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Abstract: Crystal lattices are in�nite periodic graphs that occur naturally in a variety
of geometries and which are of fundamental importance in polymer science. Discrete
models of protein folding use crystal lattices to de�ne the space of protein confor-
mations. Because various crystal lattices provide discretizations of the same physical
phenomenon, it is reasonable to expect that there will exist \invariants" across lattices
related to fundamental properties of the protein folding process. This paper considers
whether performance-guaranteed approximability is such an invariant for HP lattice
models. We de�ne a master approximation algorithm that has provable performance
guarantees provided that a speci�c sublattice exists within a given lattice. We describe
a broad class of crystal lattices that are approximable, which further suggests that
approximability is a general property of HP lattice models.
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1 Introduction

Crystal lattice models are vehicles for reasoning about the protein folding phe-
nomenon through analogy. Crystal lattices are in�nite periodic graphs that are
generated by translations of a \unit cell" that �ll a two or three-dimensional
space. In polymer science many important results have been obtained through
the use of lattice models [9, 17]. In the context of protein folding, lattices provide
a natural discretization of the space of protein conformations. The sequence of
amino acids that de�nes a protein can be viewed as a path labeled with amino
acids on vertices. A conformation of a protein is a self-avoiding embedding of
this path into a lattice, where each vertex of the path is mapped to a vertex of
the lattice and edges of the path are mapped to edges of the lattice. With every
conformation we can associate an energy value using rules de�ned by the model,
which take into account the neighborhood relationship of the amino acids.

1 This paper is part of the January special issue of JUCS on Automata, Logic, and
Computability dedicated to Professor Sergiu Rudeanu Festschrift, edited by C.S.
Calude and G. S�tef�anescu.
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In this paper we consider algorithms for protein structure prediction for crys-
tal lattice models. Lattices models of protein folding have provided valuable in-
sight into the general complexity of protein structure prediction problems. For
example, protein structure prediction has been shown to be NP-hard for a variety
of lattice models [3, 4, 6, 13]. This lends credibility to the general assumption
that protein structure prediction is an intractible problem. These results are
complemented by analyses of protein folding algorithms that prove worst-case
performance guarantees for a variety of lattice models [1, 7, 12, 15]. These results
show that near-optimal protein structures can be quickly constructed, and they
can be generalized to simple o�-lattice protein models [15].

Of particular interest here is the design of algorithms that can be applied to a
variety of lattice models. Results that transcend particular lattice frameworks are
of signi�cant interest because they can say something about the general biological
problem with a higher degree of con�dence. In fact, it is reasonable to expect that
there will exist algorithmic invariants across lattices that fundamentally relate
to the protein folding problem, because lattice models provide discretizations of
the same physical phenomenon.

We have previously addressed the issue of algorithmic invariance in our hard-
ness results for lattice models [13]. This analysis considers a simple empirical
potential model that uses a distance-related energy with an unbounded number
of amino acid types [22]. Our results extend the NP-hardness argument of Unger
and Moult [22] to all three-dimensional lattices that have a single, in�nite con-
nected component. This result provides stronger evidence for the intractibility
of protein folding problems because of its independence from a speci�c lattice
formulation.

This paper considers whether performance guaranteed approximation algo-
rithms can be applied to a wide range of lattice models. We consider approxima-
tion algorithms for the hydrophobic-hydrophilic model. This model categorizes
amino acids as hydrophobic (nonpolar) or hydrophilic (polar), and the energy
of a conformation is equal to the number of hydrophobic-hydrophobic contacts.
We describe two \master" approximation algorithms that can be applied to lat-
tices that contain a general sublattice that we call a latticoid. Latticoids impose
a structure in which a skeleton of hydrophobic contacts can be constructed,
thereby leading to folding algorithms whose performance can be analyzed. In
the particular case of the square two-dimensional lattice, the latticoid describes
the structure used in the approximation algorithms described by Hart and Is-
trail [12].

We prove that our master approximation algorithms have performance guar-
antees for a class of lattices that includes most of the lattices commonly used
in simple exact protein folding models, e.g. two- and three-dimensional square
lattice [9, 11, 19], the diamond (carbon) lattice [20], the face-centered-cubic lat-
tice [5] and the 210 lattice used by Skolnick [21]. Furthermore, this class encom-
passes a large number of other lattices studied in crystallography. These results
extend and consolodate our previous results in Hart and Istrail [14].

2 Lattice Models for Protein Folding

Lattice models for protein folding can be distinguished by at least �ve properties:

1. An alphabet of types of amino acids that the model considers;
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2. The set of protein instances represented as sequences from this alphabet;
3. An energy formula specifying how the conformational energy is computed;
4. Parameters for the energy formula;
5. A crystal lattice that provides a discretization of the conformation space.

For example, the hydrophobic-hydrophilic (HP) model [8] can be described as
follows. The alphabet used in an HP model is A = f0; 1g, and the set of protein
instances is the set of binary sequences � = f0; 1g+. Each sequence s 2 � is the
(hypothesized) hydrophobic-hydrophilic pattern of a protein sequence, where 1
represents a hydrophobic amino acid, and 0 represents a hydrophilic amino acid.
We will refer to s as a protein instance. Contact energies are used in this model,
so the energy formula is an energy matrix, E . The energy matrix is indexed
by the alphabet symbols, E = (e(a; b))a;b2A. For HP models, e(a; b) = �1 if

a = b = 1, and e(a; b) = 0 otherwise. Conformations for the HP model have
been commonly studied for the a square or cubic lattices.

We consider protein folding models on a large class of crystal lattices, in-
cluding the square lattice. Crystal lattices are in�nite periodic graphs that are
generated by translations of a \unit cell" that �ll a two- or three-dimensional
space (e.g., see Ashcroft and Mermin [2]). Examples of unit cells for crystal lat-
tices are shown in Figure 1.

(a) (b)

(c) (d)

Figure 1: Examples of crystal lattices: (a) cubic, (b) diamond, (c) cubic with planar
diagonals, and (d) hexagonal.

562 Hart W.E., Istrail S.: Invariant Patterns in Crystal Lattices ...



We can characterize crystal lattices in graph-theoretic terms as follows. A unit
cell is a volume of space (in two or three dimensions), that can be translated to
�ll all of space, such that

1. the volume contains a graph with �nitely many points
2. edges that pass through the surface of the volume connect graphs in neigh-

boring unit cells.

From this de�nition, it follows that connectivity between unit cells is symmetric.
Consider three adjacent unit cells generated by translating a unit cell in a single
direction, c1c2c3. If there is an edge connecting c1 and c2, then there must exist
an similar edge connecting c2 and c3.

Let G be an in�nite periodic graph generated by translations of a unit cell.
G is connected if there exists a path between any two vertices in G. Consider the
graph derived from G in which vertices represent unit cells and edges represent
a connection between two unit cells. If G is connected then this corresponding
graph is connected, which is a property common to physical crystal structures.
An (ideal) crystal lattice, L, is a connected in�nite periodic graph generated by

translations of a unit cell. A sublattice L̂ of L is a subgraph of L that is obtained
by removing edges and vertices from L.

One can interpret a protein sequence s = s1:::sm as anm-vertex node-labeled
path, where for 1 � i � m, node i is labeled with si. The path has m� 1 edges
that are called bonds. A conformation C of a protein sequence s in a lattice L is
a path in the lattice in which the protein sequence is embedded, i.e., the protein
vertices are mapped one-to-one to lattice points, and protein bonds are mapped
to the corresponding lattice edges. The energy of a conformation of the protein
sequence s in L is typically computed using distances in the lattice. For example,
in the HP model the energy is a function of the number of \contact edges." A
contact edge is a lattice edge that is not a protein bond (in the embedding)
but has both endpoints labeled. In HP models, contact edges with 1s at their
endpoints have weight �1 while all other contact edges have weight 0.

The native conformation of a protein is the conformation that has biological
function. According to the Thermodynamic Hypothesis the native conformation
of a protein is the conformation with the minimum energy among the set of all
conformations. Consequently, given a sequence s and a lattice model, the protein
folding structure prediction problem is to �nd a native conformation of s in L.
This problem is known to be NP-hard for the square and cubic lattices [4, 6],
but performance-guaranteed approximation algorithms have been developed for
several common lattices (e.g. square, cubic and face-centered-cubic lattices).

Let ZL(s) be the energy of the conformation generated for protein instance s
on lattice L by algorithm ZL, and let OPTL(s) be the energy of the optimal con-
formation of s on L. A standard performance guarantee used for approximation
algorithms is the asymptotic performance ratio R1(ZL) [10]. If R

1(ZL) = � ,
then as ZL is applied to larger protein instances, the value of solutions generated
by ZL approaches a factor of � of the optimum. Here, \large" protein instances
have low conformational energy at their native state, which may be independent
of their length. Since ZL(s) � 0 and OPTL(s) � 0, both of these ratios are scaled
between 0 and 1 such that a ratio closer to 1 indicates better performance.

The following lemma will be used to prove asymptotic performance guaran-
tees for the approximation algorithms that we consider.
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Lemma1. Let A be an approximation algorithm such that for a sequence s
A(s) � �Af(s) +B, for constants A > 0 and B � 0, and for a function f such
that f(s) � 0 for all s. If OPTL(s) � �Cf(s) � D, for constants C > 0 and
D � 0, then R1(A) � A=C.

Proof. From the de�nition of RA(s) we have

RA(s) =
A(s)

OPTL(s)
�
�Af(s) +B

�Cf(s)�D
: (1)

Let SN = fs j OPT (s) � Ng and RNA = inffRA(s) j s 2 SNg. For s 2 SN ,
f(s) � �(N +D)=C. Since RA(s) is monotonically increasing for f(s) � 0, we
have

RA(s) �
A(N +D)=C +B

N + 2D
;

for s 2 SN . Thus

RNA �
A(N +D)=C +B

N + 2D
;

and from the de�nition of R1(A) [10] we have

R1(A) = supfr j RNA � r;N 2 Zg � lim
N!1

RNA = A=C:

3 Master Approximation Algorithms for the HP Model

We now describe two paradigms for designing master approximation algorithms
for the HP model that can be applied to a wide range of lattices. HP mod-
els abstract the hydrophobic interaction process in protein folding by reducing a
protein to a heteropolymer that represents a predetermined pattern of hydropho-
bicity in the protein. This is one of the most studied lattice models for protein
folding, and despite its simplicity, the model is powerful enough to capture a
variety of properties of actual proteins [9].

The �rst master approximation algorithm that we describe captures two as-
pects of the protein folding algorithms described by Hart and Istrail [12]: (1) the
selection of a folding point that balances hydrophobicity and (2) the skeleton of
contact edges that forms the hydrophobic core. We call this the bipartite master
approximation algorithm because it is applicable to crystal lattices that can be
described as a bipartite graph. These crystal lattices have the property that two
1's can be endpoints of a contact edge only if there is an even number of elements
between them.

The second master approximation algorithm is related to approximation al-
gorithms that have been developed for the triangular lattice [1]. For lattices that
contain odd-length cycles, each hydrophobic amino acid can often be placed ad-
jacent to all other hydrophobic amino acids in the chain. We call these lattices
nonbipartite to re
ect that the lattice does not emplicitly enforce a bipartite
labeling the hydrophobics, and to provide a performance guarantee for a nonbi-
partitie lattice it suÆces to generate a chain of contacts that connect a fraction of
all hydrophobics in a protein sequence. The nonbipartite master approximation
algorithm is applicable to nonbipartite lattices to form such a chain.
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3.1 Protein Sequence Structure in the HP Model

This section summarizes key de�nitions concerning the structure of protein in-
stances from Hart and Istrail [12]. Let s = s1; : : : ; sm be a protein instance,
si 2 f0; 1g. Let l(s) equal the length of the sequence s. Let Mmax(s) equal the
length of the longest sequence of zeros in s, and let Mmin(s) equal the length of
the shortest sequence of zeros in s. Finally, let E(s) equal the number of adjacent
elements in the sequence, sj and sj+1 for which sj = 1 and sj+1 = 1.

An instance s can be decomposed into a sequence of blocks. A block bi has
the form bi = 1 or bi = 1Zi11 : : : Zik1, where the Zij are odd-length sequences
of 0's and k � 1. A block separator zi is a sequence of 0's that separates two
consecutive blocks, where l(zi) � 0 and l(zi) is even for i = 1; : : : ; h � 1. Thus
s is decomposed into z0b1z1 : : : bhzh. Since l(zi) � 0, this decomposition treats
consecutive 1's as a sequence of blocks separated by zero-length block separators.
Let N(bi) equal the number 1's in bi. Thus the sequence

0 10101| {z }
b1

1|{z}
b2

1|{z}
b3

10101| {z }
b4

0000 1010101| {z }
b5

gives us l(z) = (1; 0; 0; 0; 4; 0) and N(b) = (3; 1; 1; 3; 4).
It is useful to divide blocks into two categories: x-blocks and y-blocks. For

example, let xi = b2i and let yi = b2i�1. Let Bx and By be the number of

x-blocks and y-blocks respectively. Further, let X = X(s) =
PBx

i=1N(xi) and

Y = Y (s) =
PBy

i=1N(yi). Let Tx(s) equal the number of endpoints of s that are
1's in x-blocks, and let Ty(s) equal the number of endpoints of s that are 1's in
y-blocks. We assume that the division into x- and y-blocks is such that X � Y
and if X = Y then Tx(s) � Ty(s). For example, the sequence

0 10101| {z }
y0

1|{z}
x0

1|{z}
y1

10101| {z }
x1

0000 1010101| {z }
y2

can be represented as z0y0z1x0z2y1z3x1z4y2z5, where l(z) = (1; 0; 0; 0; 4; 0),
N(x) = (1; 3), and N(y) = (3; 1; 4).

A superblock Bi is comprised of sequences of blocks as follows:
Bi = bi1zi1 : : : zih�1bih . Let Nx(Bi) equal the sum of N(bj), where bj are x-
blocks in Bi. Let Ny(Bi) equal the sum of N(bj), where bj are y-blocks in Bi.
Finally, let N(Bi) = Nx(Bi) +Ny(Bi).

Note that two 1's can be endpoints of a contact edge only if there is an even
number of elements between them [12]. It follows from our de�nition of blocks
that two 1's within a block cannot be in contact. Further, any pair of 1's take
from blocks bk and bj may be in contact only when jk � jj is odd. This makes it
clear that 1's from an x-block can only be in contact with 1's from an y-block.

3.2 The Bipartite Master Approximation Algorithm

Consider the following de�nitions.

De�nition 1 Given a path p in a lattice L from a to b, let dp(a; b) be the length

of p. A path p from a to b is polynomial extensible if for some 
 2 Z>0 there
exist paths pk for every k 2 Z>0 such that dpk (a; b) = dp(a; b) + 
k and there
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exists a polynomial time algorithm that given p and k constructs pk. If 
 = 2,
then we say that these paths are polynomial evenly extensible. The collection of
the paths of a polynomial extensible path p is called the extension of p in L.

De�nition 2 Given polynomial extensible paths p from a to b and q from c to d,
we say that p and q are extensibly disjoint if their extensions are vertex disjoint.

De�nition 3 A bipartite latticoid, L̂, of a bipartite lattice L is an in�nite graph
that contains an in�nite sequence of contact edges (ai; bi) with the following
properties:

{ There is a polynomial evenly extensible path pai from ai to ai+1 and polyno-
mial evenly extensible path pbi from bi to bi+1,

{ There is a constant � > 0 such that for every i and j, dpa
i
(ai; ai+1) =

dpb
j
(bj ; bj+1) = 2�, and

{ The set of paths fpai ; p
b
i j i = 1; : : :g are mutually extensibly disjoint.

The dilation of the bipartite latticoid is �L̂ = �.

Figure 2 illustrates the structure of a bipartite latticoid. Because the paths
Ai are evenly extensible, the paths Bi and Ci can be constructed in polynomial
time. Furthermore, the vertices in fAi;Bi; Cig and fAj;Bj; Cjg do not intersect.
Figure 3 shows two bipartite latticoids of the two-dimensional square lattice, L0.
The dilation of L̂2

0 is 2, and the dilation of L̂H0 is 3.

C1

B1

A1

C2

B2

A2

B4

C4C3

B3

A3 A4

a i+1

b i+1 b i+2

a i+2a i

b i

Figure 2: A symbolic illustration of the structure of bipartite latticoids.
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(a)

(b)

Figure 3: Two possible bipartite latticoids of L0: (a) L̂
2

0, and (b) L̂
H

0 . Dark lines indicate
edges that are used for some protein conformation. Dashed lines indicate the remaining
edges in L0. The contact edges are the vertical edges of the center bolded horizontal
row.
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The bipartite master approximation algorithm takes a bipartite latticoid L̂
and selects a single folding point (turning point) that divides a protein instance
into a y-superblock B0 and an x-superblock B00. The folding point is selected
using \Subroutine 1" from Hart and Istrail [12]. Subroutine 1 selects a folding
point that balances the hydrophobicity between the x-blocks and y-blocks on
each half of the folding point. The following lemma describes the key property
of the folding point that is selected.

Lemma2 ([12], Lemma 1). The folding point selected by Subroutine 1 parti-
tions a protein instance s into two superblocks B0 and B00 such that either

Ny(B
0) � d(Y + 1)=2e and Nx(B

00) � dX=2e
or

Ny(B
0) � dY=2e and Nx(B

00) � d(X + 1)=2e :

After selecting the folding point, the conformation of the two superblocks is
dictated by the bipartite latticoid L̂. The bipartite latticoid speci�es the place-
ment of the contact edges between the superblocks, as well as the conformation
of the loops within each superblock that connect the contact points. These loops
follow the path of the polynomially extensible path in the latticoid. The em-
bedded structure of protein sequences in the latticoid generalizes the notion of
\normal form" that was used to describe the approximation algorithms in Hart
and Istrail [12].

Decomposition into x- and y-blocks requires a single pass through the protein
instance, and the selection of the folding point via Subroutine 1 requires linear
time. The construction of the �nal conformation requires polynomial time to
create the paths for the loops between contact points. Thus the computation
required by Algorithm AL̂ to construct a conformation for a given latticoid is
polynomial.

Let AL̂(s) represent the energy of the �nal conformation generated by Algo-
rithm AL̂. The performance of Algorithm AL̂ can be bounded as follows.

Lemma3.

AL̂(s) � �

�
X

2�
L̂

�
+ 1:

Proof. Let B0 and B00 be the two halves of the protein sequence identi�ed by
Subroutine 1, and suppose that B0 forms a y-superblock and B00 forms a x-
superblock. From Lemma 2 we know that Ny(B

0) � dX(s)=2e and Nx(B
00) �

dX(s)=2e. On a square or cubic lattice, these two halves of the sequence could
be aligned to form at least dX(s)=2e hydrophobic contacts.

In the dilated latticoid, the minimum distance between consecutive contacts
is 2�L. Considering B0, it follows that there can be �L � 1 y-hydrophobics
between y-hydrophobics at contact points (e.g. consider a sequence of the form
(10)k1). Thus in the worst case the minimum number of contacts that can be
guaranteed is �

dX(s)=2e

�
L̂

�
+ 1 �

�
X(s)

2�
L̂

�
+ 1:

Here, we add one to this term to account for the fact that the folding point may
be between consecutive 1's in the sequence.
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Let Æ(L) be the maximum degree of all vertices in L. Proposition 1 presents

the asymptotic performance ratio for Algorithm AL̂ where L̂ is a latticoid of L.

Proposition 1 Let L̂ be a latticoid of L. Then R1(AL̂) � 1=(2�L̂(Æ(L)� 2)).

Proof. Since L is a crystal lattice generated by a unit cell, Æ(L) is �nite. It
follows from the fact that L is bipartite that OPTL(s) � �(Æ(L)� 2)X(s)� 2.
The bound on R1(AL̂) follows from Lemma 1 and Lemma 3.

To illustrate the application of the bipartite master approximation algorithm,
consider its application to the diamond lattice, which has previously been used
in lattice models for protein folding (e.g. see [20]). The latticoid L̂2

0 can be em-
bedded in the diamond lattice as follows. Consider the labeled unit cell for a
diamond lattice in Figure 4a. Observe that the cycles (A;F;B;D;G;C;A) and

(C;G;D;A;H;B;C) can be embedded into the latticoid L̂2
0. Figure 4b illus-

trates this embedding, along with neighbors of the members of these two cycles.
To show that all of L̂20 can be embedded, we need to extend the sublattice both
vertically and horizontally. We can do this by exploiting the relationships be-
tween vertices in Figure 4b. The path (D;A; F;B;C) can be extended to a cycle
(D;A; F;B;C; I;D) by observing that between every C and D vertex is an I
vertex. The path (H;B;D; I) can be extended to a cycle (H;B;D; I; C;A;H)
by observing that every I vertex is adjacent to a C vertex and every H vertex
is adjacent to an A vertex. Similarly, the path (I;D;A; F ) can be extended to
the cycle (I;D;A; F;B;C; I). Figure 4c shows the expanded embedding.

To extend the sublattice vertically and horizontally, it suÆces to shift the
expanded embedding to extend paths to cycles using the cycles that exist in
the expanded embedding. It follows that the latticoid L̂2

0 can be embedded into
the diamond lattice, since it is a sublattice of the embedded sublattice. Note
that the unit cells used by this embedding comprise one slice through the three-
dimensional lattice.

Figure 5 demonstrates this embedding for a particular conformation. Grey
and black solid lines between vertices in each unit cell indicate the edges of the
diamond lattice that are used to embed a square lattice for which one dimension
is dilated to length two. Edges not used for this embedding are omitted. The
solid lines illustrate a conformation of a protein on this lattice that the bipartite
master approximation algorithm would generate. Now Æ(L) = 4 for the diamond
lattice L, so it follows from Proposition 1 that R1(AL) = 1=8.

3.3 The Nonbipartite Master Approximation Algorithm

This section describes a nonbipartite master approximation algorithm. Figure 6
illustrates the structure of a nonbipartite latticoid, which is formally de�ned as
follows.

De�nition 4 A nonbipartite latticoid, L̂, of a nonbipartite lattice L is an in-
�nite graph that contains an in�nite sequence of contact edges (ai; bi) with the
following properties:

{ There is a polynomial extensible path pai from ai to ai+1 (
 = 1),
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A A

B

B

C

D

E

E

F

G G

H

I

I

(a)

A F B

C G D I

D C

H

I

H

F B A F

CD

H

A F B

C G D I

D C

H

I

H

F B A F

CD

H

A

B

G

F

D

D

H

C

(b) (c)

Figure 4: Embedding the L̂2

0 latticoid into a diamond lattice: (a) labeled unit cell, (b)
embedding onto plane of unit cells with embedded latticoid, and (c) extending this
embedding.

{ There is a constant � > 0 such that for every i and j, dpa
i
(ai; ai+1) = �, and

{ The set of paths fpai ; p
a
i+1 j i = 1; : : :g are mutually extensibly disjoint.

The dilation of the bipartite latticoid is �L̂ = �.

The nonbipartite master approximation algorithm places hydrophobics along
the path of ai's in such a manner that as few hydrophobics are placed outside
the path as possible. Note that because the hydrophobic-hydrophobic contacts
are constructed along a path, the extensible paths may lie on either side of this
path.

For a nonbipartitate latticoid L̂, the dilation �L̂ is the minimal length of
a path from ai to ai+1. Thus the nonbipartite master approximation algorithm
guarantees that at least

�
N(s)=�L̂

�
hydrophobic amino acids lie along the path

of ai's. Given this, we can prove the following performance guarantee for a non-
bipartite master approximation algorithm B on lattice L with latticoid L̂.

Proposition 2 R1(B
L̂) � 2=(�L̂(Æ(L)� 2)).

Proof. We can bound the energy of the optimal conformation by OPT (s) �
�(Æ(L) � 2)N(s)=2 � 2 since every hydrophobic has Æ(L) neighbors that can
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Figure 5: Illustration of the embedding of the bipartite latticoid L̂2

0 into a diamond
lattice.

C1

B1

A1

C2

B2

A2

a i+1 a i+2a i

Figure 6: A symbolic illustration of the structure of nonbipartite latticoids.
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form contacts. Now B(s) � �
�
N(s)=�L̂

�
+1 � �N(s)=�L̂+2. Thus bound on

R1(BL̂) follows from Lemma 1.

4 A Complexity Theory for Protein Folding on Crystal

Lattices

In this section we extend the methods used in the previous section to provide
a framework for analyzing the design of eÆcient approximation algorithms with
provable performance guarantees on lattices. The unifying theme is polynomial
approximability asymptotic within a constant of optimal. This theory de�nes
polynomial embedding reductions from one lattice to another, and relates the
approximability on the �rst lattice to the approximability on the second. Fur-
ther, this theory includes a notion of completeness, which de�nes the \hardest"
members in the class.

A core of a lattice L is a set of latticoids D(L) = fL̂1; L̂2; : : :g, where D(L)
is �nite or countably in�nite. We will use lattice cores to extend the role of the
latticoid in our previous analysis. Speci�cally, a lattice core can contain multiple
latticoids of the same lattice. For example, we could have D(L0) = fL̂2

0; L̂
H
0 g

from Figure 3.
Folding algorithms in a lattice L1 can be transferred to folding algorithms

in another lattice L2, a folding \reduction", if the sublattice used in L1 by
the approximation algorithm can be embedded in L2. Note that this reduction
does not require that we explicitly embed the sublattice of L1 in L2. Instead,
we simply need a polynomial algorithm for maping a speci�c conformation in
L1 into a corresponding conformation in L2 that preserves an interesting set
of hydrophobic contacts. However, this reduction does require that L1 and L2
be consistent, which means that either they are both bipartite or nonbipartite
lattices. Consistency ensures that the bounds on the optimal conformation are
similar for both lattices.

For example, consider the bipartite master approximation algorithm de-
scribed in Section 3. To illustrate how this could be applied to the diamond
lattice, we described how the L̂2

0 latticoid can be embedded into the diamond
lattice. However, it is not necessary to generate the conformations for this algo-
rithm in the diamond lattice itself. Instead, we can generate conformations in
the cubic lattice such that they are constrained to lie on the L̂2

0 latticoid, and
subsequently use the mapping graphically described in Figure 4c to construct a
conformation in the diamond lattice.

Polynomial embeddings like this should be easy to construct because the
unit cells in each lattice have a a �nite description, and the symmetries in the
crystal lattice are with respect to the neighboring cells (and thus also of �nite
description). Let 2L refer to the set of sublattices of lattice L. This notion of
reduction is formalized in the following de�nition.

De�nition 5 A polynomial embedding reduction of L1 to L2 via core D(L1) is

a polynomial time function  : 2L̂1 ! 2L̂2 such that

1. L1 and L2 are consistent,

2. L̂1 2 D(L1),
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3. L̂2 is a sublattice of L2,
4.  (L̂1) is lattice isomorphic to L̂2 (i.e. graph isomorphic), and

5. the time complexity for mapping L̂ 2 2L̂1 into L̂2 is polynomial in the

number of vertices and edges of L̂.

If there is a polynomial embedding reduction from L1 to L2 via core D(L1), we
write L1 /D(L1) L2.

Let fL(s) = X(s) if L is bipartite and N(s) otherwise. We say that a lattice L
is polynomial kernel-approximable if there is a polynomial algorithm A and con-
stants �L; �L 2 Z

>0 such that for all protein instances s, A(s) � ��LfL(s)+�L.
This type of approximability re
ects the energetic guarantees provided by all of
the approximation methods that have been described in the literature. Conse-
quently, we describe the square, cubic, triangular and face-centered cubic lattices
as polynomial kernal-approximable [1, 7, 12]. We say that a class of lattices L
is polynomial kernel-approximable if for every L 2 L, L is polynomial kernel-
approximable, and let PKAL be the class of polynomial kernel-approximable
lattices. From Lemma 1 and the fact that the vertex degree in lattices is �nite, it
follows that 8L 2 PKAL there exists a constant �L > 0 such that R1(A) � �L.

Now consider a lattice L with core D(L). We say that L is polynomially core

kernal-approximable if for all L̂inD(L), L is polynomial kernal-approximable

with an algorithm AL̂ that generate conformations strictly on L̂. If L is polyno-
mially core kernal-approximable then clearly L 2 PKAL. The following lemma
shows how a lattice core can be used to ensure the approximability via a reduc-
tion.

Lemma4. Consider L1 with core D(L1) that is polynomially core kernal-
approximable. If L1 /D(L1) L2, then L2 2 PKAL.

Proof. If L1 /D(L1) L2 then there exists a sublattice L̂2 that is graph isomorphic

to a sublattice L̂1 2 D(L1). Since L1 is polynomially core kernal-approximable

there exists an approximation algorithm Z for L̂1 such that Z(s) � ��LfL(s)+
�L for constants �L and �L. Now consider an approximation algorithm Y that
applies algorithm Z to an instance s, and then applies the reduction to map the
conformation in L̂1 to a conformation in L̂2. Clearly, Y(s) = Z(s), so algorithm
Y generates conformations in L2 such that Y(s) � ��LfL(s) + �L. By the
consistency of the reduction, it follows that L2 2 PKAL.

The central concept of the complexity theory is the notion of completness
de�ned as follows.

De�nition 6 Let L be a class of lattices. A lattice L is called L-complete via
core D(L) if

1. L 2 L, and
2. 8L0 2 L, L /D(L) L

0.

Similar to the theory of NP-completness, if any member of the complete set
is core-approximable then we can design polynomial approximation algorithms
for all lattices in the class.
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Theorem 1 Let L be a lattice with core D(L). If L is L-complete and polyno-
mially core kernal approximable, then L � PKAL.

Proof. Consider an arbitrary L0 2 L. Since L is polynomially core kernal-
approximable, from Lemma 4 we know that the fact that L /D(L) L

0 implies
that L0 2 PKAL. Since this applies to all L0, L � PKAL.

5 Approximable Lattices for the HP Model

In this section we describe a class of lattices L for which performance guaran-
teed approximation algorithms exist. L is a broad class of lattices that includes
many of the lattices previously used in lattice models for protein folding. This
class of lattices is divided into bipartite and nonbipartite lattices, which we de-
scribe seperately. See Sands [18] and Wells [23] for further details on many of
the lattices that we describe below.

Consider the square lattice L and the core D(L) = fL̂2
0; L̂

H
0 g. We can apply

the bipartite master approximation algorithm to show that L is polynomially
core kernal approximable. We now describe a class of lattices L for which L is
L-complete via D(L):

{ Square and Cubic Lattices: The square lattice is clearly a sublattice of
the three-dimensional cubic lattice. Further, the square lattice can be simply
embedded into Bravais lattices like the triclinic and triagonal lattices [18],
which simply rescale and shift the angles of the cubic lattice (e.g. see Fig-
ure 7(a)).

{ Diamond and Flourite Lattices: In Section 3.2 we saw how L̂2
0 could be

embedded in the diamon lattice. Figure 7(b) shows a 
ourite lattice struc-
ture, for which the diamond lattice is a sublattice. It follows that the square
lattice has a polynomial embedding reduction into the 
ourite lattice via
D(L).

{ Generalized Cartesian Lattices: Several researchers have considered gen-
eralized lattices that take points from the square or cubic lattice but de�ned
a generalized neighborhood for edges and contacts. For example, Figure 7(c)
shows the neighborhood for the \210 lattice" that Skolnick and Kolinkski [21]
use to place �-carbons. In this lattice, the �-carbons are connected by the
3D generalization of the \knight's walk" in chess.
Now consider a lattice L0 formed with a symmetric generalized neighborhood.
Let (a; b) represent a neighborhood move on this lattice. From the symmetry
of the neighborhood structure, it follows that (b; a), (�a;�b), and (�b;�a)
are also neighbors. To realize the embedding of the cubic lattice in L0, we
equate the edge (1; 0) with (a; b) and the edge (0; 1) with (b; a). Using these
vectors as a basis, the integral combinations of them form a cubic lattice.
Figure 7 illustrates this embedding for the \210 lattice".
Note that a generalized basis can generate either a nonbipartite or bipartite
lattice of edges. If the lattice is bipartite, then this reduction suÆces to
show that the square lattice has a polynomial embedding reduction into the
generalied Cartesian lattice L0.

{ Hexagonal Lattice: The latticoid L̂H0 can be embedded into the hexag-
onal lattice by noting that the extensible paths are generated shifting the
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initial path around adjacent hexagons. Figure 8 illustrates the extension of
a path between two hydrophobics that form the hydrophobic core of the
conformation. This type of extension is easy to generate, so the reduction
is polynomial. The catalog of lattices in Wells [23] contains many bipartite
three-dimensional lattices into which the hexagonal lattice can be embedded.
It follows that the square lattice has a polynomial embedding reduction into
all of these lattices.

(a) (b)

(c) (d)

Figure 7: Bipartite crystal lattices: (a) triclinic, (b) 
ourite, (c) the \210 lattice", and
(d) the embedding of L into the \210 lattice".

We have shown that the square lattice has a polynomial embedding reduction
into all of these lattices using D(L). Thus L is L-complete via D(L). Since L is
polynomially core kernal-approximable, it follows that L � PKAL.

5.1 Nonbipartite Lattices

Consider the triangular lattice �L and the core D(�L) = f�L0g illustrated in Fig-
ure 9(a). We can apply the nonbipartite master approximation algorithm to show
that �L is polynomially core kernal approximable. We now describe a class of lat-
tices L0 for which �L is L-complete via D(�L):

{ Face Centered Cubic: Consider a single plane of faces for a face centered
cubic lattice. Figure 9(b) illustrates how �L0 can be embedded on this face.
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(a) (b)

(c) (d)

Figure 8: Illustration of the embedding of extensible paths from L̂H0 into the hexagonal
lattice. Figure (a) shows the initial path that is extended by two in (b), (c) and (d).

Thus the triangular lattice has a polynomial embedding reduction into the
face centered cubic lattice.

{ Body Centered Cubic: Consider a single plane of faces for a face centered
cubic lattice. On top and behind each square of points lies a point that is in
contact with each point on the square. This sublattice of edges has the same
connectivity structure as a single plane of faces for the face centered cubic
lattice. Consequently, the triangular lattice has a polynomial embedding
reduction into the body centered cubic lattice.

{ 3D Close Packed: Close packed lattices are composed of layers of 2D close
packed lattices. These layers can be put in contact in several di�erent ways,
providing an in�nite number of possible close packings in 3D. The 2D close
packed lattice structure is simply the triangular lattice structure, so these
lattices are polynomially core kernal approximable.

We have shown that the triangular lattice has a polynomial embedding re-
duction into all of these lattices using D(�L). Thus �L is L0-complete via D(�L).
Since �L is polynomially core kernal-approximable, it follows that L0 � PKAL.
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(a)

(b)

Figure 9: Illustration of (a) the nonbipartite latticoid used by the nonbipartite master
approximation algorithm in L0, the triangular lattice. This latticoid can be embedded
in the faced centered cubic lattice as shown in (b).

6 Discussion

We have described master approximation algorithms for bipartite and nonbi-
partite lattices that illustrate how performance guaranteed approximation algo-
rithms can be applied to a wide range of crystal lattices. The general applicability
of these master approximation algorithms is limited to graphs for which latticoid
subgraphs can be eÆciently embedded. Consequently, these results fall short of
demonstrating that performance guaranteed approximability is an algorithmic
invariant for crystal lattices.

However, the classes of lattices described in the previous section, L and L0

include a wide range of lattices that have played a signi�cant role in the analysis
of protein structure prediction. Although the master approximation algorithms
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do not necessarily provide the best provable performance guarantees in all cases,
their applicability to such a broad range of well-studied lattices does indicate that
there is some measure of lattice independence for reasonable lattice graphs. This
suggests that the algorithmic mechanisms used to generate these approximate
conformations may play a role in biological systems.

Although our analysis has focused on simple chain models, we expect that it
can be simply generalized to more structured protein models. For example, Hart
and Istrail [15] and Heun [16] describe performance guaranteed approximation
algorithms for a side-chain lattice model. These results are applicable to square,
cubic, face-centered cubic and extended cubic lattice models. We conjecture that
these results can, in fact, be similarly be extended to a broader range of well-
studied lattice models.
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