
A New Approach to Communicating X-Machines Systems

Horia Georgescu
(Faculty of Mathematics, Bucharest University, Romania

email: hg@oroles.cs.unibuc.ro)

Cristina Vertan
(Faculty of Mathematics, Bucharest University, Romania

email: hg@oroles.cs.unibuc.ro)

Abstract: This paper presents a new model for the speci�cation of communicating
X-machine systems (CXMS). In previous papers, systems of X-machines have been
implemented in two ways: using an unique X-machine which simulates the concurrent
behaviour of several processes [1], or using several X-machines which communicate
through asynchronous channels [2].
This article introduces an X-machine system for which the communication between
components is done through synchronous channels. The model supposes that each
X-machine has a local memory, an input and an output tape. The X-machines act
simultaneously. The states of each component of the system are partitioned into pro-
cessing and communicating states. Passing messages between the X-machines involves
only communicating states. It is shown that, taking advantage of the behaviour of
X-machines, communication using channels may be implemented, thus providing a
synchronous message passing.

Key Words: Communicating X-machine systems, concurrent processes, communi-
cation using channels.

Category: F.1.2, H.2.4, D.1.3

1 Introduction

The X-machines were introduced by Eilenberg [4] in 1974, but little research
has been done in this �eld, until Holcombe [7] used them as basis for a possible
speci�cation language. His paper was the starting point for further research. A
lot of results were proved, mainly concerning their generative power and their
use for veri�cation and testing.

Very little attention has been paid to the way in which many X-machines
may be integrated into a system and how they can communicate.

In [1], the behaviour of a system of grammars is studied, by simulating their
concurrent action with a single X-machine. Words of a given language are placed
on the input tape. At any time, a single grammar is active; afterwards, it can
be used again or the control may be passed to another grammar. The language
generated by the system is the language of terminal strings obtained as output.
Relations between languages used as input and the corresponding generated lan-
guages are studied and results concerning the generative power of the grammars
are obtained.

The �rst attempt to introduce communicating X-machines is due to Barnard
[2]. In this article a communicating X-machine is a typed �nite state machine

Journal of Universal Computer Science, vol. 6, no. 5 (2000), 490-502
submitted: 9/9/99, accepted: 24/3/00, appeared: 28/5/00  Springer Pub. Co.



that can communicate with other communicating X-machines via channels; these
channels connect ports attached on each of the X-machines. A modular system
is developed. The communicating X-machine model encapsulates dynamic and
functional behaviour, as well as the data model, in one process speci�cation.
Message passing using channels is not necessarily synchronous.

In this paper, the above ideas are further studied. The X-machines act si-
multaneously as in [2], but for message passing (synchronous) channels are used.
Communication between X-machines uses input and output ports, but also a co-
mmunication matrix, introduced for this purpose. Each X-machine has its own
local memory, input and output tape. Any X-machine may pass messages to
any other one. The states of each component of the system are partitioned into
processing and communicating states. Passing messages between the X-machines
involves only communication states; for functions emerging from a communica-
ting state, the local memory may be only observed, but never changed. In this
way, internal behaviour and communication are separated. In the third section,
(synchronous) channels are introduced as a way of communication between X-
machines. Basic operations for sending and receiving messages are implemented.

The suitability of the new approach is proved by case studies specifying
problems occurring in the concurrent processing area.

2 Communicating X-Machine Systems

For any set A, A� denotes the set A [ f�g, where � is the empty sequence. A?

denotes the free monoid generated by A.

De�nition 1. A stream X-machine is a tuple X = (�;�;Q;M;�; F; I; T;m0),
where:

{ � and � are �nite sets, called the input and output alphabets respectively;
{ Q is the �nite set of states ;
{ M is a (possibly in�nite) set called memory;
{ � is a �nite set of partial functions of the form: f :M ��� ! � � �M ;
{ F is the next state partial function F : Q� �! 2Q;
{ I and T are the sets of initial and �nal states;
{ m0 is the initial memory value.

In practice M will usually be a product 
�

1 � : : : � 
�

n, where 
i are �nite
alphabets. It is su�ciently general [9] to model many common types of machines
from �nite state machines (where the memory is trivial) to Turing machines
(where the memory is a model of the tape).

If, in a state, several functions can be applied, one of them is chosen randomly.
We de�ne a con�guration of the X-machine by (m; q; s; g) where m 2M; q 2

Q; s 2 �?; g 2 � ?. A machine computation starts from an initial con�guration,
which form is (m0; q0; s0; �) where q0 2 I and s0 2 �? is the input sequence.

De�nition 2. The output corresponding to an input sequence. A change of con-
�guration, denoted by ` :

(m; q; s; g) ` (m0; q0; s0; g0)

is possible if:

491Georgescu H., Vertan C.: A New Approach to Communicating X-Machines Systems



{ s = �s0, � 2 ��

{ there is a function f 2 � emerging from q and reaching q0, q0 2 F (q; f), so
that f(m;�) = (;m0) and g0 = g,  2 � �.

?

` denotes the reexive and transitive closure of `.
For any s 2 �?, the output corresponding to this input sequence, computed

by the stream X-machine X is de�ned as:

X(s) = fg 2 � ?j9m 2M; q0 2 I; q 2 T; so that (m0; q0; s; �)
?

` (m; q; �; g)g

Example 1. The following example presents a simple X-machine and illustrates
the necessity of introducing X-machine systems for modeling concurrent pro-
cesses. The Producer-Consumer problem, described below, may originate from
quite di�erent areas including databases, communication protocols, operating
systems, computer architecture. Distinguished items are produced, delivered to
a bu�er and �nally consumed. The bu�er is assumed to have a limited capacity.
The constraints are the following:

{ produce must always precede consume;
{ the consumer takes the items from the bu�er in the same order they were
placed, i.e. the bu�er is a queue;

{ reading from an empty bu�er must be avoided;
{ writing in a full bu�er must be avoided too.

We will suppose that these items are lowercase characters. The sequence of
characters is ended by a special symbol #. The producer stops after sending the
character #, and the consumer stops after receiving #. The consumer transforms
the received characters, di�erent from the special symbol #, in the uppercase
form. The result must contain the characters produced, as well as the characters
received and modi�ed by the consumer.

In �gure 1 the diagram for an X-machine simulating these activities is pre-
sented.

Figure 1: Simulating the Producer - Consumer problem with one X-machine

The X-machine corresponding to the diagram is the following:
X = (�;�;Q;M; I; T; �; F;m0) with

{ � = fa; b; : : : ; z;#g
{ � = fa; b; : : : ; z; A;B; : : : ; Zg

492 Georgescu H., Vertan C.: A New Approach to Communicating X-Machines Systems



{ Q = f1; 2g
{ M is a queue, denoted with L, of �nite size n, with elements in �
{ I = f1g
{ T = f2g
{ � = ff1; f2; f3g where:

f1(m; c) =

�
(c;mc); if jLj < n; c 2 � n f#g
" otherwise

f2(cm; �) =

�
(uppercase(c);m); if jLj > 0; c 2 � n f#g
" otherwise

f3(�;#) = (�; �)

{ F (1; f1) = f1g, F (1; f2) = f1g, F (1; f3) = f2g
{ m0 is the empty queue.

Obviously this is only a simulation of the real case. For a realistic solution for
most applications, it is common to decouple the producer and the consumer by
interposing a bu�er between them. It follows that three X-machines are neces-
sary, corresponding to the producer, to the bu�er and to the consumer.

The producer's X-machine repeatedly takes items from its input tape and
send them (if possible) to the bu�er; it writes nothing on its output tape.

The consumer's X-machine repeatedly takes (if possible) items from the bu-
�er and "consumes" them; it takes nothing from its input tape and places nothing
on its output tape.

The X-machine corresponding to the bu�er repeatedly chooses between re-
ceiving or sending an item and outputs it.

It is quite obvious that a communication between the X-machines should be
provided. Firstly, we will add to each X-machine an input port and an output
port. The system has now the form in �gure 2.

Figure 2: A system of X-machines for Producer-Consumer problem

493Georgescu H., Vertan C.: A New Approach to Communicating X-Machines Systems



We add also a so-called communication matrix (here of order 3�3) where the
items to be transmitted from one X-machine to another are temporary stored in.
Let us suppose that the Producer (the X-machine with number 1) produces an
item i; it means that it must send it to the Bu�er (the X-machine with number
2). It follows that the producer has to move item (letter) i to its output port and
from there to C12, while the Bu�er has to copy the value of C12 into its input
port.

Of course, several problems are still to be solved, mainly concerning the
synchronization between the actions of the X-machines in the system and a
proper handling of the common matrix (memory) C, due to the fact that several
X-machines can access the same element of C.

Following the example above, we will introduce the de�nition for Commu-
nicating X-machines systems. The example will be reviewed in section 3 and a
complete solution will be provided.

In the sequel we will assume that each X-machine Pi has, besides the in-
formation in the standard de�nition 1, an input port ini and an output port
outi. They are two additional distinct memory locations used for receiving and
sending messages; their values may be those of Mi or the special symbol �.

De�nition 3. A Communicating X-Machines System (CXMS for short) with
n components is a 4-tuple CXMSn = ((Pi)i=1;:::;n; C; C

0; O), where:

- Pi is the X-machine with number i, Pi = (�i; �i; Qi;Mi; ini; outi; Fi; Ii; Ti;m
0
i );

- C is a matrix of order n�n, used for communication between the X-machines;
- C0 is the initial content of C;
- O is the output tape of the system; at any time, the content of O has the form

(g1; : : : ; gn) 2 � ?
1 � : : : � ?

n . For any i, Oi will denote the output tape of the
ith component of the system.

For each pair (i; j) with i; j 2 f1; :::; ng; i 6= j; Cij is used as a temporary bu�er
for passing \messages" from the X-machine Pi to the X-machine Pj . Initially,
Cij = C0

ij has one of the values � or @, as passing messages from Pi to Pj is
intended or not. For all i, Cii = @ because an X-machine never passes a message
to itself.

Cij =

�
� if communication between Pi and Pj is allowed
@ otherwise

The actual messages passed from an X-machine to another can not be �, @ or
$, which are used for special purposes, further described.

The mechanism of passing a value (message) will be explained in detail later.
For the moment, we mention only that each X-machine Pi can access (read from
or write into) only the ith column and ith row of the communication matrix.
We will denote this accessibility domain by +i. At any time, a location Cij can
contain a single piece of information.

Remark. For sake of simplicity, in the above de�nition we suppose that all mes-
sages passed from any X-machine to any other one have the same type. This
does not restrict the generality of the model, since any message could begin with
a ag indicating the type of the message. This ag could be used by the receiver
in order to decode correctly the message.

494 Georgescu H., Vertan C.: A New Approach to Communicating X-Machines Systems



In each X-machine Pi there are two kinds of states: Qi = Q
0

i [Q
"
i ; Q

0

i \Q
"
i = ;,

where Q
0

i contains processing states and Q"
i contains communicating states. In

the diagrams below, any state x will be represented as x (if it is an processing
state), as x (if it is a communicating state) or as x (if it can be either an pro-

cessing or a communicating state). The �nal states are always processing states.

Let x be a communicating state of the X-machine Pi, let f1; : : : ; fk 2 �i be
the functions emerging from it and let y1; : : : ; yk 2 Qi be their destinations, as
in Fig. 3. Then any function fs depends on +i; Mi; ini; outi and may change

Figure 3: States and functions emerging from them.

the values of +i; ini; outi. This can be done in three ways:

1) a value is moved from outi to Cij , for some j 6= i:
if conditions and Cij = � and outi 6= �
then Cij  outi; outi  �
where conditions depends on Mi ;

2) a value is moved from Cji to ini, for some j 6= i:
if conditions and Cji =2 f�;@g
then ini  Cji; Cji  �
where conditions depends on Mi ;

3) under some condition, some elements of +i are modi�ed:
if conditions then modify +i,
where conditions depends on Mi; ini and outi and the modi�cations consist
only in changing some elements of +i into @; � or $.

Remark. For functions emerging from a communication state, the local memory
may be only observed, but not changed.
If more than one of the functions f1; : : : ; fk may be applied, one of them is chosen
arbitrarily to act. If none of these functions may be applied, the X-machine does
nothing (so it does not change the state).
Let now x be an processing state, which is not a �nal one, of the X-machine Pi,
let f1; : : : ; fk 2 �i be the functions emerging from it and let y1; : : : ; yk 2 Qi be
their destinations, as in Fig. 3. Then any function fs depends on �

�
i ; Mi; ini; outi

and is meant to (partially) change the content of Mi; ini; outi and possibly add
some information to the local output tape Oi. If more than one of the functions
f1; : : : ; fk may be applied, one of them is chosen arbitrarily to act. If none of
these functions may be applied, the X-machine blocks and so does the entire
system; the content of the output tape is not signi�cant in this case.

495Georgescu H., Vertan C.: A New Approach to Communicating X-Machines Systems



Remark. The system starts with all X-machines in their initial states, C =
C0; Mi = m0

i ; ini = � and outi = � for all i 2 f1; : : : ; ng. The X-machines act
simultaneously. The system stops successfully when all X-machines reach �nal
states; in this case the result is the n-tuple (g1; : : : ; gn), gi 2 �i, i 2 1; n.

From the remarks above, it follows that a CXMS is nondeterministic. The
nondeterminism is provided in two ways:

- by means of the communicating states and the matrix C;
- by means of the processing states' behaviour of each X-machine.

De�nition 4. An X-machine Pi in a CXMS is called deterministic with respect
to processing states (for short PS-deterministic) if:

1) Fi : Qi � �i ! Qi 8i = 1; : : : ; n;
2) for any processing state, any content of the local memory and of the two ad-

ditional memory locations (in and out), exactly one function can be applied.

Remark. Mutual exclusion or other synchronization are assumed when working
with the common memory C.

3 Communicating X-machines systems using channels

The mechanism introduced above assures only a low level of synchronization. In
this paragraph we will introduce channels as a higher level of synchronization.
The mechanism resembles that found in Occam (INMOS, 1984) and the forma-
lism CSP (see [6]). The CXM systems prove to be a natural way for implemen-
ting intercommunication between the components, namely through channels.

The classical communication through channels is described further. It involves
send and receive operations; the operations on each channel are synchronized.
Each channel has a single sender and a single receiver. Whichever process arrives
at a channel operation �rst, will be blocked until the process at the other end
of the channel reaches the complementary operation. When both processes are
ready, a rendezvous is said to take place, with data passing from the output of
the sender to the input of the receiver. Only after this message passing is com-
plete can the two processes act further.

We will simulate this kind of synchronous communication for X-machines. The
special symbol $, mentioned in section 2, will be used namely as an acknowled-
ging signal that the message was received. Let us suppose that we intend to send
a message from Pi to Pj (i.e. the content of outi to inj , of course using Cij) in
the same way as a transmission through channels is done (see [3], [5]). The func-
tions emerging from a communication state in Pi are restricted to send/receive
a message to/from Pj and have respectively the following two constructs:

a) when condition => j ! outi
for some j 6= i, where condition depends only on Mi;

b) when condition0 => j ? ini
for some j 6= i, where condition0 depends only on Mi;

496 Georgescu H., Vertan C.: A New Approach to Communicating X-Machines Systems



In fact these are macrofunctions. Their diagrams are showed in Fig. 4 a and Fig.
4 b, where � stands for no action:

f1: if condition and Cij = � and outi 6= � f2: if Cji = $
then Cij  outi; outi  � then Cji  �

g1: if condition0 and Cij 6= � g2: Cji  $ g3: if Cji = �
then inj  Cij ; Cij  � then �

It is important to stress the fact that the conditions appearing in a) and b) are
included in f1 and g1. In this way, even if the condition is ful�lled, it does not
mean that the function may be chosen without further checking.

Assumption. We will assume that it is the programer's duty to ensure, when
the CXM system is working, that for each channel operation the complemen-
tary one is provided. The situation when two X-machines try simultaneously to
send or simultaneously to receive messages between them has to be avoided.

Figure 4: State diagrams for implementing channels for intercommunication between
the components of a CXMS.

Theorem 1. Under the above assumption, the communication between X-ma-
chines using the simulation of channels described above works correctly.

Proof. Let us suppose that the two X-machines involved in communication are
Pi and Pj . Initially Cij = Cji = �. We recall that only Pi and Pj can modify Cij

and Cji. Let us assume that Pi chooses to send a value to Pj and condition =
condition0 = true. Then, at the beginning of the sending operation, the only
possible sequence is: f1; g1; g2; f2: Afterwards, two cases are possible:
I) If Pj executes g3 then the send and receive operations are completed.
II) There is a delay in Pj before the execution of g3 (Pj sleeps for a while).
During this delay Cji = �.
According to the possible actions of Pi, the following cases have to be studied:

1) Pi will not communicate again with Pj ; when Pj awakes it will execute g3.
2) Pi tries again to send a value to Pj (i.e. outi 6= �), condition = true and

Cij = �. Pi is blocked on f2, so when Pj awakes it will execute g3. Following

497Georgescu H., Vertan C.: A New Approach to Communicating X-Machines Systems



the assumption that to every send operation a receive is associated, Pj will try
again to receive a value from Pi. This value will be received while executing
the function g1; then Pj will execute g2, so there Cji  $. Pi can now resume
execution.

3) Pi tries to receive a value from Pj . Consequently it will try to execute the
following sequence of functions:

g1: if condition00 and Cji 6= � g2: Cij  $ g3: if Cij = �
then ini  Cji; Cji  � then �

As Cji = �, Pi will be blocked on g1; when Pj awakes, it will execute g3.

Corollary 1. Under the assumption in theorem 1, deadlock can not occur during
the actual message passing.

Example 2 . The Producer-Consumer problem with bounded bu�er. The problem
will be modeled by means of a CXMS with 3 components: P1; P2 and P3. The
initial form C0 of the communication matrix C is:

@ � @
� @ �
@ � @

P1 corresponds to the producer. m0
1 contains the items that the producer takes

from the input tape to place them into the bu�er. We have I1 = f1g and T1 =
f5g. No information is added to the local output tape. The state transition
diagram for P1 appears in Fig. 5 a.

Figure 5: The Producer-Consumer problem. State transition diagrams for: a)P1; b)P2
c)P3

498 Georgescu H., Vertan C.: A New Approach to Communicating X-Machines Systems



f1: out1  �rst(M1); f2: if out1 = # then �
M1  tail(M1);

f3: if out1 6= # then � f4: 2 ! out1

P3 models the activities of the consumer. m0
3 = ;; I3 = f1g and T3 = f4g. No

information is added to the local output tape. The state transition diagram is
showed in Fig. 5 c.

h1: 2 ? in3 h2: in3 is "consumed"

h3: if in3 = # then � h4: if in3 6= # then �

The X-machine P2 implements the activities concerning the bu�er. Let max be
the size of the queue Q, and ok an integer variable initialized with 2. Variable
ok will decrease to 1 after the character z is received from P1 and will decrease
to 0 when the same character, in uppercase form, is sent to P3. The internal
memory of P2 includes Q; max; ok, last and nr, where nr is the current number
of items in Q and last has the following meaning: whenever in state 2 a sending
operation is chosen to be performed, last has the same value as out2 ; initially,
last = �, nr = 0. We have I2 = f1g and T2 = f5g. \(" is the operator used for
extracting an item from the queue Q, while \)" is the operator used for adding
an item to the same queue. Of course the operator \)" has not to be confused
with \=>" appearing in the functions emerging from a communication state.
Additionally, the X-machine P2 uses its output tape for keeping record of the
items received and sent; therefore, we chose to transform each item of the queue,
di�erent from the special character #, in the uppercase form, before sending it
to the output tape and to the Consumer. The state transition diagram appears
in Fig. 5 b.

g1: if ok = 0 then � g2: if ok 6= 0 then �

g3: when ok = 2 and nr < max g5: 3 ! out2
=> 1 ? in2

g4 : if inn2 6= # then ok  ok � 1 g6 : if last = # then ok  ok � 1
else add in2 to O2; else add last to O2;
in2 ) Q; nr  nr + 1; if nr > 0
if out2 = � then out2 ( Q; nr  nr � 1;
then out2 ( Q; nr  nr � 1; if out2 6= #

if out2 6= # then out2  upper(out2);
then out2  upper(out2); last out2
last out2

499Georgescu H., Vertan C.: A New Approach to Communicating X-Machines Systems



Example 3 Finding the �rst n prime numbers. We will introduce a CXM sys-
tem with n + 2 components, in fact a pipeline of X-machines labeled with
P0; P1; : : : ; Pn+1.
The main activity of the X-machine P0 is to pump the numbers 2,3; : : : to P1.
The complete activity of P0 will be described below.
For i = 1; : : : ; n, the X-machine Pi does the following: the �rst number it re-
ceives from Pi�1 is stored as a witness value and added to its output tape. For
the following numbers it receives, it checks if these are primes \from its point of
view", i.e. if the witness value does not divide them; if so, the number is passed
to Pi+1 (for further checking), otherwise it is discarded. Obviously, the witness
values of P1; : : : ; Pn are the �rst n prime numbers.
The X-machine Pn+1 acts as follows:

- receives a number from Pn;
- sends the value -1 to P0;
- successively receives numbers from Pn until the received value is -1.

We describe now the complete activity of P0. At each step, it chooses to send a
number to P1 or to receive, if possible, a value from Pn+1. When receiving the
value -1 from Pn+1, it sends it to P1 and stops.
The X-machines P1; P2; : : : ; Pn; Pn+1 will stop, in this order, after receiving the
value -1.
The initial form C0 of the communication matrix C is:

@ � @ : : : @ �
� @ � : : : @ @
@ � @ : : : @ @
� � � � � �
@ @ @ : : : @ �
� @ @ : : : � @

For the X-machine P0, m0 contains a variable i initialized with 2, and a
boolean variable ok initalized with false. We have I0 = f1g and T0 = f6g. No
information is added to O0. The state diagram appears in Fig. 6 a, where:

f1: if not ok then out0  i f2: 1 ! out0

f3: in0 ?n+ 1 f4: i i+ 1

f5 : ok  true; out0  in0 f6 : if ok then�

Remark. The conditions \if C01 = �" in f2 and \if Cn+1;0 6= �" in f3 are
implicit, so that in fact the choice between these two functions is not completely
non-deterministic.

For each i = 1; : : : ; n, the internal memoryMi of the X-machine Pi contains two
cells x (the \witness value") and y. Ti = f8g and Ii = f1g. The witness value is
added to the output tape Oi. The state diagram is shown in Fig. 6 b, where:

500 Georgescu H., Vertan C.: A New Approach to Communicating X-Machines Systems



Figure 6: Finding the �rst n prime numbers. The state transition diagrams for: a) P0;
b) Pi; i = 1; : : : ; n ; c) Pn+1

g1: i� 1 ? ini g2: x ini; add x to Oi

g3: y  ini g4: if y mod x = 0 then �

g5: if y mod x 6= 0 then outi  y g6: i+ 1 ! outi

g7: if y 6= �1 then � g8: if y = �1 then �

The internal memory of the X-machine Pn+1 is void. We have In+1 = f1g and
Tn+1 = f6g. No information is added to On+1. The state transition diagram
appears in Fig. 6 c, where:

h1: n ? inn+1 h2: outn+1  �1

h3: 0 ! outn+1 h4: n ? inn+1

h5: if inn+1 6= �1 then � h6: if inn+1 = �1 then �

4 Conclusions

In this paper we have presented a new formal speci�cation for systems of co-
mmunicating X-machines, as an extension of the X-machine model. Each X-
machine has its own internal memory and two additional memory locations used
for sending and receiving messages, as well as an output tape. It enables us to
distinguish between processing and communicating states. In this way internal
and external behaviour can be studied separately, which seems to be adequate

501Georgescu H., Vertan C.: A New Approach to Communicating X-Machines Systems



for our further work. Of course, at the same time some X-machines may be in
processing states while the others are in communicating states.

It is shown that the communication between the X-machines in the system
can be achieved through channels, providing a synchronous message passing,
so that most of the problems that appear in concurrent programming may be
modeled by CXMS (see theorem 1 and its corrolary).

We are currently working on designing an automatic method which, for any
deterministic CXMS, generates a concurrent program written in a Pascal-FC
style language (see [3], [5]).

Further work will include veri�cation and testing. These have to be done
separately for the internal and external behaviour of the components of the sys-
tem. Techniques presented in [8] have to be adapted and developed. Reachability
aspects have to be studied for both behaviours too.

References

[1] B�al�anescu, T., Georgescu, H., Gheorghe, M. : Stream X-machines with underlying
distributed grammars, Informatica (to appear).

[2] Barnard, J., Whitworth, J., Woodward, M. : Communicating X-machines, Journal
of Information and Software Technology, Vol. 38, no. 6, (1996).

[3] Burns, A., Davies, G. : Concurrent Programming, Addison Wesley, 1993.
[4] Eilenberg, S. : Automata, Languages and Machine, Vol. A, Academic Press, 1974.
[5] Georgescu H.: Concurrent Programming, Ed. Tehnic�a, Bucharest, (in Romanian),

1997.
[6] Hoare, A. : Communicating Sequential Processes, Prentice Hall, 1985.
[7] Holcombe, M. : X-machines as a basis for dynamic system speci�cation, Software

Engineering Journal 3 (1988), 69 - 76.
[8] Holcombe, M., Ipate, F. : Correct Systems : Building a Business Process Solution,

Springer Verlag, Berlin, 1998.
[9] Ipate, F., Holcombe, M. : Another Look at Computability, Informatica, 20(1996),

359-372.

502 Georgescu H., Vertan C.: A New Approach to Communicating X-Machines Systems


