
Potential-function-based Analysis of an o�-line Heap

Construction Algorithm

Alan Roberts
(Department of Computer Science, University of Sydney, Australia,

alanr@cs.usyd.edu.au)

Antonios Symvonis
(Department of Computer Science, University of Sydney, Australia,

symvonis@cs.cs.usyd.edu.au)

Abstract: In this paper we examine the problem of heap construction on a rooted
tree T from a packet routing perspective. Each node of T initially contains a packet
which has a key-value associated with it. The aim of the heap construction algorithm
is to route the packets along the edges of the tree so that, at the end of the routing,
the tree is heap ordered with respect to the key values associated with the packets. We
consider the case where the routing is performed according to the matching model and
we present and analyse an o�-line algorithm that heap orders the tree within 2h(T)
routing steps, where h(T) is the height of tree T . The main contribution of the paper
is the novel analysis of the algorithm based on potential functions. It is our belief that
potential functions will be the main vehicle in analysing fast non-recursive routing
algorithms.

Key Words: Heap construction, matching routing model, o�-line/on-line algorithms,
packet routing, potential functions.

1 Introduction

The packet routing problem on a connected undirected graph G = (V;E) can
be de�ned as follows: We are given a set of packets, each packet p is initially
located at node origin(p) 2 V and destined for node dest(p) 2 V . Assuming
synchronous communication, our task is to route all packet from their origin to
their destination nodes in the smallest possible number of routing steps. Note
that in this general de�nition of the routing problem, there is not any restriction
on the number of packets that originate from, or, are destined for, a single node.
In the case where each node of the graph is the origin and the destination of
exactly one packet we have a permutation routing problem.

Packet routing algorithms fall into two main categories, namely o�-line and
on-line algorithms. In o�-line routing, a routing schedule which dictates how each
packet moves during each step of the routing is precomputed. Then, when the
routing is actually carried out, all packets move according to the routing sched-
ule. We can think of the routing schedule to consist of a collection of paths, each
path corresponding to a particular packet and describing the route that the
packet follows from its origin to its destination node. The paths are computed
in a centralized manner, that is, information regarding the origin/destination of
all packets participating in the routing is used in determining the route of any

Journal of Universal Computer Science, vol. 6, no. 2 (2000), 240-255
submitted: 15/7/00, accepted: 14/2/00, appeared: 28/2/00 Springer Pub. Co.

individual packet. In contrast with o�-line routine, in on-line routing, routing
decisions are made in a distributed manner by the nodes of the network. At
each routing step, every node examines the packets that reside in it and decides
whether to advance them to neighbouring nodes or to store them in local queues.
The decision made by each node depends on local information, usually consist-
ing of the origin/destination nodes of the packets residing in it, and knowledge
regarding the topology of the network.

During the routing, the movement of the packets follows a set of rules. These
rules specify the routing model. Routing models might di�er on the way edges
are treated (unidirectional, bidirectional), the number of packets a node can
receive/transmit in a single step, the number of packets that are allowed to queue
in a node (queue-size), etc. Usually, routing models are described informally.

In this paper, we assume the matching routing model, de�ned by Alon, Chung
and Graham in [2]. When routing is performed under the matching routing
model, the only operation allowed during the routing is the exchange of the
packets at the endpoints of an edge of graph G. The exchange of the packets at
the endpoints of a set of disjoint edges (a matching on G) can occur in a single
routing step. The edges over which exchanges of packets take place at a given
step, are said to be active during that step.

Consider a rooted tree T and let each of its nodes have a key-value associated
with it. We say that T is heap ordered if each non-leaf node satis�es the heap
invariant: \the key-value of the node is not larger than the key-values of its
children". When the key-value at each node is carried (or associated with) the
packet currently in the node, the problem of heap construction is simply to
route the packets on the tree in a way that guarantees that at the end of the
routing the packets are heap ordered with respect to the key-values they carry.
Needless to say, we are interested in forming the heap in the smallest number
of parallel routing steps when routing is performed according to the matching
routing model.

The notion of the heap was introduced by Williams [15]. Floyd [7] described
how to create a heap e�ciently. More details can be found in Knuth's book [9].
Heaps are also discussed in the context of the Parallel Random Access Machine
(PRAM) model [5, 13, 17]. Rao and W. Zhang [13], and W. Zhang and Korf [17]
described how to construct a heap data structure (implemented as a complete
binary tree) of n elements in 2 log2 n steps.

From the description of the heap construction problem, it is evident that the
problem is closely related to permutation routing on trees. Since initially each
node has exactly one packet (key-value) and at the end exactly one packet (key-
value) is located at each node, we actually route a permutation. The di�erence
with the classical permutation routing problem is that we do not know at the
beginning of the routing which is the permutation that we have to route! What
we do know is that at the end of the routing the packets have to be located
at nodes such that they satisfy the heap invariant property. Actually, for non-
trivial trees, there de�nitely are several permutations of the packets that satisfy
the heap invariant property. Even though at the beginning we do not know which
of the permutations to route, we want to route the permutation that requires
the smallest number of routing steps.

One general way to approach the heap construction problem (or, any other
routing problem) is by routing packets in a \greedy" manner where progress is
always made towards satisfying the heap invariant (or,in other words, towards

241Roberts A., Symvonis A.: Potential-function-based Analysis ...

the termination of the routing). This raises the question of how do we quantify
the \progress" towards satisfying a property. One possible answer comes through
potential functions. Let the state of routing at a given time-step be informally
de�ned as the collection of the locations of all packets at that time step. Then,
a potential function is an integer valued function of time, denoted �(t), which is
de�ned based on the state of the routing at time step t. Assume that we have
identi�ed an integer valued function �(t) that satis�es the following properties:

1. �(0) � 0
2. �(t+ 1) � �(t)� 1; t � 0
3. �(t) � 0 implies that the routing has been completed.

The above relations imply that the routing �nishes after at most �(0) routing
steps. �(0) is referred as the initial potential and provides an upper bound on the
routing performance of the algorithm. The challenge is to identify the potential
function �() that satis�es the above relations and has as small as possible initial
potential. Note that, the above descriptions of the potential function method is
somehow simpli�ed. The potential function can actually take real values and the
potential might decrease by 1 in more that one routing steps (usually a constant
number of steps).

In this paper, we present an o�-line greedy algorithm which heap orders a
tree T of height h(T) in at most 2h(T) routing steps. We use an algorithm
that can be considered to be an extension of the odd-even transposition sorting
method [1, 8, 9]. The same algorithm was used for building a heap priority queue
(i.e., a complete binary tree) in an EREW-PRAM environment [13, 17]. While
the proof originally reported in [13] appears to generalise to arbitrary trees, we
provide a proof based on potential functions. We consider this new proof to be
of great importance. It is our belief that potential functions will be the main
vehicle in analysing fast non-recursive routing algorithms and we treat the proof
we present in this paper as the �rst step towards the analysis of greedy routing
algorithms on trees.

We have just claimed that our proof based on potential functions will facili-
tate the analysis (through similar proofs) of greedy routing algorithms on trees.
This claim raises two questions: Firstly, what is wrong with the existing algo-
rithms for routing on trees (and their analysis) and, secondly, why is the problem
of routing on trees so important to justify work on analysing algorithms using a
special methodology (i.e., based on potential functions). These two questions are
interrelated and we address them together in the rest of this introductory sec-
tion. In the rest of the paper, unless otherwise speci�ed, we assume that routing
is performed according to the matching routing model.

It is known that there exist n-node trees for which there are permutations
that require b3(n� 1)=2c routing steps under the matching model [2]. The algo-
rithm presented by L. Zhang [16] routes any permutation in at most 3n=2+logn
routing steps. Thus, an optimal algorithm (within a logarithmic additive term)
is available and it can be claimed that the problem has been addressed in a
satisfactory and conclusive way. This is certainly the case if \routing on trees"
is considered in isolation and treated as a problem of academic only interest.

In practice, the problem of routing permutations on trees very rarely (if ever)
arises, simply because real interconnection networks are more sophisticated and
complicated than trees. Of course, we can argue that a routing algorithm on a

242 Roberts A., Symvonis A.: Potential-function-based Analysis ...

tree is still useful since routing on an arbitrary interconnection network can be
performed along the edges of one of its spanning trees. However, this approach
is not viable since each edge of the tree becomes a potential bottleneck point
which, in turn, results to the lower bound on the number of required routing
steps dominated by the bisection of the tree rather than the diameter and the
bisection of the real interconnection network.

Thus, realistic routing requires algorithms designed directly for the real inter-
connection network. Further practical considerations dictate that the algorithms
should have a simple control structure, be able to handle dynamic situations (i.e.,
to allow for the creation of new packets while the routing takes place), be starva-
tion free (i.e., guarantee delivery of each packet within a �nite number of steps),
etc. As a result of all of these requirements, several (usually greedy) routing
schemes have been devised (under a variety of routing models) and it has been
established through experimentation that they work well in practice. However,
this observed behaviour is not usually accompanied by a matching analysis since
the upper bounds that we are able to obtain are trivial and usually much worse
than the observed behaviour. A classical example of this situation is routing
under the hot-potato model where, even thought the basic routing model has
been around since 1964 [3], the �rst non-trivial analysis of algorithms for that
routing model was provided in 1992 by Feige and Raghavan [6].

Given that there is a gap to close between the theoretically predicted and
the observed performance of several practical algorithms on real interconnection
networks, the obvious question is how do we approach the problem of bridging
that gap? Obviously, we should �rst study the routing problem on the simplest
non-trivial form of network, i.e., a tree, and then bene�t from our experience to
extend the derived algorithms and analysis methods to general networks. Within
this framework which treats the problem of routing on trees as a fundamental
problem that will help to better understand and develop the techniques that will
be used for the analysis of routing on realistic networks, it is easy to answer the
question raised earlier in this introduction, i.e., \what is wrong with the existing
algorithms for routing on trees?" The problem is that the existing algorithms
are designed with a particular analysis in mind that explores properties of trees,
and thus, are not extendable to more sophisticated networks.

It is revealing to study the literature of routing on n-node trees under the
matching model. The �rst algorithm was provided by Alon, Chung and Graham
in [2] and formed the basis of all algorithms that followed. The algorithm consists
of three phases: Firstly, a special node is identi�ed and it is designated as the
root of the tree. This special node has the property that when it becomes the
root of an n-node tree, all subtrees rooted at its children have at most bn=2c
nodes. (The fact that such a node always exists is considered to be folklore in
graph theory.) This �rst phase of the algorithm takes no routing steps, since it
is assumed that each node of the tree (processor of the interconnection network)
knows the whole tree topology. During the second phase, the algorithm routes
all packets to a node in the subtree that contains their destination node (but not
necessarily to their destination). At the end of this phase, all packets are in their
correct subtree which consists of at most bn=2c nodes. As it is easy to guess,
the third phase consists of recursively routing the packets to their destination
node within the subtrees of size at most bn=2c. An analysis based on recurrence
relations results to an upper bound of 3n routing steps for permutation routing.
The algorithm of Alon, Chung and Graham in [2] was improved by Roberts,

243Roberts A., Symvonis A.: Potential-function-based Analysis ...

Symvonis, and L. Zhang [14]. They managed to reduce the required number of
routing steps to 2:3n by partially overlapping the two routing phases. Later
on, L. Zhang [16] managed to route any permutation in at most 3n=2 + logn
routing steps by a clever partitioning of the tree (called caterpillar partition) and,
again, by partially overlapping the routing phases. Krizanc and L. Zhang [10]
used a similar approach to study the case where each node of the tree can be
the destination of more that one packet and showed that the routing can be
completed within 9n steps. Independently, Pantziou, Roberts and Symvonis [12]
provided an algorithm that handles dynamic routing. A consequence of their
analysis is that the same problem studied by Krizanc and L. Zhang can be
solved in at most 3n routing steps. Note that all of the above algorithms are
o�-line routing algorithms.

The fact that all of the above algorithms, with the exception of the algorithm
by Pantziou, Roberts and Symvonis [12], are based on a special partitioning of
the tree makes it di�cult to adapt them for other networks. However, they all
possess another more disturbing characteristic, that is, they are all recursive.
Recursive algorithms usually require a complex control structure when they are
implemented in hardware and the situation becomes even worse when they have
to perform a lot of non-routing related computations, such as computing the
partition of the tree. The list of disadvantages gets longer if we also consider the
fact that recursive algorithms are not particularly useful in situations where the
routing is dynamic, that is, packets are generated and inserted into the routing,
while the routing of other packets takes place.

We consider the problem of routing on trees as a fundamental problem, the
study of which will facilitate the analysis of new and existing practical routing
algorithms. We believe that one of the most promising methods is that of poten-
tial functions since that framework of analysis appears to successfully encompass
the class of greedy routing algorithms. There are two more reasons that support
our belief. Firstly, potential functions have already been used in the analysis of
routing on trees. More speci�cally, all algorithms that follow the framework in-
troduced by Alon, Chung and Graham [2] use potential functions to analyse the
routing that takes place during the second phase, i.e., the routing of each packet
to its destination subtree. The second reason for which we believe that potential
functions will play an important role in the analysis of routing algorithms has
to do with the heap construction algorithm that we analyse in this paper. When
the algorithm is restricted to operate on a linear array, one of the simplest forms
of a tree, it reduces to the odd-even transposition sorting method. Interestingly
enough, if we adapt our analysis to take into account the fact that the routing
takes place on a linear array, we match the upper bound obtained for the odd-
even transposition sorting by totally di�erent methods including induction [1, 8]
and the zero-one principle [11].

A �nal point which deserves attention is the selection of the matching routing
model. This routing model uses limited resources and at the same time is so-
phisticated enough (through the use of matchings) so that the resulting analysis
of routing on trees should be non-trivial. The matching model is also attractive
because of its relation with group theoretic problems. The problem of deciding
what is the smallest number of routing steps required for the routing of a per-
mutation is equivalent to determining the diameter of a permutation graph in
which each state of the routing is represented by a vertex and (u; v) is a edge of
the permutation graph if state v of the routing can be obtained in one routing

244 Roberts A., Symvonis A.: Potential-function-based Analysis ...

step from state u (using the routing model under consideration).
Note also that it is likely that an analysis obtained for one routing model

can be extended to the analysis under a di�erent model through reductions. This
was the approach used in [12] where basic techniques developed for the analysis
of hot-potato routing by Borodin, Rabani and Schieber [4] were coupled with
reductions to yield upper bounds on the performance of dynamic (o�-line and
on-line) routing algorithms on trees under a modi�cation of the matching model.

In the preceeding paragraphs, we highlighted the importance of exploring the
problem of routing on trees for the development and analysis of practical routing
algorithms on arbitrary interconnection networks and we argued that potential
functions can play a prominent role in the analysis of such algorithms. In this
paper, we analyse, based on potential functions, an o�-line algorithm for the heap
ordering problem. The presesnted o�-line algorithm can be transformed to an on-
line one at the cost of a slowdown penalty that depends on the maximum degree
of the tree. We consider our analysis to be a �rst step towards the fundamental
task of analysis algorithms for routing on trees based on potential functions.
Hopefully, the study and the extension of the obtained potential function will
lead to similar potential functions that can be used, �rstly, for the analysis of
routing on trees and, subsequently, of routing on arbitrary networks.

The rest of the paper is organized as follows: In Section 2, we present the heap
construction algorithm. In Section 3, based on potential function arguments, we
show that the presented algorithm heap orders a tree T of height h(T) in at
most 2h(T) routing steps. In Section 4, we demonstrate an initial distribution
of key-values on a tree that requires 2h(T)� 1 steps for its heap ordering by our
algorithm and thus, prove that our analysis is tight. We conclude in Section 5.

2 The Heap Construction Routing Algorithm

A tree T = (V;E) is an undirected acyclic graph with node set V and edge set E.
Throughout the paper we assume n-node trees, i.e., jV j = n. A tree T is rooted
if one of its nodes, say r, is distinguished as its root. The depth dT (v) of node
v is de�ned to be the distance (length of a shortest path) from the root r to v.
The height of tree T , denoted by h(T), is de�ned to be h(T) = maxv2V dT (v).
We say that a node v is a level-i node (or, at depth-level i) if dT (v) = i. The root
of the tree is a level-0 node. We say that an edge e is a level-i edge if it connects
a level-i node with a level-(i + 1) node. All edges connected to the root r are
level-0 edges. Figure 1 demonstrates the introduced terminology for nodes/edges
on a complete ternary tree.

Consider a rooted tree T and let each node of T initially contain a packet.
Moreover, let each packet have a key-value associated with it, with all key-values
drawn from a totally ordered set (in this paper, the set of integers). Our objective
is to route the packets (using the matching routing model) in such a way that,
at the end of the routing, the tree is heap ordered with respect to the key-values

of the packets at its nodes. It is not di�cult to heap order T within O((h(T))
2
)

routing steps. This is achieved by establishing the heap property in a bottom-up
manner. (If we assume that all subtrees rooted at children of node x are heap
ordered then the subtree rooted at x, i.e., Tx, can be heap ordered in exactly
h(Tx) routing steps.) However, we can heap order a tree substantially faster. We
describe an algorithm that completes the task in at most 2h(T) routing steps.

245Roberts A., Symvonis A.: Potential-function-based Analysis ...

Level-0 node

Level-2 nodes

Level-1 nodes

Level-0 edges

Level-1 edges

root

Figure 1: A complete ternary tree.

The algorithm we propose works for arbitrary rooted trees and it can be
considered to be a generalisation of the odd-even transposition sorting method [1,
8, 9]. A similar algorithm was proposed in [13, 17] in the context of a EREW
PRAM priority queue implemented by a complete binary tree.

Algorithm Odd-Even Heap Construction(T)
/* W.l.o.g., we assume that all key-values associated with the packets
are distinct. */
1. Assign label h(T)� i to each level-i edge, 0 � i < h(T).
2. t = 1
3. While t � 2h(T) do

(a) For any node u with edges connecting to its children labelled
congruent to t mod 2, select out of the children of u the child,
say v, that contains the packet of the smallest key-value. Order
for a comparison between the key-values of the packets at u and
v to take place at time t. If the key-value of the packet at v
is smaller than the key value of the packet at u, a swap of the
packets takes place.

(b) t = t+ 1

AlgorithmOdd-Even Heap Construction() was classi�ed as an o�-line algo-
rithm due to step 3(a) and the requirement that the edge connected to the node
holding the minimum key value becomes active. A trivial on-line extension is
possible but the number of routing steps increases by a factor of 2dmax + 1,
where dmax is the maximum degree of the tree. With 2dmax exchanges a node
can inspect all the packets located at its children (at most dmax) and decide
which is the one with the smallest key-value. A �nal exchange, if necessary,
brings the packet with the smallest key-value to the node. Note that this on-line
extension, results to a �nal distribution of the packets at the nodes of the tree
identical to that of the o�-line algorithm.

The similarity of AlgorithmOdd-Even Heap Construction() with the odd-
even transposition method should be obvious. At odd (even) steps only odd
(even) labelled edges can be active. However, because of the restrictions of the
matching routing model, out of the potentially active edges that are connected to
the same node, only one becomes active. One thing that remains to be clari�ed
is why we labelled the edges in a bottom-up fashion instead of the traditional
top-down. The reason becomes evident during the analysis of the algorithm.

246 Roberts A., Symvonis A.: Potential-function-based Analysis ...

3 Analysis of Algorithm Odd-Even Heap Construction()

Throughout this section, we assume that the movement of packets is according to
algorithm Odd-Even Heap Construction(). Consider an arbitrary packet p. Let
all packets in the tree which have larger key-value than p be coloured black and
all other packets (including p) be coloured white. This colouring is done only for
the purposes of the analysis. Note that it is speci�c to packet p.

Let M(p; t) be the simple path which goes from the root of the tree to the
node that holds packet p at the end of step t of the routing. Note that M(p; 0)
denotes the path which goes from the root of the tree to the node that initially
contains packet p.

Consider M(p; t) for any t � 0. It consists of alternating blocks of black and
white packets. We refer to them as black blocks and white blocks, respectively.
We refer to the packet of a block that is closest to the root as the �rst packet
of the block and to the packet of a block that is closest to p as the last packet of
the block. The remaining packets of the block, if any, are referred as the middle
packets of the block. Let the blocks be numbered as we walk away from the
root as shown in Figure 2. Let W t

i refer to the i-th white block away from the
root, where counting begins at 0. Similarly, let Bt

i refer to the i-th black block
away from the root, where counting begins at 1. By g(t) we denote the number
of black blocks in the path M(p; t). Note that the �rst white block W t

0 may be
empty. Note also that when all packets above p are white, all of the packets on
the path, including p, are in the block W t

0 . By jX j we denote the number of
packets in block X .

1

t
W g(t)

t

p

W
1

Root

0

t t
W B

Figure 2: The �gure shows a path M(p; t) from the root of the tree to the node that
contains packet p at the end of a particular step t. In general, W t

0 may be empty.

Lemma1. Consider the path M(p; t), t � 1, and assume that it contains black
packets. Consider any black block Bt

i ; 1 � i � g(t). Then, one of the following
occurs when step t+ 1 is carried out:

i) The last packet of Bt
i moves towards p, or,

ii) the last packet of Bt
i is not present in M(p; t+ 1).

Proof. We prove the lemma by induction on t. The only way that the conditions
listed in the lemma do not occur for a given block Bt

i ; 1 � i � g(t) when step
t+ 1 is carried out, is if the last packet of that block is not compared with any
packet immediately below it. As we show, the only time that this can happen
is on the �rst step of the routing, i.e., t = 0. This is the reason that the lemma
considers the case where t � 1.

Assume that the lemma is true for t0 = t� 1; t0 � 1. Consider a black block
Bt
j ; 1 � j � g(t). There are two cases to consider:

247Roberts A., Symvonis A.: Potential-function-based Analysis ...

1. Bt
j is a single-packet block. Denote the single packet in Bt

j by q. There are
three sub-cases:
(a) q was the last packet of a multi-packet block Bt�1

j0 ; 1 � j0 � g(t � 1),
at the end of step t � 1. By the induction hypothesis, q moved towards
p and formed the 1 packet block. Since it moved towards p during step
t, the edge immediately above the node currently holding q was active
at time t. Thus, one of the edges immediately below that node is active
during step t+1. So, q either moves closer to p or it moves o� the path1,
i.e., it is not present in M(p; t+ 1).

(b) q was the �rst packet of a 2-packet block Bt�1
j0 ; 1 � j0 � g(t� 1), at the

end of step t� 1. One of the edges immediately below the node holding
the last packet of the 2-packet block Bt�1

j0 was active during step t (by

the induction hypothesis). This implies that is it now the turn of one of
the edges immediately below the node holding q to be active. Thus, q
either moves closer to p or it moves o� the path, i.e., it is not present in
M(p; t+ 1).

(c) q was a middle packet of a multi-packet block Bt�1
j0 ; 1 � j0 � g(t � 1),

at the end of step t� 1. For q to form a single-packet block at the end of
step t, during step t the packet immediately above q in M(p; t� 1) must
have moved o� the path (i.e., it is not present in M(p; t)) and the packet
immediately below q must have moved either closer to p or o� the path
(and thus, it is not present inM(p; t)). This implies that, at the beginning
of step t+1, the packet immediately below q (inM(p; t)) is a white packet
and also that one of the edges which connect the node holding q with
the nodes immediately below it is active. Thus, q either moves closer to
p or it moves o� the path, i.e., it is not present in M(p; t+ 1).

2. Bt
j is a multi-packet block. Because of the induction hypothesis, at the end

of step t�1 the last packet of the block Bt
j , say q, was either the second-last

packet of a block Bt�1
j0 ; 1 � j0 � g(t � 1), or it was a middle packet of the

block and the packet immediately below it moved o� the path (i.e., it is not
present inM(p; t)). Since, in any case, the packet of block Bt�1

j0 immediately
below q moved, the edges immediately below the node holding that packet
were active at time t. This implies that the edges immediately below the
node currently holding q are active during step t+ 1.

Because of the nature of our algorithm, there are blocks for which the lemma
does not hold at t = 0. This is due to the fact that the last packets of these
blocks are immediately above edges that are not active during the �rst step.
However, we show that the lemma holds for the case of t = 1 (the basis of the
induction).

Suppose that there was a block B0
j ; 1 � j � g(0), the last packet of which

was not compared with any packet immediately below it during the �rst step.
Suppose that this block becomes the j0-th block after the �rst step of routing has
occurred. Then, because alternate edges are active on alternate steps, the last
packet of block B1

j0 ; 1 � j � g(1) is compared on step 2 of the routing with the
packets that are immediately below it. These packets include at least one white

1 Note that in the case that q was adjacent to p the two packets might be swapped.
This is considered as moving o� the path M(p; t+ 1).

248 Roberts A., Symvonis A.: Potential-function-based Analysis ...

packet (the �rst packet of the white block W 1
j0 ; 1 � j � g(1)). This concludes

the proof.

Observation 2. Consider the path M(p; t); t � 0. No black packet joins the path
except by swapping with a black packet. Therefore, the number of black packets
that are on the path M(p; t + 1) is always less than or equal to the number of
black packets that are on the path M(p; t).

Lemma3. Consider paths M(p; t) and M(p; t + 1); t � 1, and assume that
g(t) = g(t+1) � 1. Then, at least one of the following is true after step t+1 is
carried out:

i) There is at least one more black packet present in M(p; t) than in M(p; t+
1).

ii) jW t+1
0 j � jW t

0 j+ 1 (i.e., at least one white packet joins block W t
0).

Proof. For the sake of contradiction, assume that the number of black packets
in M(p; t) is the same as the number of black packets in M(p; t+1) and that no
white packet joins block W t

0 (i.e., jW t+1
0 j = jW t

0 j).
By Lemma 1, and since the number of black packets on the two paths remains

unchanged, we know that when step t+ 1 is carried out, the last packet of each
black block Bt

i ; 1 � i � g(t), moves closer to packet p and that the white block
W t

g(t) consists of at least two packets. Since no white packet joins block W t
0 , we

also conclude that the �rst black block Bt
1 consists of at least two packets.

Consider the (possibly empty) sequence [Bt
k; : : : ; B

t
g(t)]; k � g(t)+ 1, of con-

secutive single-packet black blocks2. The packets of these blocks move towards
p and thus, they continue being single-packet blocks. Since g(t) = g(t+ 1) and
no black packet moves o� the path, the last packet of each black block on the
path at the end of step t becomes the �rst packet of a black block on the path
when step t + 1 is carried out. But the last packet of Bt

k�1 is not able to join

any (previously existing) black block. Note that block Bt
k�1 must exist since we

have established that block Bt
1 contains at least 2 black packets. This implies

that g(t+ 1) � g(t) + 1, a contradiction.

Lemma4. Consider paths M(p; t) and M(p; t + 1); t � 1, and assume that
g(t+ 1) = g(t)� �; � > 0. Then, at least one of the following is true after step
t+ 1 is carried out:

i) There are at least � + 1 more black packets present in M(p; t) than in
M(p; t+ 1).

ii) There are at least � more black packets present in M(p; t) than in M(p; t+
1) and jW t+1

0 j � jW t
0 j+ 1.

Proof. For the sake of contradiction, assume that there are at most �� 1 more
black packets present in M(p; t) than in M(p; t+1), or there are at most � more
black packets present in M(p; t) than in M(p; t+1) and jW t+1

0 j = jW t
0 j (i.e., no

white packet joined block W t
0)
3. Also recall that, by Lemma 1, when step t+ 1

2 [Bt
g(t)+1; B

t
g(t)] denotes the empty sequence.

3 Note that this assumption is the logical negation of the statement of the lemma; as
it is required in a proof by contradiction.

249Roberts A., Symvonis A.: Potential-function-based Analysis ...

is carried out the last packet of each black block Bt
i ; 1 � i � g(t), moves closer

to p or it moves o� the path. We consider two cases based on the number of
packets of the �rst black block Bt

1.

1. Bt
1 is a single-packet block. In this case, because the black packet in Bt

1 moves
closer to p or o� the path, a white packet joins W t

0 . Thus, our assumption
must be that at most ��1 more black packets are present inM(p; t) than in
M(p; t+1). Then, the last packet of all but at most ��1 black blocks in path
M(p; t) becomes the �rst packet of a black block in pathM(p; t+1) when step
t+1 is carried out. That implies that g(t+1) � g(t)� (��1) = g(t)��+1,
a contradiction since we assumed that g(t+ 1) = g(t)� �.

2. Bt
1 contains at least 2 black packets. The situation where a white packet

joining the path (replacing the �rst black packet of Bt
1) also joins W t

0 is
covered by the proof given in the previous case. So, assume that the number
of packets in W t

0 didn't change. Thus, our assumption must be that at most
� more black packets are present in M(p; t) than in M(p; t + 1). In the
case that the � black packets which moved o� the path were single-packet
black blocks, consider the black block closest to p which had at least 2
packets, say Bt. Since all packets that moved o� the path were single-packet
blocks, the last packet of Bt forms a block of its own in M(p; t+ 1). Thus,
g(t+1) � g(t)��+1, a contradiction since we assumed that g(t+1) = g(t)��.
We also arrive at the same contradiction in the case where black packets from
black blocks in M(p; t) with at least 2 packets move o� the path during step
t+ 1.

This completes the proof.

Theorem5. Algorithm Odd-Even Heap Construction() heap orders any tree T
in at most 2h(T) steps, where h(T) is the height of the tree T .

Proof. Consider an arbitrary packet p and the smallest t0 such that pathM(p; t0);
t0 � 0, consists only of white packets. Let m be the number of white packets
(including p) in the path. (By de�nition, m = jW t0

0 j.)
De�ne the potential �(p; t) of packet p after t steps of routing, t � 0, as

�(p; t) = max(m; jW t
0 j)� jW t

0 j+

g(t)X

i=1

jBt
i j � g(t)

For an arbitrary packet p we show that the following hold:

1. �(p; t) � 0 for t � 0
2. If �(p; t) = 0 then �(p; t+ 1) = 0, t � 0
3. If t > 0 and �(p; t) > 0 then �(p; t+ 1) � �(p; t)� 1
4. �(p; 1) � 2h(T)� 1

From the above conditions, it is easy to prove that the potential of all packets
is equal to 0 after at most 2h(T) steps. We complete the proof by showing that
when the potential of all packets drops to 0 the tree is heap ordered.

Claim6. �(p; t) � 0; t � 0.

250 Roberts A., Symvonis A.: Potential-function-based Analysis ...

Proof of Claim 6 Simply observe that for any t � 0 it holds that max(m; jW t
0 j)�

jW t
0 j � 0 and

Pg(t)
i=1 jB

t
i j � g(t) � 0 (there are at least as many black packets as

the number of black blocks).

Claim7. If �(p; t) = 0 then �(p; t+ 1) = 0, t � 0.

Proof of Claim 7 Simply observe that if the potential is 0 at the end of step

t; t � 0, then jW t
0 j = max(m; jW t

0 j) and
Pg(t)

i=1 jB
t
i j = g(t) = 0 (all packets in

path M(p; t) are white). Since the number of black packets in path M(p; t) is
non-increasing, we deduce that if �(p; t) = 0 then �(p; t+ 1) = 0.

Claim8. If t > 0 and �(p; t) > 0 then �(p; t+ 1) � �(p; t)� 1.

Proof of Claim 8 If g(t + 1) > g(t) then �(p; t + 1) � �(p; t) � 1 as it is not
possible for the sum of the remaining terms to increase. If g(t+ 1) = g(t) then,

by Lemma 3, jW t+1
0 j � jW t

0 j+1 and/or
Pg(t)

i=1 jB
t
i j >
Pg(t+1)

i=1 jBt+1
i j. Therefore,

if g(t+1) = g(t) then �(p; t+1) � �(p; t)�1. If g(t+1) = g(t)��; � > 0, then

by Lemma 4,
Pg(t+1)

i=1 jBt+1
i j� jW t+1

0 j �
Pg(t)

i=1 jB
t
i j� jW t

0 j���1. We conclude
that in every case, if t > 0 and �(p; t) > 0 then �(p; t+ 1) � �(p; t)� 1.

Claim9. �(p; 1) � 2h(T)� 1.

Proof of Claim 9 First consider the potential at time t = 1 (after the �rst
step of the routing) of all packets at level-i nodes, 0 � i < h(T). We have

that: i) max(m; jW 1
0 j) � h(T) + 1, ii) jW 1

0 j � 0, iii)
Pg(1)

i=1 jB
1
i j � h(T) � 1,

and iv) g(1) � 1 if
Pg(1)

i=1 jB
1
i j � 1. By plugging the above inequalities to the

potential function we get that �(p; 1) � 2h(T)� 1 for any packet p at a level-i
node, 0 � i < h(T).

Consider now the potential at time t = 1 (after the �rst step of the routing)
of any packet at a level-h(T) node. Recall from the routing algorithm that the
edge immediately above any level-h(T) node is active during the �rst step of
routing 4. Therefore, since p is at a level-h(T) node after the �rst routing step,
we deduce that the packet immediately above it must be a white packet. This

implies that in this case too,
Pg(1)

i=1 jB
1
i j � h(T)� 1. Since inequalities i), ii) and

iv) still hold, we conclude again that �(p; 1) � 2h(T)� 1 for any packet p at a
level-h(T) node. This completes the proof.

From the above facts it is easy to deduce that �(p; 2h(T)) = 0 for any packet
p. This implies that the tree is heap ordered. To see that, and for the sake of
contradiction, assume that at time t the potential of all packets is 0 and that
there are two adjacent packets p and q that violate the heap invariant, i.e., the
key-value of p is larger than the key-value of q, and p is immediately above q.
But p is a black packet in the path M(q; t) and thus �(q; t) � 1, a contradiction
since we assumed that �(q; t) = 0.

It is worth observing that the proof just completed provides an alternative
correctness proof for the odd-even transposition method on linear arrays, as
Corollary 10 indicates.

4 This is why in Algorithm Odd-Even Heap Construction() the edges of the tree were
labelled in a bottom-up fashion.

251Roberts A., Symvonis A.: Potential-function-based Analysis ...

Corollary 10. The odd-even transposition method sorts the elements of a linear
array of n nodes within n steps.

Proof. We �rst observe that the Algorithm Odd-Even Heap Construction() re-
duces to odd-even transposition sorting when carried out on a linear array.
It therefore su�ces to show that in the case of a linear array of n nodes,
�(p; 1) � n � 1 for any packet p. Once this has been done, the claims that
were proven in Theorem 5 for a general tree, immediately imply the result.

Let the root be a node at one end of the array. Consider any packet p. We

�rst observe that there are at most n �
Pg(1)

i=1 jB
1
i j white packets. Therefore,

max(m; jW 1
0 j) � jW 1

0 j � n �
Pg(1)

i=1 jB
1
i j. We also observe that if

Pg(1)
i=1 jB

1
i j =

0 then max(m; jW 1
0 j) = jW 1

0 j and g(1) = 0. Thus, either �(p; 1) = 0 or,Pg(1)
i=1 jB

1
i j � 1 in which case g(1) � 1. We conclude that in any case �(p; 1) �

n� 1.

The fact that step 3(a) of Algorithm Odd-Even Heap Construction() can be
simulated in an on-line fashion with 2dmax + 1 routing steps, allows us to state
the following corollary:

Corollary 11. A tree T can be heap ordered in an on-line fashion within (4dmax+
2)h(T) routing steps where dmax is the maximum degree of tree T .

4 A Lower Bound for Algorithm Odd-Even Heap Construction()

In this section we show that the analysis provided for AlgorithmOdd-Even Heap
Construction() is tight. We provide an instance of the heap ordering problem
that requires 2h(T)�1 routing steps for its solution by our algorithm. Note that
the provided lower bound applies to our algorithm only and is not a lower bound
for the heap construction problem.

Theorem12. There exist trees and initial distributions of key-values on them
for which Algorithm Odd-Even Heap Construction() needs 2h(T) � 1 routing
steps, where h(T) is the height of the tree that is to be heap ordered.

Proof. We prove the theorem by demonstrating a tree T of height h and an
assignment of key-values to the packets at its nodes for which Algorithm Odd-
Even Heap Construction() terminates after 2h� 1 routing steps. Figure 3 shows
such a tree and the assignment of key-values to its packets for the case that
h = 4. It is trivial to generalise the tree and the assignment for arbitrary h > 0.

Let h denote the height of this tree structure in the general case. Let the
packets at the leaves of the tree structure be assigned the distinct key-values
h� 1; h� 2; : : : ; 1; 0 in decreasing order from left to right. Let all of the other
packets in the tree (shown as black packets on the diagram) be given the same
number k, where k � h. Let the levels of the tree be numbered as shown, from
the root downwards in increasing order, beginning with 0.

Referring to Figure 3, let til denote the �rst step that a packet with key-value
i reaches level l on the main backbone of the tree. We now observe that sorting
cannot be completed until the packet with key-value i; 0 � i � h�1 has reached

252 Roberts A., Symvonis A.: Potential-function-based Analysis ...

3 2 1 0

Level

0

1

2

3

4

backbone

Figure 3: The tree structure and the assignment of key-values used in the proof of
Theorem 12, for h = 4.

level i. We intend to prove the theorem by showing that with our algorithm, the
packet with key-value h� 1 reaches level h� 1 for the �rst time on step 2h� 1.

Consider a node u of the tree during sorting. When deciding whether or not
to advance a packet from one of the children of u into node u, the algorithm only
considers the child that contains the packet of smallest key-value (referred as the
\smallest �rst" rule). This implies that the packet with key-value i� 1; 0 < i �
h � 1, will always reach level i before the packet with key-value i does. It also
implies that when the packet with key-value i� 1 is at level i, the packet with
key-value i is at level i + 1. Furthermore, the \smallest �rst" rule implies that
none of the packets with the h smallest key-values moves downwards in the tree
on any step during the heap ordering.

Once the packet with key-value i� 1 has reached level i, it does not move
again until it moves \upwards" towards the root, because all packets that are
below it in the tree have larger key-values. When it does move upwards from
level i to level i� 1, the packet with key-value i moves from level i+ 1 to level
i of the backbone on the next step of the heap ordering. Therefore we have

tii = ti�1i�1 + 1

as a direct consequence of the matching model and the \smallest �rst" rule.
Also, from a distance bound we have t00 = h. Combining these we get

th�1h�1 = th�2h�2 + 1
= t00 + h� 1
= 2h� 1

Sorting cannot be complete until the packet with key-value h� 1 reaches
level h � 1 for the �rst time. We observe, however, that because none of the
packets with the h smallest key-values move downwards in the tree on any step
during the heap ordering, the algorithm terminates after step th�1h�1 has occurred.
We conclude that the theorem holds.

253Roberts A., Symvonis A.: Potential-function-based Analysis ...

5 Conclusions

In this paper we presented an o�-line algorithm that heap orders a rooted tree
T of height h(T) in at most 2h(T) routing steps when the routing is performed
under the matching routing model. The algorithm can be trivially extended to
be on-line, for a slowdown of a factor of 2dmax+1, where dmax is the maximum
degree of the tree. As the most important contribution of the paper, we consider
the analysis of the algorithms which is based on potential functions, since we be-
lieve that it will facilitate the analysis of greedy routing algorithms on arbitrary
interconnection networks.

The long term goal of our research is the analysis of dynamic greedy routing
algorithms and the development of an understanding of the quantities that in-
uence the performance of the algorithms. The next step towards our goal is the
development and the analysis of a greedy algorithm for routing permutations
on trees under the matching model. The algorithms presented in [12] can be the
starting point.

References

[1] S. Akl. Parallel Sorting Algorithms. Academic Press, 1985.
[2] Alon, Chung, and Graham. Routing permutations on graphs via matchings. SIAM

Journal on Discrete Mathematics, 7:513{530, 1994.
[3] P. Baran. On distributed communication networks. IEEE Trans. on Commun.

Systems, CS-12:1{9, 1964.
[4] A. Borodin, Y. Rabani, and B. Schieber. Deterministic many-to-many hot potato

routing. Technical Report RC 20107 (6/19/95), IBM Research Division, T.J.
Watson Research Center, Yorktown Heights, NY 10598, June 1995.

[5] N. Deo and S. Prasad. Parallel heap: An optimal parallel priority queue. The
Journal of Supercomputing, 6(1):87{98, March 1992.

[6] U. Feige and P. Raghavan. Exact analysis of hot-potato routing. In Proceedings
of the 33rd Annual Symposium on Foundations of Computer Science (Pittsburgh,
Pennsylvania, October 24{27, 1992), pages 553{562, Los Alamitos-Washington-
Brussels-Tokyo, 1992. IEEE Computer Society Press.

[7] R.W. Floyd. Algorithm 245: Treesort 3. Communications of ACM, 7:701, 1964.
[8] N. Haberman. Parallel neighbor-sort (or the glory of the induction principle).

Technical Report AD-759 248, National Technical Information Service, US De-
partment of Commerce, 5285 Port Royal Road, Spring�eldn VA 22151, 1972.

[9] D.E. Knuth. The Art of Computer Programming. Volume 3: Sorting and Search-
ing. Addison-Wesley, 1973.

[10] D. Krizanc and L. Zhang. Many-to-one packet routing via matchings. In Proceed-
ings of the Third Annual International Computing and Combinatorics Conference,
Shanghai, China, August 1997. To appear.

[11] F. T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays -
Trees - Hypercubes. Morgan Kaufmann, San Mateo, CA 94403, 1991.

[12] G. Pantziou, A. Roberts, and A. Symvonis. Dynamic tree routing under the
\matching with consumption" model. In T. Asano, Y. Igarashi, H. Nagamochi,
S. Miyano, and S. Suri, editors, Proceedings of the 7th International Symposium on
Algorithms and Computation ISAAC '96 (Osaka, Japan, December 1996), LNCS
1178, pages 275{284. Springer-Verlag, 1996.

[13] N. Rao and W. Zhang. Building heaps in parallel. Information Processing Letters,
37:355{358, March 1991.

254 Roberts A., Symvonis A.: Potential-function-based Analysis ...

[14] A. Roberts, A. Symvonis, and L. Zhang. Routing on trees via matchings. In Pro-
ceedings of the Fourth Workshop on Algorithms and Data Structures (WADS'95),
Kingston, Ontario, Canada, pages 251{262. Springer-Verlag, LNCS 955, aug 1995.
Also TR 494, January 1995, Basser Dept of Computer Science, University of Syd-
ney.

[15] J.W.J Williams. Algorithm 232: Heapsort. Communications of ACM, 7:347{348,
1964.

[16] Louxin Zhang. Optimal bounds for matching routing on trees. In Proceedings of
the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 445{
453, New Orleans, Louisiana, 5{7 January 1997.

[17] W. Zhang and R.E. Korf. Parallel heap operations on an EREW PRAM. Journal
of Parallel and Distributed Computing, 20(2):248{255, February 1994.

255Roberts A., Symvonis A.: Potential-function-based Analysis ...

