflict : FACT U2(roomlight) AND U4(roomlight) AND
reoccupied_longer_thanT1(t)
IMPLIES chosen_scene(t)=default_scene(t)
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3.2 Second Formalization, Avoiding Conicts

In the previous section we have identi�ed three conicts between the user needs;
between U1 and U2, U1 and U4, and U2 and U4. We improve our previous for-
malization by resolving these conicts, assuming the informal document intended
some implicit priority between user needs.

Concerning the U1 - U2 conict, we assume U1 has priority over U2, since
otherwise the whole notion of safety and default scenes becomes irrelevant. In
general, we decided that safety, i.e. U1, has absolute priority.

Note that this choice depends to some extent on our choice of meanings for
\establish" and \maintain" and our resolution of the conict between U2 and
U4, below. As such, other solutions are possible, and it should be noted that the
answer to question Q50 (which falls outside of the set of the questions we deal
with) states that \light scenes always have priority over safety". Interpreting
that answer strictly makes safety completely irrelevant, since there is always a
scene (either default or chosen) established when the room is occupied.

Since we give priority to U1, U1 is not changed and U2 is reformulated so
that it is complementary to U1. This is done by requiring that U2 only speci�es
the light in the room if safety is not enforced.

U2(roomlight) : bool = FORALL t : occupied?(t) AND
NOT enforce_safety(t)
IMPLIES roomlight(t)=chosen_scene(t)

We found no conict with U3 and hence it is not changed. Concerning U4, we
have already solved the conict between U2 and U4, because we can prove

reocc_enforce : LEMMA reoccupied_longer_thanT1(t)
IMPLIES enforce_safety(t)

To solve the conict between U1 and U4, we apply function makeSafe to ensure
that when the room has been unoccupied for at least T1 time, the light is safe.

makeSafe(l:LightScene) : LightScene =
IF safe_illumination(l) THEN l
ELSE (# light:=15, option:=l`option #) ENDIF

U4(roomlight) : bool = FORALL t : reoccupied_longer_thanT1(t)
IMPLIES roomlight(t) = makeSafe(default_scene(t))

This leads to the following predicate on the observed light in the room:

allNeeds(roomlight) : bool = U1(roomlight) AND U2(roomlight) AND
U3(roomlight) AND U4(roomlight)

4 Re�nement using Dimmable Lights

As a �rst step towards a realization of the abstract speci�cation of the previous
section, we perform a re�nement in terms of dimmable lights (which are partly
speci�ed in the Light Control Case Study document) and a control system which
controls these lights.
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As noted in section 2.6 we have assumed that the meaning of \establish"
relates the desired scene to some kind of operations on dimmable lights. Recall
that we ignore the outdoor illumination. Hence, the dimmer-actuators on the
dimmable lights in the ceiling-light groups are to be set such that the settings
of the light realize the desired light scene under certain assumptions about the
relationship between the dimmers and the light produced.

Re�ning the speci�cation in terms of a control system and dimmable lights
requires speci�cations of each of these parts, as well as how they work together.
Section 4.1 de�nes the characteristics of a dimmable light in isolation. In sec-
tion 4.2 we model a component that formalizes our assumptions about the com-
bined e�ect of the two dimmable lights in a room on the observed room light.
Section 4.3 de�nes the behavior of the control system for each room. These
components are composed in section 4.4 to obtain an undelayed implementa-
tion. Then in section 4.5 we demonstrate that this implementation satis�es our
formalized user needs.

4.1 Formalizing the Dimmable Light

For the formalization of the dimmable light we used the text and the �gure on
pp. 7{8 of the informal speci�cation. Section 2.10 mentions:

Inputs to a dimmable light are created by a pulse to toggle the light, by
a dimmer to set the current dim value, and by control system active to
show the status of the control system. If this signal is not sent every 60 s,
the dimmable light switches to fail safe mode, i.e. dim value is assumed
to be 100%. Outputs of a dimmable light are generated by a status line
to show the current state (on or o�) of the light.

One purely textual problem can be identi�ed immediately. On p. 7, the range
for a dimmer (which is an input to the dimmable light) is de�ned as 0{100%while
the description of the range mentions only the values 0% and 10-100%. We have
assumed that the values 1-9% are also permitted, and that they also produce
light. Q58 invalidates this, but as noted in the introduction of this paper, we
used only Q1-Q46 for our speci�cation. Also note that introducing a threshold
in the dimmers, as done by Q58, it is impossible to realize some scenes that the
user may desire, namely those that desire a positive amount of light less than
the dimmable lights can produce at a dimmer setting of 10%.

Our second choice is somewhat more fundamental. The amount of light the
lights themselves can produce is never stated in the informal speci�cation. We
have no way of knowing how much light a dimmable light produces. We assume
that a dimmable light produces light proportional to its dimmer setting when
the light is on, and that a dimmable light can produce anywhere from 0 Lux
(o�) to 10000 Lux (fully on, dimmer set to 100%).

A third choice is rather pragmatic: we have chosen to drop the pulse and
the push button from the light itself. The informal text states:

p. 5 . . . push button is pushed: if the ceiling light group is completely on,
it will be switched o�; otherwise it will be switched on completely.

p. 6 . . . push button is pushed: if the hallway section light group is on,
then it will be switched o�; otherwise it will be switched on.
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p. 8 Inputs to a dimmable light are created by a pulse to toggle the
light. . .

One reason for deleting these two inputs from the dimmable light is that the
pulse is supposed to toggle the state of the light from on to o� and vice versa,
i.e. toggle the status line; the push button is to have a similar e�ect. The e�ect
of the push button appears to vary depending on what kind of room the light is
placed in, which makes it unappealing to model it in a generic dimmable light.
Another problem is the lack of initial values. Moreover, de�ning such a toggle
function in our dense time model would introduce a lot of technicalities. E.g. we
would have to introduce the well-known non-Zeno condition (see, e.g., [AL91]).
Hence we decided to let the status line depend on the value of the dimmer only
and not be set independently or inuenced by the buttons.

The dimmable light is speci�ed in our standard PVS style, as described in
section 1.1. First we de�ne in theory LightTypes the types for the input. The
input of the control system active (CSA) input line has type ZO which stands
for \Zero One", an enumeration type that is di�erent from the booleans.

ZO : NONEMPTY_TYPE = { zero, one }
DimmerValue : NONEMPTY_TYPE = { n:real | n>=0 AND n<=100 }
dimmer_on?(d:DimmerValue) : bool = d>0

The theory about dimmable lights is parameterized by functions that give
the input values for the light in the course of time.

DimmableLight [ (IMPORTING TimePrim,LightTypes)
control_system_active : [Time->ZO],
dimmer_value : [Time->DimmerValue] ] : THEORY

Next, as the output of the dimmable light, we de�ne types for the character-
istics of lights. Recall that Lux has already been de�ned in section 2.2.

lightObservables : NONEMPTY_TYPE =
[# status : bool, illumination : Lux #]

lightCharacteristics : NONEMPTY_TYPE = [Time->lightObservables]

Typechecking these de�nitions leads to a TCC which requires us to prove that the
type lightObservables should be nonempty. The proof is trivial, for instance
record [# status:=true, illumination:=15 #] is an element of that type.
[Fig. 4] depicts the input and output of a dimmable light.
First we formalize the fail-safe mode of the light, as mentioned on p. 8:

If this (i.e. the control-system-active) signal is not sent every 60 s. the
dimmable light switches to fail-safe mode, i.e. dim value is assumed to
be 100%.

Here \sent" means \received as input by the light." A non-trivial formalization of
this condition is given by �rst rephrasing the informal speci�cation: if the control
system is not alive anymore, the dimmable light switches to fail-safe mode. The
control system is considered alive if it has sent a control-system-active signal to
this light in the past 60 seconds. Formally,
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Figure 4: Input and Output of a Dimmable light

alive?(t) : bool = EXISTS t0 : t - sec(60) <= t0 AND t0 <= t AND
control_system_active(t0) = one

We require a period of at least 60 seconds before switching to fail-safe mode.
The function failsafe_dimmer uses alive? and the value of the dimmer input
to de�ne the actual dimmer value of the light:

failsafe_dimmer(t) : DimmerValue =
IF (alive?(t)) THEN dimmer_value(t) ELSE 100 ENDIF

Next we formalize the second choice made at the beginning of this section: the
light production of a dimmable light is proportional to the dimmer according to
the formula set out above.

lightProduction(d:DimmerValue) : Lux = 100 * d

The functions de�ned above are used to de�ne the predicate that characterizes
the output of the dimmable light.

lc : VAR lightCharacteristics

DimLight_predicate (lc) : bool = FORALL t :
LET fd=failsafe_dimmer(t) IN

status(lc(t)) = dimmer_on?(fd) AND
illumination(lc(t)) = lightProduction(fd)

Note the use of a LET construction to introduce an abbreviation. Next we de�ne
an instance satisfying this constraint. Recall that (DimLight_predicate) is an
abbreviation of f lc | DimLight_predicate (lc) g.

instance : (DimLight_predicate)
END DimmableLight

As mentioned before, typechecking leads to a TCC to show that the type is
not empty. Here it is easy to construct an element and show that it satis�es
DimLight_predicate:

thelc : lightCharacteristics = LAMBDA t :
(# status := dimmer_on?(fd),

illumination := lightProduction(fd) #)
WHERE fd=failsafe_dimmer(t)

As an alternative to the LET construction, we use a WHERE clause to introduce
abbreviation fd in the de�nition.
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4.2 Combining the Lights

Since a room has two dimmable lights we must set both dimmers based on the
desired light scene in one single room; this requires a number of assumptions
about the behavior of light. Here we assume that the light production of the
two lights in a room is summed to �nd the total light in a room. The two lights
contribute equally to the light in a room when both are on.

For each light we can discover whether the light is a wall or a window light
using the enumeration type LightIds, as de�ned in theory LightTypes.

LightIds : TYPE = { window, wall }

[Fig. 4] shows input and output of a component that formalizes our assumption
about the combined light production. This is reected in the corresponding PVS
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Figure 5: Input and Output of the Combine Lights Component

theory as follows.

CombineLight[ (IMPORTING TimePrim,LightTypes)
dimlight : [LightIds->lightCharacteristics]
] : THEORY

BEGIN
roomlight : VAR roomCharacteristics

The following predicate characterizes the total amount of light (as the sum of
the illumination of both dimmers) and the option (i.e. window, wall, or both)
using the status of each of the lights.

CombineLight_predicate(roomlight) : bool = FORALL t :
LET windowlight = dimlight(window)(t),

walllight = dimlight(wall)(t)
IN
light(roomlight(t)) =

windowlight`illumination + walllight`illumination AND
option(roomlight(t)) =

IF windowlight`status AND NOT walllight`status
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THEN window
ELSIF NOT windowlight`status AND walllight`status
THEN wall
ELSE both ENDIF

As usual, we de�ne an instance of the room characteristics satisfying this pred-
icate. Also here it is straightforward to prove the generated TCC.

instance : (CombineLight_predicate)
END CombineLight

4.3 The Control System

The control system should calculate dimmer values based on the desired light
scene (which may be the default scene or the chosen scene, depending on U3
and U4). It must also provide the other input signals to the two dimmable lights
{ in our case only the control-system-active (CSA) signal, since we have ab-
stracted away the other inputs. Given the speci�cations of the dimmable lights
and the combination of the lights, the aim is to specify a control system such
that the implementation depicted in [Fig. 6] is actually a re�nement of the user
needs. As can be seen from this �gure, PVS theory Control has the same pa-
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Figure 6: Undelayed Re�nement of User Needs

rameters as theory UserNeeds. We start with the de�nition of the output type,
ControlOutput, which provides the input for each light. Additionally we de�ne
a few useful variables.
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ControlOutput : TYPE =
[# control_system_active : [LightIds->[Time->ZO]],

dimmerval : [LightIds->[Time->DimmerValue]]
#]

co : VAR ControlOutput
li : VAR LightIds
ls : VAR LightScene
csa : VAR [LightIds->[Time->ZO]]
dimval : VAR [LightIds->[Time->DimmerValue] ]

Next we de�ne the CSA signal that our system produces. A real system would
assert the signal at certain moments in its control loop as an indication that pro-
cessing proceeds normally and not assert the signal otherwise. Since we are not
dealing with failures here, we simply specify that the CSA-signal is continuously
one.

csa_predicate(csa) : bool = FORALL li, t : csa(li)(t) = one

Next we specify the contribution of dimmer li in the realization of a certain
light scene ls. Recall that we assumed that the amount of Lux produced by
a single dimmer equals 100 times the dimmer value (see lightProduction in
theory DimmableLight).

dimmer_part(li,ls) : DimmerValue =
CASES ls`option OF

both : ls`light/200,
window : CASES li OF

window : ls`light/100,
wall : 0

ENDCASES,
wall : CASES li OF

window : 0,
wall : ls`light/100

ENDCASES
ENDCASES

This matches the kind of light { wall or window { with the desired light scene,
and determines the dimmer setting accordingly. Next the dimmer value for each
dimmable light is de�ned by predicate dimval_predicate. It basically applies
function dimmer_part to a particular light scene which depends on whether
safety is enforced or not.

dimval_predicate(dimval) : bool = FORALL li, t :
dimval(li)(t) =

IF enforce_safety(t)
THEN dimmer_part(li,makeSafe(default_scene(t)))
ELSE dimmer_part(li,chosen_scene(t)) ENDIF

Combining the predicates on the output, we can now easily de�ne a particular
instance of the control component. Again the TCC is easy to prove.

instance : { co | csa_predicate(control_system_active(co)) AND
dimval_predicate(dimmerval(co)) }

END Control

641de Groot A., Hooman J.: Analyzing the Light Control System with PVS



4.4 Composition of the Undelayed Implementation

In theory UndelayedImpl we compose the components de�ned above, according
to [Fig. 6]. As the �gure shows, the theory has the same input parameters as the
theories UserNeeds and Control.

Mainly following the pattern described in section 1.4, we import the relevant
theories by giving them a name and use typical instances of the output as input
to other theories.

control : THEORY = Control[occupied?,chosen_scene,default_scene,
pushbutton1,pushbutton2,T1]

windowdimmer : THEORY =
DimmableLight[control_system_active(control.instance)(window),

dimmerval(control.instance)(window)]
walldimmer : THEORY =

DimmableLight[control_system_active(control.instance)(wall),
dimmerval(control.instance)(wall)]

dimlight : [LightIds->lightCharacteristics] = LAMBDA li :
CASES li OF

window : windowdimmer.instance,
wall : walldimmer.instance

ENDCASES

combinedlight : THEORY = CombineLight[dimlight]

instance : roomCharacteristics = combinedlight.instance

4.5 Proving Undelayed Re�nement

In theory UndelayedRef we prove the undelayed re�nement. It has the same
parameters as UserNeeds and UndelayedImpl, and imports these two theories
as follows.

IMPORTING UserNeeds[occupied?,chosen_scene,default_scene,
pushbutton1,pushbutton2,T1]

undelimpl : THEORY =
UndelayedImpl[occupied?,chosen_scene,default_scene,

pushbutton1,pushbutton2,T1]

Now the aim is to prove theorem undelayed_refinement.

undelayed_refinement : THEOREM
UserNeeds.allNeeds(undelimpl.instance)

That is, an arbitrary instance of the (undelayed) implementation satis�es the
user needs as de�ned by allNeeds in theory UserNeeds. Our proof consists of
several lemmas that state the re�nement for each of the user needs. We start
with the proof for U1:

refineU1 : LEMMA UserNeeds.U1(undelimpl.instance)
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In the interactive proof of this lemma with the PVS proof checker, we �rst list all
available information by introducing the types of the instances and expanding the
de�nitions of all predicates. Next there is a rather mechanic instantiation with
the current time point, a further unfolding of de�nitions and simple rewriting.

The next user need, U2, which states that the chosen light scene is maintained
while the room is occupied, turned out to be more diÆcult to handle. If a light
scene requires absolute darkness (0 Lux) then both dimmers are set to zero.
In the de�nition of CombineLight_predicate in theory CombineLight we have
chosen to identify the situation where both dimmers are set to zero with a light
scene option of both. Only during the proof of U2, however, we realized that the
chosen light scene can associate any option with a desired illumination of zero.
Intuitively we cannot distinguish between darkness realized with one light or two
lights. Of course, we could make our de�nition of CombineLight_predicate less
prescriptive, but for simplicity we axiomatically declare here that all dark scenes
have option both.

LightScenesZero : AXIOM
ls`light = 0 IMPLIES ls`option = both

A straightforward consequence of this axiom is the following FACT.

LightScenesProp1 : FACT
ls`option = wall OR ls`option = window IMPLIES ls`light > 0

Using this fact, we can prove that the re�ned system satis�es U2.

refineU2 : LEMMA UserNeeds.U2(undelimpl.instance)

While trying to prove that the re�ned system ful�lls our formalization of U3,
we discovered that the following situation leads to a conict. Suppose a user
enters a room, sets some chosen scene, and leaves. After more than T1 time
has passed, the user returns and does not explicitly request a scene. Because
of U4, the default scene is established. After some time, the user leaves and
returns quickly in less than T1 time. U3 states that the chosen scene should be
reestablished, even though the default scene was established in the meantime.
We choose to give U4 priority over U3 in this case; if a room has been empty
for a long time, and a user walks in, out and in again without changing any of
the settings, the room should still have the default safe lighting. This caused us
to add a clause NOT enforce_safety to the de�nition of U3:

U3new(roomlight) : bool = FORALL t : reoccupied_withinT1(t) AND
NOT enforce_safety(t)
IMPLIES roomlight(t)= chosen_scene(t)

But now we observed that U2 implies this new U3 (in fact, this was already the
case with our �rst formalization in section 2.6).

U2impliesU3new : LEMMA U2(roomlight) IMPLIES U3new(roomlight)

Hence we removed U3 from the user needs, leading to the following de�nition:

allNeeds(roomlight) : bool = U1(roomlight) AND U2(roomlight) AND
U4(roomlight)
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The proof that the re�ned system ful�lls U4 is straightforward. A trivial combi-
nation of the lemmas for U1, U2, and U4 leads to a proof of the �nal theorem.

undelayed_refinement : THEOREM
UserNeeds.allNeeds(undelimpl.instance)

The proof of this theorem | including all of its lemmas such as refineU1 listed
above | took us about 150 interactive steps in PVS.

5 Introducing Delays

Thus far, only the timing constraints in the requirements have been taken into
account in our framework. In the implementation of section 4 the control com-
ponent calculates dimmer values instantaneously. Moreover, the dimmable lights
react instantaneously to the dimmer value and produce an amount of light pro-
portional to the dimmer value. This is not very realistic, since computation is
not really instantaneous and the lights have a well de�ned response time (p. 7
of the informal speci�cation). Hence it seems important to model these internal
delays properly.

As an example, our next formalization takes one of these delays explicitly
into account; in section 5.1 we add a delay to the dimmable lights. In section 5.2
we show that this does not lead to a classical re�nement. Still, we establish a
formal relation with the undelayed implementation by de�ning a kind of delay-
re�nement in section 5.2.

5.1 A Dimmable Light with Response Time

The informal speci�cation suggests that changing the dimmer value from x to
y causes the light to change gradually from producing light proportional to x
to producing light proportional to y. It also suggests that the time needed to
change is proportional to the di�erence between x and y. Here we simply assume
that the light changes instantaneously from producing light proportional to x to
producing light proportional to y at some moment constrained by the maximal
delay of dimdelay ms (we use the symbolic constant dimdelay; the informal
speci�cation mentions a response time of 10ms).

We model a delayed dimmable light by re-using the speci�cation of an un-
delayed light and applying a delay function to its output. Given a certain delay
d, a function f on the time domain is called a delay function if it satis�es the
predicate delayFunction? de�ned below. First we express monotonicity.

f : VAR [Time->Time]
d, d0 : VAR nzTimeDuration

monotonic?(f) : bool = FORALL t1, t2 : t1 < t2 => f(t1)< f(t2)

Next we de�ne that function f is a delay function if it shifts time at most d
back. We shift time back since the function will be applied to the domain of a
characteristic of the system (i.e. a function from the time domain to observables).
That is, the new (delayed) output is determined from the original output at a
previous time point, at most d time units back. Additionally, we require that f
is surjective and monotonically increasing.
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delayFunction?(d)(f) : bool = surjective?(f) AND monotonic?(f) AND
FORALL t : t-d < f(t) AND f(t) <= t

To increase our con�dence in the de�nition we proved a few properties about it.
Note that id is the (pre-de�ned) identity function.

dF_injective : THEOREM monotonic?(f) IMPLIES injective?(f)

dF_bijective : THEOREM delayFunction?(d)(f) IMPLIES bijective?(f)

dF_accepts_longer_delays : THEOREM delayFunction?(d)(f) AND d0>=d
IMPLIES delayFunction?(d0)(f)

dF_id : LEMMA delayFunction?(d)(id)

Next we de�ne a delayed implementation of the user needs. First we import
the undelayed implementation and �x a maximal delay and a corresponding
delay function.

IMPORTING UndelayedImpl[occupied?,chosen_scene,default_scene,
pushbutton1,pushbutton2,T1],

DelayFunctions

dimdelay : nzTimeDuration
delayf : (delayFunction?(dimdelay))

Then the delayed implementation is de�ned by simply applying a delay function
to the time domain of the output of each dimmer and using that as input for
the combined light component.

dwindowdimmer_instance : lightCharacteristics =
(windowdimmer.instance) o delayf

dwalldimmer_instance : lightCharacteristics =
(walldimmer.instance) o delayf

ddimlight : [LightIds->lightCharacteristics] = LAMBDA li :
CASES li OF

window : dwindowdimmer_instance,
wall : dwalldimmer_instance

ENDCASES

dcombinedlight : THEORY = CombineLight[ddimlight]

instance : roomCharacteristics = dcombinedlight.instance

Observe that we have applied the same delays to both failsafe dimmers in the
system. In section 6, we discuss the problems that occurs if the delays are not
the same.

5.2 Delay-Re�nement

Although these delayed dimmable lights represent a more realistic implementa-
tion, for any non-zero delay the delayed implementation does no longer satisfy
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the speci�cation allNeeds. For instance, we cannot guarantee that the chosen
scene will be established immediately, as required by our formalization of U2.
Hence, also the delayed implementation is not a classical re�nement (in the sense
of behavior inclusion) of the undelayed one.

However, assuming the dimmer delay is relatively small, we still think that the
delayed implementation is a reasonable approximation of the undelayed one. The
aim is to express this more formally, by establishing some kind of approximation
relation between the two.

To de�ne a general delay-re�nement relation, assume given an arbitrary range
R and two functions, concr and abstr from the time domain to R.

The relation concr << abstr, denoting that concr is a delay-re�nement of
abstr, expresses that there exists a delay d such that any abstract value equals
a concrete value at a point at most d time units later.

concr, abstr : VAR [Time->R]

<<(concr,abstr) : bool = EXISTS d :
(FORALL t : (EXISTS t1 : t <= t1 AND t1 < t+d AND

abstr(t) = concr(t1)));

To apply this to the delayed implementation of the user needs, we import this
theory using roomObservables instead of the range R. Then we show that the
delayed implementation is indeed related to the undelayed one by <<.

delayed_ref : THEOREM
DelayedImpl.instance << UndelayedImpl.instance

Observe, however, that the relation << is rather weak and allows for instance
a reordering of the output values. Such reorderings are avoided by the delay
functions we introduced before, so as a second delay-re�nement we relate the
two systems by some delay function as well, delaying the abstract undelayed
output in such a way that it matches the output of the concrete system with
delays. This leads to the delay-re�nement relation <= which is shown to be
stronger than <<.

<= (concr,abstr) : bool =
EXISTS d, (f : (delayFunction?(d))) : abstr o f = concr;

ref_rel : LEMMA (concr <= abstr) IMPLIES (concr << abstr)

As expected, in the Light Control Case Study it is easy to prove that the delayed
implementation is a delay re�nement according to the de�nition above.

delayed_refinement : THEOREM
DelayedImpl.instance <= UndelayedImpl.instance

6 Concluding Remarks

6.1 Overview

We have formalized the user needs of the Light Control Case Study in the spec-
i�cation language of the interactive theorem prover PVS. First, this was done
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on the level of users of the system, in terms of what they can observe. Several
problems with the informal speci�cation have been detected and resolved. A few
important user needs (U1{U4) already gave rise to a large number of questions.

Using dimmable light actuators, this speci�cation was re�ned to a more con-
crete one. This also demonstrates the consistency of the high-level speci�cation.
Such a formal consistency proof turned out to be very useful because it revealed
an unexpected conict. Next we further re�ned the speci�cation, introducing an
explicit delay in the dimmable light. Observing that this does not lead to a clas-
sical re�nement, we introduced a new notion of delay-re�nement and used it to
relate the speci�cation with delays to the one without. A PVS dump �le with all
theories and proofs can be found on http://www.cs.kun.nl/~adridg/lccs/.

6.2 Related Work

Related to our work are especially other approaches using PVS. The designers
of PVS advocate the use of PVS during the early phases of the design of com-
puter systems. For example [Rus97] describes the use of strong type checking,
completeness and consistency checking using powerful decision procedures and
model-checking of PVS for requirements engineering. This has been applied in
several industrial applications. For instance, [CV98] describes four case stud-
ies in which requirements for new ight software subsystems on NASAs Space
Shuttle were analyzed. The size of the analyzed speci�cations ranges from 20
to 110 pages of informal description. Analysis included reachability analysis us-
ing the state exploration tool Murphi and theorem proving with PVS. In other
work [vdPHdJ98] we have formalized the requirements of part of a command
and control system in PVS. The re�nement with delays described in section 5 is
related to work by A. Mok [Mok91].

Note that our work with property-oriented speci�cations clearly di�ers from
Statechart-like approaches (with examples in [LHH+91, LHHR94, HL96]) or
other work on transition systems such as TAME [AH97] or RSML [HC96]. In
our opinion, those approaches are too far removed from the kind of informal
speci�cation we have to deal with. In particular we feel that our sentence-by-
sentence translation of the informal speci�cation is easier to validate than a
statechart-like presentation. A state-transition based formalization is of course
very valuable in the further development of the formal speci�cation. We believe
that the two approaches can co-exist, providing both easy validation and useful
veri�cation. As such our approach of translating informal speci�cations into PVS
can be seen as a precursor to the writing of a transition system: our formulas
could conceivably be translated into transition systems or they could be used to
validate traces of a transition system.

6.3 Future Work

In future work we shall investigate the representation of the formal requirements
speci�cation in a notation which is more convenient for domain experts (e.g. us-
ing notations from the UML). Important in this respect is feedback from domain
experts, so we intend to study this in close collaboration with a company (the
ICT Group).

Another interesting topic for future research is the problem of de�ning appro-
priate re�nement notions that can be used during our incremental formalization
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of the requirements. In the current case study we observed that a convenient
development of the speci�cations, close to the informal text, need not corre-
spond to classical re�nement. In our formalization, the two instances of a de-
layed dimmable light have been obtained by applying the same delay function
to an undelayed light. This makes it considerably easier to �nd a formal relation
between the undelayed and the delayed implementation.

Suppose, however, that the delays are di�erent | say, one light has a constant
delay of 1 second and the other light has a constant delay of 2 seconds. This
is reasonable because each individual light will have some individual physical
characteristics that cause the delays associated with each light to be di�erent.
Suppose the dimmer of each light is set to 0%, remaining 0 until time t1 when it
is set to 100% and remains at 100%. The amount of light produced by the two
lights together is 0 Lux until time t1 + 1s. At time t1 + 1s the �rst light begins
producing light proportional to a dimmer setting of 100%, while the other light
is still producing light proportional to a dimmer setting of 0%. This situation
lasts until time t1 +2s. During the interval [t1 +1s; t1+2s] the total amount of
light produced is not proportional to either a dimmer setting of 0% or 100%.

Hence there are situations where not only the timing of the output di�ers
from the high-level speci�cation, but there are also periods with output values
that are not allowed by this speci�cation. Still, we would like to consider the
more detailed implementation as a reasonable approximation. In future research
we intend to investigate the formalization of this intuition.
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